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SPATIAL EIGENFUNCTIONS OF THE SPIN-INDEPENDENT 
MANY-ELECTRON HAMILTONIAN (*) 

J. I. M U S H E R 

Belfer Graduate School of Science, Yeshiva University, New York, N . Y. (**) 

and 

Institute of Chemistry, Hebrew University, Jerusalem, Israel 

Résumé. — Les propriétés de symétrie des fonctions propres spatiales de Fhamiltonien à plu­
sieurs électrons indépendant du spin sont étudiées, leurs valeurs propres et leurs dégénérescences 
sont discutées de même que les valeurs propres des fonctions d'ondes physiques correspondantes. 
Des exemples détaillés sont donnés principalement pour le problème à trois électrons de même que 
certaines propriétés de la structure des niveaux pour une configuration donnée ; on donne aussi 
le classement de ces niveaux et on généralise au problème à n électrons. On discute l'emploi de 
procédés de calcul de perturbations non symétriques pour obtenir les fonctions propres spatiales, 
et on considère les applications possibles de tels procédés. 

Abstract. — The symmetry properties of the spatial eigenfunctions of the spin-independent many-
electron Hamiltonian are examined and their eigenvalues and degeneracies are discussed along with 
eigenvalues of the corresponding physical wave functions. Detailed examples are given, mostly 
for the three-electron problem, with certain properties of the level structure of a given configura­
tion and the ordering of such levels generalized to the many-electron problem. The use of non-
symmetric perturbation theoretic procedures for calculating the spatial eigenfunctions is discus­
sed and the potential utility of such procedures is considered. 

I. Introduction. — The spin-independent Hamilto­
nian, H, for an arbitrary many-electron system lias a 
spectrum of eigenvalues whose corresponding eigen­
functions are solutions to the equation 

(1) 

and are functions only of the spatial coordinates of 
the TV-electrons, denoted symbolically by r. Because 
of the fact that electrons are indistinguishable, the 
Hamiltonian His symmetric under all permutations of 
particle indices, and hence the eigenfunctions $,(/•) 
can be classified according to their transformation 
properties under the operations of the symmetric 
group, SN. Thus, each eigenfunction can be associated 
to one of the irreductible representations, a, of SN. 
If a is multi-dimensional, a transformation can be 
carried out among the corresponding multiply-
degenerate set of eigenfunctions so that each eigen­
function can be associated with an individual row, )., of 
the matrix for the irreducible representation, a, in any 
appropriate basis. 

The set of functions V;(r, a) of the space and spin 
coordinates of the TV-electrons (the latter denoted 
symbolically by a) which are eigenfunctions of H, 
satisfying the Schrodinger equation 

(2) 

and which are antisymmetric under all permutations 
of particle indices are, according to the Pauli principle, 
all the « allowed » wave functions of the physical 
many-electron system. It is clear that the il,

i(r, a) 
must be constructed from linear combinations of 
products of degenerate <Pt(rYs with functions of the 
spin-variables of the TV-electrons. The explicit form 

of the wave function, ^Y\f, a), which is denoted by 
two indices, / and «, indicating the f th state belonging 
to the a'th representation, is given by [1] 

(3) 

where the y}^ are the unique functions of the spins 
of the TV-electrons of total z-component m which 
transform like the conjugate row X of the conjugate 

irreducible representation a. This use of the conjugate 
irreducible representation for the spin function assures 

antisymmetry of the ^P-"1 since, for example, if <P°''' 

is symmetric under the permutation P I 2 , the conju­

gate Xm'/r> will be antisymmetric under P , 2 . The 

wave function *?]*„ is an eigenfunction of total spin, S2, 

since the operator S2 is symmetric under all permuta­
tions of particle indices, and hence for a given a all 
the yl,n'}((j} have the same eigenvalue of total spin. 

Despite the facts that the decomposition (3) was 
derived by Wigner in the early days of quantum 
mechanics and the theory of the symmetric group was 
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developed at  the turn of the century, only with the 
recent work of Matsen [2] and the present author [3] 
has interest been focused on the spatial functions 

@Iz''] themselves with the recognition that for spin- 
independent problems any one of the spatial functions 

gives the same information as the wave function !PF,":,? 
itself. The history of the neglect of tlle spatial eigen- 
functions - or  even the extent of the knowledge of 
their behavior that not was reflected in the literature - 
is not at  all trivial. It appears, however. that the 
immediate acceptance of the Slater determinant 
which enabled many-electron systems to be treated 
witllo~lt group theory obviated the need for considering 
tlie spatial eigenfunctions themselves and led to a 
general lack of awareness of their properties. Ln fact 
the few authors who have explicitly considered the 
applications of the symmetric group to atomic and 
molecular systems have restricted themselves to pro- 
cedures for constructing total wave functions, rather 
than recognizing the sufficiency for their purposes of 
one of the spatial functions. Thus Kotani's discus- 
sion [4] of the group theoretic treatment of Yama- 
nouchi is iued to describe wave functions ; Goddard's 
orbital procedures [5] for atomic and molecular 
calculations using varior~s Young operators, which is 
more general than the Hartree-Fock procedure, always 
obtains wave functions ; and the methods of Pauncz [ 6 ] ,  
Harris [7] and others for evaluating matrix elements 
are always concerned with deterrninantal wave func- 
tions ; and none of these deals with the spatial parts 
alone even though necessarily identical results would 
be obtained. One cannot help but suspect -- see for 
example the intricate studies of Arai [8] - that the 
suficient nature of one of the spatial eigenfunctions 
was not altogether clear to these authors. Goscinski 

t( noiz-physical ))eigenfunctions appear never to have 
been considered explicitly in the literature, and, of 
course, are of little interest except that they are to 
be carefully avoided when (( plz~~sical))  wave functions 
are being calculated. 

The present article reviews the presumably well- 
known symmetry properties of the spatial eigenfi~nc- 
tions of H a n d ,  by presenting several simple examples 
and some interpretation, attempts to serve the peda- 
gogic purpose of broadening tlie understanding of 
these functions and tlieir behavior. Altliougli macli of' 
the ar-gument is based on properties of the permutation 
group, only the minimal and directly relevant aspects 
of the matheniatical theory of g l -OLI~S  are included 
here, tlie reader being refel-I-cd to the 1na11y texts [I41 
on the subject for the justification of the various 
claims as needed. 

In the next section a so~newhat intuitive statement 
is presented of the symmetry properties and degene- 
racies of the eigenfunctions of an  N-particle operator. 
Some details are given in Section III for the three- 
electron problem in order to illustrate the collection 
of eigenfunctions into configurations and the ordering 
of the eigenvalues within each configuration. Also 
in this Section is discussed the generalization to larger 
systems and the results of two new calculations of 
eigenvalues for rr non-pliysical )) spatial @,'s are 
indicated. The validity of perturbation theoretic 
procedures based on non-symmetric zeroth-order @;'s 
is discussed in Section IV along with some examples 
indicating their potential utility. 

11. Symmetry Properties. - Since H is a operator 
symmetric in all the particle indices, i. e. 

[H, PI = 0 P E SN (4) 
and Lowdin [9] have recently attempted to analyze 
the historical use of group theory in this construction 

where P is a permutation of the particle indices, i t  is 
easy to see that the eigenfi~nction @; must possess 

of wave functions. Among the few scattered references 
certain symmetry properties. For example, it is pos- using spatial functions alone are those of Delbriick [lo], 

Wigner and Seitz [I I ] ,  and Fock 1121, all of which 
sible to divide u p  the solutions into those which are 
symmetric under the transposition P I ,  and those 

dealt with a single Y O L I I I ~  tableau [3c], and the recent 
itudies of Kaplau [13], although it is claimed that which are antisymmetric under P, , .  Similarly it is 

Kotani discussed the spatial eigenfunctions at  the 
possible to specify s imi~l taneo~~sly  the symmetry 

Shelter Island meetinn of 1951. under all the transpositions P, , , , ,+,(nodd) since - 
The present article is devoted to a study of tlie spatial 

cige~~functio~is.  (Pi, and should serve to introduce the 
reader to the role played by symmetry in tlie ordering 
and in the degeneracies of the eigenvalues, E;. Hope- 
fully such a discussion will enable the recognition of 
tlie potential importance of procedures [2, 31 dealing 
directly with the spatial functions cPi(r) rather than 
with the total wave functions ti/i(i., 0). as well as the 
difliculties involved in their utilization. This discus- 
sion. of necessity, considers all the (P,(I.) without 
regard, in the first instance. to the physics, which 
constructs wave functions according to (3) and hence 
excludes certain @,(rj's as being tr ilon-ph!.sic*ol )) i f  
they give only n~111 wave functions 'I/;(/.. 0). These 

but, since all transpositions do not, in fact, commute, 
i. e. 

[P,,,,, P,,] # 0 111 # (5 b) 

it is not possible, in general, to specify s s i i~~ i l l t a~~eo~~s l j~  
the symmetry under all transpositions, no less under 
all permutations, P which can always be written as 
products of the P,,,,,. There are, however, two special 
classes of solutions for which all transpositions, iir 
effect, commute. These arz solutions which are either 
symmetric or  antisymnietric under all P,,,,,, i .  e. they 
satisfy 

P,,,,, (Pi = + (1~; all 11. ni 
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so that on such a Gi, 

[Pnnrr Pnn] Qi = 0 all 11, tli, k . 

Of course, the symmetry of the solutions can be 
simultaneously specified under ailjf set of commuting 
operations, but the problem is that it is not a t  all 
obvious how to choose the maximal set of conl~nuting 
operations, and it is at  this point that one must have 
recourse to group theory. Notice that the choice of 
commuting operations is not unique - as, for 
example, it coi~ld  include P I ?  01- P 1 3  but not both - 
which requires the existence of degenerate sets of 
eigenfunctions of H.  since it must be possible to take 
linear combinations of cigenfunctions possessing 
symmetry under P , 2  to transform them into eigen- 
functions possessing symmetry under P I ,  without 
changing the eigenvalues. 

Thc group theoretic analysis of tlie permutation 
group - and the present discussion follows the ana- 
lysis of Young - determines an arbitrary but well- 
defined con~plete set of commuting operations accord- 
ing to whose eigenvalues the functions ( D i ( r )  can be 
classified. This analysis leads to the following two 
relatively simple statements : 

1. Eigenfunctions of H can be classified as to the 
representation to which they belong. The number of 
representations for an N-electron system can be 
determined graphically as the number of Young 
diagrams, or the number of ways that N boxes can be 
lined up into rows and colun~ns  so that the number 
of boxes in any column decreases from left to right 
and the number of boxes in any row decreases from 
top to bottom. Eigenfunctions belonging to different 
representations are, in general, non-degenerate since 
there is no operation which is a funct~on of the P's 
and hence commutes with I-i that can transform an 
eigenfunction belonging to one representation into an 
eigenfunction belonging to another. 

2. Any function which is associated with a repre- 
sentation that has a Y o ~ ~ n g  diagram with other than 
a single column or  a single row is one niernber of a set 
of degenerate eigenfunctions of H. The nun~ber  of 
linearly independent degenerate solutions can be 
determined graphically being the number of ways 
the indices 1, 2. .... N can be placed in the Young 
diagram such that theit- magnitude always increases 
from left to right and from top to bottom. Each way 
of fitting the particle indices into the Young diagrams 
is called a Young tableau and wit11 each Young 
tableau is associated certain transformation properties. 
The phase (( tran.~forrif acc~ortlii~g to a certniri Yolrtlg 
tableau )) can be expressed colloquially as tr possessil1g 
certain synmle fries ,). 

The representation to which a functiori is associated 
is denoted here by r and the tableau denoted by [x, I.], 
and of the several prescriptions for defining Young 
tableaux the one employed here is the (( orthogonal )) 

representation (see. e. g. Ref. 14tl pp. 92). The set 

of Young tableaux can be defined by the set of pro- 

jections, ~ 5 . ~ 2  \vhicI~ are linear combinat io~~s  of the N 
linearly independent per~nutations P, such that 

if @Ifl"" indicates a function transforming as v, 111, 

tlie relation 

holds. Thus ~ ~ ' i l p r o j e c t s  an  arbitrary function 47 
into a function transforming as [a, i ]  or into zero if it 
has no component of [r, I.]. The explicit form of 
these projections is usually obtained by a constr~~ctive 
technique [14. h ]  building on the projections for the 
group S,_ ,, althougli in certain few special cases 
general rules for obtaining these projections can be 
obtained. The particular notation used here has been 
introduced for simplicity and should not introduce 
any confnsion when compared with the more standard 
notation. In particular it is convenient to use a single 
symbol v. to signify the Young diagram i~sually 
indicated explicitly by a sequence of numbers also 
in square brackets, and also to use a symbol I. to 
denote tlie Young tableau which is usually not indi- 

cated explicitly. The spatial eigenfunctions ~D:"'] 
are thus denoted by tlieil- complete set of commuting 
(< obsercables )) and i n  ket notation would be given 
by JxAi > where i refers to the i'th function of syni- 
metry [a, A]. 

Two degenerate eigenfunctions of H belonging to 
different tableaux, but a fortiori, to the same repre- 
sentation, are related by the (( of-diagonal )) opera- 

tions ~ 5 . :  as 

In addition, the D;;'S satisfy the following relations 

D:;I] DL?' = a,, A,, DE] 
and 

The total number of D's, all of which are clearly 

linearly independent, is given by x,f: with fa tlie 
I 

dimensionality of representation a, and this, in fact, 
equals N ! The set of D's provides, therefore, a set of 
operations in one-to-one correspondence with the set 
of permutations P, and thus spans the permutation 
space. The desired coil~plete set of commuting opera- 
tions, with which to classify the eigenfunctions of H. 

are the D::?, the ambiguity among the degenerate 
eigenfunctions belonging to the same representation 
being removed by the explicit choice of the A's. There 
are thus no functions which have the same eigenvalues 

of H and the D5;j other than due to accidental dege- 
neracies. 

The relations (6)  and (7) permit the wave f'unctions 
of (3) to be written as 
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in terms of a single spatial eigenfunction cDF"'"(r.) - 
for any ,LL and the spin function ~ ~ , ~ ' ' "  transfornling 
as the conjugate tableau [i, p ] .  Similarly, the expecta- 
tion value of any symmetric spin-independent operator 
A is given by 

for any A!, dropping the subscripts 171 and i for sim- 
plicity. Thus it can be said that any of the cD["~'~ 
provides all the information necessary for the spe- 
cification of tlie physical state. Since a given Y i  is a 

linear combination of a set of c D ~ , " '  ;cC"81 it will 
sometimes be easier to deal with one of the compo- 
nents @j"''' directly [ 3 ]  rather than with the compo- 
site Y!"' itself, as will be discussed below. 

Notice that the analog of the operations ~5.;: for 
the eigenfunctions of a spherically sytn~iietric Hamil- 
tonian are easily derived in terms of the operations L', 
L ,  and L,. The representations u correspond to the 
rotational quantum number L, and the degenerate 
tableaux [7, I.] to the specification of L and the azimu- 
thal quantum number M where the dimensionality 
of u is 2 L + 1. For example, within the manifold of 
L = 1, the unnormalized operations would be 

and 

and similarly for D$&, with M < M'. The projector 
onto the L = 1 manifold is 

L'f 1 

and should be placed to  the right of the operations DJ!.] 
as defined above when the space of all functions 
(all L) is allowed. While the usual procedure would 
classify states as to their eigenvalue of L, - analogous 
to classifying the eigenfunctions above as to their 
syninietry under the various P's - this type of 
prqjection operator procedure classifies states accord- 
ing to tlie single operator D?; for which they have a 
non-zcro cigenvalne. The two procedures are to be 
sure cq~~ivnlent ,  but it is sometimes more convenient 
to consider the operations which will project a set of 

states rather than tlie matrices of physical opera- 
tors, e. g. L,, L, and L, using those states as a basis. 

It is important to  note that whereas most group 
theoretical discussions of the properties of the group S, 
are concerned with tlie representation matrixes T(P) 
for each permutation P - analogous to the matrices 
of L,, L, and L, in the rotational symmetry case - 
the emphasis of the present discussion is on the 
symmetries of the basis filnctions, the Young tableaux, 
111 terms of which these representations are defined. 
Recognition of tlie symmetry properties of the Young 
tableaux for a given representation is of great impor- 
tance since it is these symmetries which serve (( to 
lifi tlre pe,nll/totiolz clege11er.a~~~ )) of the eigenfunctions 
of H in an  arbitrary but well-defined way. This 
permits the complete classification of all a, according 
to their eigenvalues of the complete set of commuting 
operators H and DE] ((neglecting spatial degeneracies) 
which is after all pl-ecisely what group theory is 
intended to do. 

I n  the orthogonal representation functions asso- 
ciated with a given Young tableau possess siniple 
symnietry properties under a certain limited number 
of transpositions P,,,,,, , : whenever the consecutive 
indices 1 1 ,  11 + 1 are located in contiguous boxes in 
the tableau [x, i.], the fr~nction is either sylnrnetric or  
antisymmetric under P,,,,,, ,, being symmetric when 
the indices are in the same row and antisymmetric 
when they are in tlie same column. Because the defi- 
nition of tlie Young tableaux specifies that the num- 
bers increase from left to right al;d from top to  bottom, 
all the solutions cl,j"'21 are described in terms of their 
sy~nmetry o r  antisyn~metry under P,, and only a few 
of them in terms of their symmetry under PI,. I t  is 
because of the arbitrariness of this description as 
mentioned above that such solutions must be dege- 
nerate and that they be related to each other by the 
transformation matrices DY;. It is clear, for instance, 
that by taking linear combinations of the degenerate 

@!"."I 

for fixed i and x transforliiing as tlie set of Young 
tableaux [cs, A] one must be able to construct a set of 
functions which are symnietric under tlie opera- 
tion P13 instead of P,,, a s  would be obtained by 

applying P,, to the set ~j"'~]. Thus one has tlie repre- 
sentation matrices T(P) for every element P, of the 
group, such that, e. g. 

Similarly, it is clear that one can construct a set of 
functions which are all sin~ultaneous eigenfunctions 
under any set of commuting transpositions such as 
P,,,, , (11 odd) yet these are not the symmetries spe- 
cified by the Young tableaux orthogonal representa- 
tion. The Young tableaux thus choose certain symme- 
tries under which a co/lil~lete decomposition of the 
space can be obtained using tlie simple grapliical 
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technique, but linear combinations of functions, 
which transform as the various tableaux, can be found 
to give any other set of symmetry properties as desired. 

Consider now for purposes of illustration the group 
theoretic behaviour of systems of 2,3 and 4 electrons, 
whose Young diagrams are given in figure 1 and 
whose corresponding Young tableaux are given in 
figure 2. 

N = 2  m 
1 

2 

1 

5 

FIG. 1. - The Young diagrams for N = 2, 3 and 4. 

- 
N=2 

N=4 111213141 
11,11 

E,11 2 ,  1?.,31 

[3,11 13 1 

L - 
FIG. 2. - The Young tableaux for N = 2, 3 and 4. 

For  N = 2 all the eigenfunctions of H can be 
classified as being either symmetric (the set of func- 
tions being denoted a s  @i1"3 o r  antisymmetric (the 
set of functions being denoted as @F2''3 under P l z  
there being no coninluting operators available to 
specify the system other than P I ?  and If. The single 
permutation PI' therefore corresponds to the ope- 

rators L' and L, in the rotational symmetry case 
according to  which all eigenfunctions of H can be 
classified. The projection operators associated with 
the two tableaux are easily seen to be 

which clearly satisfy (6a). There is no  way of using 
permutation operators to project a function belonging 
to the tableau [I ,  I]  onto a function belonging to  the 
tableau [ I ,  11 for the simple reason that there is no 
inverse of the ~[;ll 's, i. e. there is no  way to unsynime- 
trize or  to un-antisymmetrize a fi~nction by using the 
operators of the permutation group [15]. This explains 
why eigenfunctions of H belonging to the symmetric 
representation [I]  are, in general, not degenerate with 
eigenfunctions belonging to the antisymmetric repre- 
sentation. As both representations are one-dimensional 
there is, of course, no degeneracy other than due to 
spatial symmetry among functions belonging to one 
of these representations. The same argument as to 
the inability to un-symnietrize a function generalizes 
to larger systems and explains why there are no trans- 

formations ~ 5 : ; ' '  which take a function belonging to 
one representation and transform it into a f~unction 
belonging to a different representation. It is, of course. 
true that even in the special cases when functions 
belonging to different representations are degenerate. 

N 

e. g. if H = l ~ ( i ) ,  there is no way to transform the 
i =  1 

functions from one representation to another. 
Wave functions Y!:: can be constr~tcted according 

to  (3) as 

vli,!,j(r, a) = @!'.' ] ( r )  )Ijlf ' I  '(a) ( 1  4rr) 

and 

where the X~,~'L'(o) are the wligue functions of the 
spin variables with Sz = m which transform according 
t o  the 32th tableau of the a' th  representation, repre- 
sentation [2] being conjugate to representation [I]. 
The spin functions are the well-known eigenfunctions 
of SZ and S,, 

where the particles are labelled consecutively. As 
spin-space is so  restricted that  these four functions 
span it completely - as distinguished from ordinary 
space which requires the two infinite sets 0/,1'" '  and 

to completely span it - the spin-dependence of 
wave functions is given simply and uniquely by the 
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specification o !z and in, or  equivalently by S 2  and in 
since each representation for which there is a non- 
vanishing spin-function can be associated with a 
particular value of S2.  The set of solutions Y:,? 
are therefore called singlets, due to the lack of dege- 
neracy of the spin eigenfunction in representation 
[2, 11, and tlie set of solutions Y!,i1 are called triplets 
due to tlie triple-degeneracy of the spin-eigenfunctiolis 
z~,,"ll whicli leads to a triple degeneracy in the !Pi:,'. 
The fact that both the representations [I]  and [2] 
are one-dimensional implies that according to (3)  
the space and spin-variables of any eigenfunction of 
a spin-independent two-electron Hamiltonian are 
always separable, as shown explicitly in (14). The same 
will hold for any N for tlie states of cr highest 11111Iti- 
plicitj, )) as the totally symmetric representation, whose 
Young diagram is a single row, will always be one- 
dimensional. 

The difficulties of the general many-particle problem 
occur in virtually all their generality in the three 
particle problem, and for this reason one is justified 
in devoting considerable attention, in tlie remaining 
part of the present article, to this the simplest of all 
many-particle problems. For  three electrons there is 
no obvious set of commuting operators, the choice 
of either PI,, P , ,  or  Pz3 to go along with H being 
completely arbitrary yet being insufficient to comple- 
tely define the solutions. This is analogous to the 
case of the hydrogen atom for which one can choose 
arbitrarily among L,, L ,  and L, to define an  axis of 
quantization but for which L2 is necessary as well 
as H in order to provide a complete set of commuting 
operators to define the (( syintnetry )) of the eigenfunc- 
tions. The Young tableau prescription implicitly takes 
P , z  as one of the commuting operators, i. e. (( quan- 
t i ~ r s  )) the system according to  parity under P,,, 
although under n o  other single permutation, since, 
as can be seen from figure 2, every tableau describes 
a f~uiction which is either symmetric or  antisymmetric 
under P12.  Tlie choice of the remaining operators - 
or quantizations - is in general quite complicated, 
and the usual set of commuting operators does not 
explicitly include P I ,  but rather uses the set of pro- 
-jection operators D\.:.] which satisfy (6n) and whicli, 
by definition specify tlie symmetries of the Young 
tableaux. Note that one of these projections could be 
eliminated as being redundant in the sense that any 
function which all the remaining D?; project onto 
zero must transform as the missing ~ 5 ' .  Notice also 
that if symmetry under P I ,  alone were taken, there 
would be two pairs of incompletely defined symmetries, 
the tableaux [I ,  11 and [2, I ]  being both symmetric 
under P 1 2  and the tableaux [2, 21 and [3, I]  being 
both antisymmetric. Tlie symmetry could therefore 
be completely defined by adding the symmetrizer 5,  
which is actually DE'I], and the aritisymmetriser -4, 

which is a c t ~ ~ a l l y  Di3?, to P,2  to make a complete set 
of commuting operations, or equivalently by adding 

D%] and D\\] to PI,.  Such, of course, is not the way 
one treats the problem in general, but it is useful to 
be aware of the various ways by which one can specify 

the symmetries of the @p'"]. 
The set of projections which are used to define 

the Young tableaux for N = 3, and which satisfy (6a) 
are [16] 

and 

although they also could have becn written in tcrms 
of products of transpositions P,,,,. The operators which 
transform the @i2'11 t o  @i2'21 and vice versa, satisfying 
( 6 4  are 

and 

Just as for the two-electron case there is no  way to 
project a function from one representation t o  another 
using permutation operators which serves as a reminder 
of the tautological statement : since functions belong- 
ing to  different representations are, in general, non- 
degenerate, there can be n o  operator which commutes 
with H that  transforms a n  eigenfunction (or for that 
matter any functionj belonging to  one representation 
into an  eigenfunction (or linear combination of eigen- 
functions) belonging to a different representation. 

The wave functions of the three-electron system can 
be constructed using (3) out of the degenerate pairs 

of eigenfunctions @:2'"1 as 

'f//,:i(r., cr) = @ ~ 2 ~ 1 1 ( r )  X r , f 9 2 1 ( c r )  + @\2,21(1.)  y [ 2 ~ 1 1 ( c r )  .Ill 

(18a> 

and out of the non-degenerate eigenfunctions @F3"] as 

where the x~f~'"(cr) are the trnique functions of the 
variables transforming as the appropriate tableaux of 
the appropriate conjugate representation of the per- 
mutation group. Typical spin functions are 

and 

;(\5f1 = 2-li2(orP - /3,) o r .  (19c) 
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Since the zj,,'"l and zhl'"l are each quadruply-dege- 
nerate and doubly-degenerate respectively, the wave 
functions ~'5:: are called doublets and the 'l/r:,! ar-e 
called quartets, wliere once again the multiplicity 
is equivalently given by 2 S + 1 where S is the eigen- 
value associated witli the particular representation. 
Because of the fact that spin-space for spin - -$ 
particles is only two-dimensional. there is no  spin 
function that transforms according to representation 
[3], as it would have to be anti-symmetric in three 
particle indices which is clearly not possible. For this 
reason the functions z~ ,~ . l l ( t i )  are non-existent, or can 
be said to vanish identically, and hence tlie entire set 
of spatial functions d>jl."(r.j can never be used to 
construct wave fi~nctions. Notice also that the two 

degenerate solutions ~l>l'"] and ~ I ~ ~ ' . ' ~  are botll 
required in the construction of the single wave func- 
tion YJ!:~ so that even though there are Legenel-ate 
pairs of spatial eigenf~tnctions of H there are no 
degenerate wave functions of given value of 177. 

The argument for four electrons is exactly analogous 
to that  for N = 3 with tlie doubly-degenerate @!""I 
and @!'''I being used to  construct a singlet wave 
function Yr,;:, tlie triply degenerate #,["'"] being used 
to coilstruct a triplet wave function 'PI:: - note that 
the designation triplet is due to the degeneracy of 1 7 7 ,  

and not tlie degeneracy of the @i["'"' - and the non- 
degenerate @!"" being used to construct a quintet 
wave function Yi5'. There is 110 non-vanisliing Yj" 
or Y!'] since there are no spin functions transforming 
as the tableaux 14, 2.1 and [5, I] as they have more 
than two rows and therefore require antisymmetry 
in three or  more particle indices. 

This completes a simplified and rather intuitive 
examination of the symmetry properties of the spatial 
eigenfunciions and wave functions of the N-electron 
system. It remains to examine tlie functional form 
of the spatial eigenfunctions as will be done in the 
next section. While clearly these spatial eigenfunctions 
will be very co~nplicated fiunctio~is of the 3 N variables, 
it is nevertheless possible to collect these functions 
into (( coi~fi,n~ir.ations )) accorcing to their approxiniate 
cr orbital )) s t ruc t~~re .  This serves the \cry iniportant 
purpose of introducing some order, albeit in an  
approximate manner, into what would otlier\vise be 
a hopeless jumble of ilncorrelated eigenfunctions and 
eigenvalues. 

111. The Di(v)  and their Eigenvalues. - A .  T H E  
THREE-ELECTRON PROBLEM. - In order to appreciate 
the detailed behaviour of the set of eigenfunctions 
ai(r) of a many-electron Hamiltonian, it is illustrative 
to  consider the spatial eigenfunctions of the Li atom 
Hamiltonian 

which are simple enough to allow presentation of sonie 
of their detailed bel~aviour, yet show the complexities 
of tlie general many-electron problen~. 

As the first step, which permits the classification of 
the solutions @,(I.) into (( c o ~ ~ g ~ i r . a t i o n s  D, as in atomic 
spectroscopy, consider tlie solutions to  the simpler 
Hamiltonian [I 7-19]. 

This Ilydrogen-like Hamiltonian can be taken as the 
zeroth-order Haniiiltonian in a perturbation theoretic 
scheme which writes 

and solves for the eigenfunctions as a function of I,, 
wliere H (I. = 1) equals the H of (21j. The eigenfunc- 
tions of H, are obtained from the hydrogen-like 
eigenfunctions zr,(i), generally called (( orbitals >), 
satisfying 

[Ir,(i) - e,] u,(i) = 0 (23) 

with the corresponding eigenvalue 

wliere the indices k, I and 117 can be continuous as 
well as discrete. 

The eigenfunctiotm U,,,, can be grouped illto 
configurations according to the degeneracies of H ,  
such that each configuration contains all the U,,,,,'s 
whicli have the same indices li, I and nl occurring in 
any order and hence have tlie same energy Ek1,,, = El,,,,. 
etc. Thus a configuration will contain one solution 
if all the particles are in the same orbital, i. e. 
k = I = 111, will contain three solutions i f  two particles 
are in one orbital and one in a second orbital, i. e. 
1; = I # 111, and will contain six solutions if all particles 
are in different orbitals, i. e. /i f I # n ~ .  The gl-ouping 
into configurations of eigenfunctions of H, itself, 
as distinguished from those of H,,, is of necessity 
dependent on the relatively arbitrary choice of any 
H, whicli is the sum of one-electron operators, such 
as that of (21.), since otherwise there is no definition 
of orbitals. Despite the potential ambiguity involved. 
such descl-iptions have been immensely useful in 
atomic spectroscopy, and will play a similar I-ole in 
the classification of spatial eigenfunctions of H. 
The configurations of spatial eigenfunctions will 
contain more cigcnfunctions than the (( p l ~ ~ ~ s i c ~ a l  
cot~fig~ir.atio~~s )) of spectroscopy, since n o  solutions 
will be excluded by tlie Pauli principle and since 
degenerate spatial multiplets belonging to the same 
representation will appear separately rather than as 
combined according to (3) into a single wave function. 

The grouping o f  eigcnfunctions of /I, ,  into confi- 
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gurations rs also necessary when perturbation theoretic 
calculations are to be performed since one must always 
lift tlie first-order degeneracy due to H I  by diagona- 
lizing the first-order secular equation, before one can 
use a perturbation procedure. This diagonalization is, 
in fact, equivalent tu combining the functions Uk,,,, 
into functions which transform as one of the irre- 
ducible representations as it divides the secular deter- 
mlnant into blocks along tlie diagonal one for each 
non-degenerate set of solutions belonging to the 
appropriate representations. Within each block, i. e. 
among the solutions belong~ng to a degenerate repre- 
sentation, one is then able to take appropriate linear 
conibinatlons to choose functions tliat transform as 
the varlous Young tableaux. One could also have 
done the reverse and chosen tlie linear combinations 
of all the degenerate wave functions which transform 
as the various Young tableaux and which would also 
reduce tlie secular determinant to a series of diagonal 
blocks that must then be diagonalized. This procedure 
is more generally wefill and can be applied best to CI 
calculations in which the set of determinants call be 
replaced by the smaller number of linearly indepen- 
dent DyjUk,,,,'s within a restricted basis. 

Consider the three lowest s-state orbitals, Is, 2s, 
and 3s, denoted respectively as u, v and w, and three 
typical configurations which can be constructed using 
them. The lowest eigenvalue of If, is 3 e, and the 
single eigenfunction belonging to tlie corresponding 
configiu-ation u3 is the non-degenerate 

which transforms as the totally symmetric represen- 
tation [I]. The subscript zero indicates that this is a 
zeroth-order solution, or  an eigenfunction of H,, 
and not the desired exact e ige~if~~nct ion of H, while 
the subscript I labels this particular eigenfiunction, 
tlie first eigenfilnction belonging to the tableau [ I ,  11. 
Notice tliat there is only one function belonging to u3 
since there is only one f ~ ~ ~ i c t i o n  of energy 3 e,,, but 
also that there is no possibility that a function trans- 
forming as representations [2] or  [3] belong to 1 f 3  

since there is no way to construct from the three 
orbitals u a non-vanishing function antisymmetric 
in two or more particle indices. The fact that there 
is only one eigenfunctio~n in this configuration, or 
only one eigenvalue in tlie vicinity of 3 e,, implies that 
an approximation to the exact eigenfunction need 
possess no symmetry whatsoever for it to be associated 
with this solution, there being no other nearly-dege- 
nerate solution with which it could be confused. 

vanishing (( off-diagonal inatrix eleineir/s )), e. g. 
{i = < uuv I H I  I uvu > # 0, the perturbation par- 
tially lifts the degeneracy, and tlie correct zeroth- 
order solutions are found by diagonalizing 

where Eo = 2 e ,  + e, and v = < uuv I H ,  I uuv >. 
There is one non-degenerate solution 

which has equal coefficie~its for each of the U's, 
i. e. C, = C2 = C, ; and there are two degenerate 
solutions or  wrZ1 = Eo + - v, both of which have 
coefficients satisfying 

and any function satisfying this condition can be 
used as a zeroth-order solution in a perturbation 
theoretic calculation. The non-degenerate symnietric 
solution is therefore 

labelling the particles in order, and the two degenerate 
solutions can be taken as transforming according to 
the [2, 2.1 using (16b, c)  as 

and 

which clearly satisfy (29). Since the exchange integral 
!i is necessarily positive, the first-order energy eigen- 
value W[ll  of the totally sym~netric solution is neces- 
sarily greater than the WC2] of the (( less syn1/?1etric )) 
or (( partiallj) antisynlmetric )) doubly-degenerate 
solutions. This observation, when generalized to 
niany-electron systems below. plays an important 
role in determining the ordering of tlie eigenvalues 
within a given term. 

It s l i o ~ ~ l d  be noted that there is no function belonging 
to configuration u2v tliat transforms according to 
representation [3] it not being possible to construct 
a non-null function of the orbitals which is antisym- 
metric in all particle indices. This incidentally irnplies 
that due to the simple nature of the set of Young 
tableaux for N = 3, antisymmetry under the single 
transposition P , ,  and an  energy in the vicinity of 

The next higher eigenvalue of Ho is 2e, ,  + e,, 2 e,  + e,  uniquely determines a (spherically-symmetric) 

and is triply degenerate with the correspo~iding eigen- function to be an approximation to @c2.21.  Thus a 

functions perturbation tlieoretic procedure based on any such 
appr-oximate function possessing only this symmetry . . 

u( I ) u ( ~ ) v ( ~ ) ,  u(l)v(2)~(3) atid v ( I ) L I ( ~ ) L I ( ~ )  (27) yet !lot t r a n s f o r l n i ~  as [WI will convel-ge to ~ D l ' 2 9 2 1  

if it converges at all. Similarly, a CI-type calculation 
belonging to the configuration u2 v. As there are non- using functions all of which are antisynimetric under 



SPATIAL EIGENFUNCTLONS O F  T H E  SPIN-INDEPENDENT MANY-ELtCTKON C1-59 

P I ,  will give all the solutions belonging to [2.2] 
and [3.1]. As the representations [2]  and [ 3 ]  provide 
all the physical wave functions of tlie thl-ee-electron 
system - b e ~ n g  doublets and quartets respectively - 
this will determine all the physical eigenvalues based 
on a secular equation of considerably reduced size 
than that for all the @,(r) .  

Notice again that while all three of these @,'s are 
degenerate eigenfunctions of Ho,  the perturbation H I  
serves to  split then1 into two non-degenerate repre- 
sentations one of which is two-dimensional and 
hence doubly degenerate due to symmetry. This 
degeneracy, therefore, remains unlifted to all orders 
of perturbation theory which is why tlie symmetries 
of the individual Young tableaux are necessary in 
order to specify the eigenfunctions completely. 

The third possible type of configuration for the 
three-electron problem locates each electron in a 
different orbital and is denoted by uvw. For  the 
energy eigenvalue e, + e, + e ,  there are six degene- 
rate eigenfunctions of Ho 

UVW, VWU, WUV, VUW, uwv and wvu . (3 1) 

The secular equation gives the six eigenvalues : the 
non-degenerate 

wCtl = eL, + ev + e, + QC'I (320) 

and 

wC3] = e, + ev + ew + (326) 

and the two doubly-degenerate 

wj21 = e, + e, + e, + Q':] (3 2 c)  

and 

wJ2' = e, + e, + e, + Q Y 1  ( 3 2 ~ l )  

where the representations t o  which the solutions 
belong are indicated in brackets. The energies are 
give11 schematically, and can be expressed in terms of 
the three distinct off-diagonal matrix elements 

a = < uvw I HI ( uwv > 
b = < uvw I H, I wvu > 

and 

c = < uvw I H ,  I vuw > . 
There are thus two degenerate pairs of solutions 

which belong to representation [2]  and one solutio~l 
which belongs to each of the representations [ l ]  
and [3]. These solutions can be given schematically as 

= D\tl uvw + a ,  D[:: uwv (336) 2.0 

w11e1-e the numbering of tlie subscripts corresponds to 
tlie 01-dering of the energies of the solutions belonging 
to a given representation. arid where the co1:stants rri 
are obtained from tlie appropriate secular equa- 
tion [20].  Since in general the integrals a ,  b ,  c > 0 
tlie ordering of the eigenvalues is 

\{/C11 > wy1, wy1 > wC31 

and the totally symmetric solution has the highest 
first-ordel- eigenvalue of the configuration. The lowest 
eigenvalue of the configuration corresponds to the 
totally antisymmetric solution, and the solutions of 
intermediate symmetl-y have intermediate values for 
the eigenvalues. 

Notice that for the uvw, which could be called the 
configuration of maximally open shell, there exist 
solutions which transfor111 as each of the four tableaux 
for N = 3 as distinguished from the configurations u2 v 
and u3 discussed above for which certain more anti- 
symmetl-ic representations had only nu11 solutions. 
Notice also that while it is true that any linear combi- 

nation of cf'\,blJ and (D\!$] would transform accol-ding 
to the tableau [2,1], it would not diagonalize tlie 
secular determinant. However eitlrer of the two pairs 

of functions @j2"] can serve as (( bnsis Ji,l~c.tiolls )) 
for the orthogonal representation of the Young 
tableaux. 

The wave functions belonging to the physical or  
spectroscopic configuration uvw are two doublets 

from ~11\:6'.] and (~yb'.' and one quartet fro111 cl,\'G1 
with the quartet of lower energy t lx~n  the doublets. 

Again the QI\::' cannot be used to construct a wave 
function. 

The term levels of the approximate spatial eigen- 
functions of H and of tlie corresponding approximate 
wave fi~nctions can now be summarized. I n  configu- 
ration ~1~ there is one eigenfi~nction, whose eigenvalue 
is in the vicinity of 3 e,,, and no wave function ; in 
configuration u2 v there are three eigenfunctions two 
of which are degenerate, and one doublet wave 
function, all of eigenvalue in the vicinity of 2 e,, + e, ; 
and in configuration uvw of eigenvalues in the vici- 
nity of e,, + e,  + e ,  there are six eigenfunctions, two 
pairs of which are degenerate, and three non-dege- 
nerate wave ii~nctions, two of which are doublets and 
one of which is a quartet. 

B. GENERALIZATION TO N-ELECTRONS. - The exten- 
sion of the results just described to the N-electson 
problem leads to the following general statements : 

(1) The eigenfunctions Di(r )  of the N-electron 
Hamiltonian can usually be collected into (( corfiglna- 
tiot7s )) corresponding to  the orbital occi/patiq1 )) in  
tlie eigenfunctions of' an approximate sep;~rahlc I t , , .  

(2 )  The number of diffel-ent eigenvalues belonging 
to  a given configuration is in general less tlinn the 
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number of irreducible representations of S, since, 
unless all the orbitals are (( sit~gljl occ~/pird )), solutions 
belonging to certain of the (( tilore atltisjlr~lriietric )) 
representations are excluded. The degeneracy of each 
eigenvalue remains, of course, the same as the dimen- 
sionality of the representation to which it belongs. 

(3) The ordering of eigenvalues within a configura- 
tion is generally such that the totally symmetric 
eigenfunction, which occurs in all configurations has 
the highest eigenvalue, and the antisymmetric eigen- 
function, when it occurs, has the lowest. The eigen- 
value decreases t h r o ~ ~ g h  the configuration as the 
(( ~ytilt~ietr)l )) of the solutioii decreases, or the (( anti- 
~3jt~lt)7etrjl )) increases, where the (( syt?ltiletr.jI )) of a 
representation is associated roughly with the length 
of the various rows or colunlns respectively in the 
corresponding Young diagrams. There are, to be 
sure, ambiguities in such a statement for solutions of 
systems of large N whose Young diagrams are neither 
mostly long columns or mostly long rows, but these 
can be resolved by merely diagonalizing the appro- 
priate sec~llar equation. The argument is exactly 
the same as Hund's r~ l l e  - for a recent discussion 
see Matsen [2] - only applied to all the spatial 
f~lnctions [Di(r) within a config~lration instead of being 
restricted to those functions out of which wave 
functions can be constructed. 

These statements define the structure of the general 
configuration a" bB c' ... which is described as having 
Y, p, y, ... electrons respectively placed in orbitals 
a ,  b, c, ... where the orbitals are some approximate and 
not necessarily orthogonal f~tnctions. The explicit sym- 
metries (and implicitly, the degeneracies) ofthesolutions 
belonging to a given configuration can be deduced, 
in marly cases by considering the number of linearly 
independent functions, and the allo\recl symmetries 
with which they can be associated. This can be illus- 
trated by the four-electron case, whose configurations 
are a", a3b, a2b2, a2bc and abccl with I ,  4, 6, 12 and 24 
linearly independent solutions respectively. Referring 
to the Young diagram of figure I and tableaux of 
figure 2 it is seen that the solution a4 can only belong 
to representation [I], which is already symmetric ; 
the solutions in a 3  b can only belong to representa- 
tions [I] and [2] since [3] wo:~ld require simultaneous 
antisymmetry in two disjoint pairs of particles and [4] 
and [5] would require antisymmetry in three and four 
particles respectively, all of which are impossible ; 
representation [2] is triply-degenerate and thus the 
four a3  b functions are divided uniquely into one 
set of [2] solutions and one [I]  solution. The solutions 
in the configuration a 2  b2 can transform as [I], [2] 
and [3] and the six solutions are uniquely divided 
into one set each of (triply-degenerate) [2] and (doubly- 
degenerate) [3] solutions and one [ l ]  solution. The 
solutions in the configuration a2 br can transform as 
any diagram except [5] and the division of the 12 func- 
t i m s  is, in fact, anbiguous with one [I] and one 

pair of [3] solutions and cither 2 sets of [2] solutions and 
one set of [4] solutions or vice versa. The first of these 
is the correct result which can be shown explicitly, 
or could have been guessed since the three particle 
antisymmetry of [4] should be constructzd in fewer 
ways from a 2  bc fi~nctions than can the three particle 
symmetry of [2]. The pair of [2] solutions have to  be 
diagonalized among theniselves (if H, is symmetric) 
as indicated for the three-electron problem in Eq. (32, 
33). The configuration abccl with 24 linearly-indepen- 
dent functions can be assigned symmetries - all 
of which are allowed - by recognizing that 24 linear- 
ly-independent linear combinations of these functions 
can be generated from a i l )  b(2) c(3j 4 4 )  by projecting 
with the 24 li~iearly-independent operations D:",' 
which span tlie four-particle permutation space. This 
gives immediately f, linearly-independent functions 
transforming as each of the tableaux [a, A] where f a  

is the dimension of the representation cr ,  which must 
be diagonalized a tno~ig explicitly. Thus there is 
1 function each of representation [I]  and [5], 3 sets of 
triply-degenerate solutions for each of [2] and [5] ; 
and two sets of doubly-degenerate solutions [3]. 

This type of analysis should be useful in considering 
the energy levels of partially-filled d- and f-shells and 
mixed shells where it I I ILIS~ be remembered that tlie 
simple configurations disc~~ssed here will be zeroth- 
order degenerate and must be tnixed together in a 
super-configuration. Thus, for exa~nple, the atomic d4  
configuration would give rise to 5 a 4  (( co~~jigurafioris )), 

20 a 3  b (( corlfg~lratiotls )), etc., all of which are zeroth- 
order degenerate. The division into angular momentum 
eigenfunctions follows in tlie usual manner except 
that again the non-physical solutions (e. g. L = 8 for d4) 
are also obtained. There might, however, turn out 
to be some advantage in the generality of dealing with 
all the spatial eigenfunctions simultaneously. In 
particular, the elegant methods developed to deal 
with these problenis since tlie early work of Racah 
might be directly applied to the non-restricted set of 
all solutions within a given configuration. 

Notice that the description in terms of configurations 
does not require that the approximate eigenfunctions 
of N are given explicitly in terms of these orbitals, but 
rather that these are in some sense a limiting case of 
the approximate eigenfunctions. For example a" 
represents symbolically E electrons in (( a-like )) 

orbitals, a , ,  a,, ..., a,, which might be Is-orbitals of 
different screening parameters, all of which reduce 
to a itself when the parameters are taken as equal. 

The ordering of the eigenvalues within a given 
configuration is of particular importance since this is 
what usually determines the symmetry of tlie solution 
to  which a perturbation expansion will converge. 
The only configurations which will give rise to physical 
wave functions must contain solutions belonging to 
representations possessing only two columns, and 
hence are of the form a2b2 ... n2m ... yz with no 
orbital more than doubly occupied. The spatial 
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eigenfunctions of the lowest eigenvalue within the 
configuration will, by Himd's rule, be those corres- 
ponding to the wave function of highest multiplicity, 
i. e. whose representation has tlie largest possible first 
colum~i  with all the remaining functions including 
those belonging to tableaux with more than two 
columns being of higher eigenvalue. The representa- 
tion with the largest possible first column is not 
usually the totally antisymnietric function since only 
if all the orbitals are singly occupied is there such a 
solution within the configuration. Thus since the 
spatial function of lowest symmetry or  highest anti- 
symmetry - analogous to the highest multiplicity 
for wave functions - has the lowest eigenvalue 
within a configuration, the lowest eigenvalue in 

with all orbitals paired, gives the energy of a singlet 
wave function, the lowest eigenvalue in n2 b2 ... j s 2  z 
gives the energy of a doublet wave function and the 
lowest eigenvalue in a' b2 ... x2 jrz gives the energy 
of a triplet, etc. 

The above analysis, which is a straightforward 
generalization of Hund's rule to all the spatial eigen- 
functions, presumes that the first-order energies of an  
approximate orbital description give an ordering of 
levels which corresponds precisely to  the ordering of 
exact energies. Sucll is, of course, not always the case 
and even Hund's rule for spectroscopic states is 
known to break down in certain instances. Never- 
theless, the number of exceptions is relatively few, 
and as long as one is aware of the fact that the cc r l~ l r  n 
is not infallible, this analysis can often be used to 
provide a rather reliable indication of the multiplicity 
of non-degenerate eigenvalues and their ordering 
within a particular configuration of a many-electron 
system. 

Recelitly Amos and Burrows have considered the 
set of spatial eige~ifunction for tlie four n-electron 
problem of butadiene in which the many cr col?figl/rci- 
tiorzs )) are not separated in energy sufficiently to be 
treated separately and they are all mixed together in 
what is called (( c.oitrpl~te coi?fi,yi:rcitio~~ it1tercrctio11 )). 
This calculation is instructive i i ~  that Hund's rule is not  
satisfied, the lowest solution being totally symnietric 
(of representation [I]), as is to be expected when many 
configurations have very similar energies so that 
there is strong mixing among them. (For this case the 
orbitals a ,  O, c and c l  are 2 p,-orbitals on different 
atoms, and so e. g. tlie different configurations a'bc, 
a2crl, b2cd, etc., have the same energy.) 

C .  Two CALCULATIONS. - The energy difference 
between the different physical states belonging to the 
same configuration are known experimentally to be 
relatively small. For  example the difference between 
the energies of 'S and 3S He (Is2s) is 0.029 36 a .  u. 
and the Z-expansions of these energies are [21] 

as compared with the exact - 2.145 97 and - 2.175 33 
respectively with the triplet of lower energy than the 
singlet. Analogous results have been obtained for 
several other configurations. For two electron systems, 
the state of higher n~ultiplicity does appeal- to be 
lower in energy, following Hund's rule which assumes 
that the term linear in Z dominates, the (( esclrailge 
illtegral )) being necessarily positive. Notice, however, 
that the contribution in ZO for the singlet state is 
considerably larger in magnitude than that for the 
triplet state. and the difference between the two is 
actually greater than the difference in the total encrgics. 
This indicates immediately that one milst be caiitioils 
in assuming the sisnificance of the ordering obtained 
Srom the result linear in Z ,  and for some states of 
highel- I. Hund's rille is indeed not obeyed. 

For systems containing more than two electrons 
the spectroscopic analysis is much more complex, 
at  least for the multiply excited states, and the situa- 
tion is so~newhat less clear although it appears that 
this regularity, 01- Hund's rule, is often satisfied. The 
eigenvalues of H corresponding to the spatial func- 
tions < i i ( 1 . )  are, however, not only those of the physical 
states of particular n~ultiplicity, but also those whose 
eigenfunctions cannot be used to construct wave 
fu~ictions. These, in effect, have lower (( ~llrtlfiplic.i!,~ )) 
than the singlet state and so by extension of Hund's 
rule described above are expected to lie above the 
physical energy levels. 

I n  order to gain some insight into tlie actual loca- 
tion of these non-physical or  in some sense (( spiirioris )) 
eigenvalues, and make the first step into the serious 
investigation of the validity of these remarks, calcula- 
tions are presented here on tlie totally symmetric 
eigenfiunctions of the 1s' 2s and ls2 2p terms of Li. 
Chisholm and Palgarno [17], and Seung-Hui arid 
Wilson [I 83 have calculated the energy of the physical 
wave function 2S Li (I s2 2s) denoted as yL2](I s2 2s) 
in the Z-expansion through order Z O  and Z - '  res- 
pectively ; and Chisholm, Dalgarno and Innes [22] 
have calculated the energy of 'P Li ( l s2  2p) denoted 
as ~ ~ ~ ~ ( 1 s ~  2p) through order ZO. The calculations 
for the (c energy )) of the symmetric eigenfunctions. 
@['.'](I s2 2s) and @I' 7'1(ls2 2p) require precisely 
the same integrals involved in the calculation of 
the physical energies; they merely enter with difTe- 
rent signs and coefficients. Thus, for example, using 
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the Mi defined by Chisholm and Dalgarno [I 71, the 
energy of the symmetric solution is easily derived 
to be 

E ~ , $ I , ' ] ( I  s 9  s)] = 

= 2 e, + e, + [uu I uu] + 2[uv I uvl + 

with [uv Juv] and [uv ]vu] the 1 s 2 s Coulomb and 
exchange integrals respectively. This compares with 
the eigenvalue of the degenerate cD[~,'.]'s which give 
the physical wave function, 

~ [ @ [ ~ , " ] ( 1  s2 2 s)] = 2 e,+e,+ [uu I uu] +2[uv I uv] - 

- [uv I vu] + E2(1 s2) + 3 E2(1 s 2 s 's) 

+ ~ ~ , ( l s 2 s ~ ~ ) + 4 ~ ~ - 2 M , - M , - M ,  

++ ~ ~ + 3  M ~ + O ( Z - ' ) .  (35) 

When the values from Ref. (17) are substituted 
into (34), the series 

~[@['"](1 s2 2 s)] = - 1,125 z2 
+ 1.088 65 Z - 0.597 6 + O(Z-I)  

is obtained for the symmetric solution which compares 
with 

E[@J[~'"(~ s2 2 s)] = - 1.125 + 1.022 81 Z - 

of Chisholm et 01. [22]. Here tlie approximate (( s11ii- 
rious )) eigenvalue is even lower in energy than the 
physical one, but again convergence has not been 
approached. This illustrates the fact that to evaluate 
such splittings second-order perturbation theory in 
the 2-expansion is not sufficient. More accurate 
techniques are, however, available (see e. g. Ref. 19) 
so that for example one should be able to calculate 
pair-corrections to non-Iiydrogenic orbitals to first 
or even infinite order, with which one should obtain 
reasonable values for many such splittings. For 
large N, this might still not be sufficient in order to 
calculate the s~iiall differences between the very many 
representations of (( i17tern1eclirrte synznletr), D, i. e. 
whose Young diagrams are relatively square, and 
many orders of perturbation theory will have to be 
used. Notice that while it is among these intermediate 
levels that the generalized Hund's rule is most apt 
to break down, these are all levels which are of no 
actual interest in physical systems since their Y o u g  
diagrams contain more than two columns so that the 
eigenfunctions cannot be used in the construction of 
wave functions. 

IV. Procedures based on Non-Symmetric Ha's. - 
A. THEORY. - The conventional type of perturbation 
theoretic calculation of a spatial eigenfunction @;(r) 
would utilize a zeroth-order fiulction snch as those of 
Section I11 which transforms as one of the Young 
tableaux and wliich is an eigenfunction of an H ,  
which possesses the fill1 symmetry of H itself, i. e. 

[ H o , P ] = O  P E S ~  (40) 

Once Qi,, is associated with a Young tableau, the 
symmetry of H assures that the exact Qi defined by 

Qi = @i,o + )b@i, l  + ;L2 @; 9- 7 + ... (41) 

will also transform as tlie same Yo~ung tableau. 
The nature of a perturbation theoretic expansion, 

for the physical state. As can be seen, the difference 
however, nowhere requires that tlie zeroth-order 

litleas of 3[uv I vul is but callcelled off by the sOIUtioll possess illl tile sylnlnetries of tile exact solu- 
second term which shows the possible breakdown tion. While it is often convenient to include all such 
of the generalized Hund's rule in such a case. Both 

symmetries in the zeroth-order, and hence i n  all 
of these series have, of course, not yet converged to a 

orders, it is also sometimes convenient not to include 
significant extent to  determine the ordering unabi- 

all such symmetries in the zeroth-order, and in other 
guously, although it is clear that they are very nearly 

words start a calculation using a (( broken sy1li1l1etr.y )) 
degenerate if percentage of the eigenvalue itself is 

which is (( re17nil-erl )) as the accuracy is increased. 
taken as a criterion of degeneracy. 

Such is, for exaniple, the case in solue Hartree-Fock 
The performed for the eigen- ca]cu]ations on non-spllerical and in the 

functions in the 1 s2 2 p configuration gives standard procedure for specifying the spin or angular 

Epf,['3'1(l s2 2 p)] = momentum component in atomic calculations by 
applying a small magnetic field later allowed to 

= - 1.125 z2 + 1.144 74 Z - 0.762 6 + O(Z-I) 
approach zero. In calculations of atomic and molecu- 

= - 7.453 4 + O(Z-l) (38) 1ar wave functions the advantage of using non-sym- 

which compares with metric zeroth-order solutions lies in the simplification 
it affords of the algebraic manipulations involved [3]. 

E[~[>[~,"](I s2 2 p)] = At the same time, however, such a procedure suffers 
= - 1.125 z2 + 1.093 53 Z - 0.527 2 + O(Z-') from the defect that it can lead to potential ambiguities 
= - 7.371 6 + O(Z-') (39) in the results and that care must be taken to examine 
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carefully the nature of tlie solution in each case. The 
techniques of using these non-symmetric zeroth- 
order solutions have been described previously [3] 
and the present discussion is intended to place that 
treatment in the context of the above discussion on tlie 
symriletry properties of the @,(rj as well as to illus- 
trate further the potential convergence and the effect 
of near-degeneracies on the particular perturbation 
expansion employed. 

Consider a function (Di,,(r) possessing 110 symmetry 
properties, such that it is a non-degenerate eigen- 
fimction of If, for which of necessity 

(as otherwise there will usually be other degenerate 
eigenfunctionfj and solve for tlie perturbation theoretic 
corrections using the expansion (41). If the expansion 
converges to an  eigenfunction of H it luztst converge 
to a function @I"'"](,,) which transforms according to 
one of the irreducible representations, a, for A in an 
unspecified basis, merely because all such representa- 
tions are non-degenerate except for accidelital dege- 
neracies. Two parts of the question of convergence 
must however be treated with great care and are (a) 
the actual convergence of the expansion ; and (b) 
the convergence to an  eigenfunction belonging to 
the apj~ropriote representation, 9. I t  is also desirable, 
although less important, to know the explicit tableau 
[a, A] according to which the solution transforms. 

If the eigenvalues of H are tt s~!fic.ic~~tlj~ )) non- 
degenerate - although there is apparently no a prior-i 
way to determine wlle~i this will be the case - then 
the perturbation theoretic procedure will usually 
pick out a particular eigenfunction belonging to one 
of the non-degenerate representations, r: and 1, will 
converge to it. I n  general this converges in such a way 
that the continuous curves as functions of the per- 
turbation parameter 2, d o  not cross unless the orbital 
symmetries of the solutions differ. Were the O,,,, to 
possess all the symmetries of H, i. e. transform as a 
particular Young tableau or linear combination thereof. 
then there would be, i n  general, only one solution in 
the vicinity of E, + El possessing that symmetry, 
and to which the would obviously converge. 
For the non-syn~n~etric @,,, SLICI I  an a r g ~ ~ m e n t  does 
not obtain and one has to know the ordering of both 
the approximate eigenvalues and the exact eigenvalues 
which, by virtue of the non-crossing r~lle. permits a 
determination of the solution to which a given expan- 
sion will converge. In calculations for ground state 
wave functions there will, hopefi~lly, be no ambiguity 
as to the Young tableau involved. There the pertur- 
bation expansion should introduce in all but excep- 
tional circumstances the symmetry of the desired 
Young tableau as a necessary consequence of its 
convergence. 

Consider as an example the three-electron problem 
discussed at  length above. and in order to restrict the 

problem somewhat, choose as H, an operator which 
is symmetric under the transposition P I ,  but which 
has no symmetry under PI,. Such an  H, would be the 
Hartree-Hnn~iltonian described in Ref. 3b for calcu- 
lations on  the ground state of Li in which electrons 1 
and 2 are in the field of a 2s-electron and a single 
I S  electron, i. e., 

1 ,  3 
h,( i )  = - - 7 V; - - + [I- a I - a ]  + [- b I - h]  - I ' ,  

and electron 3 is in tlie field of two Is-electrons. i .  e. 

with 

The orbitals a and b are defined as the lowest and 
second lowest eigenfunctions respectively of the 
equations 

and 

i. e. a - a ,  or  the Is  function and b = b, or  the 
2s function. This definition of H ,  is specifically 
designed for Hartree-type self-consistency in calcula- 
ting @(r)  for the ground-state of Li. However it does 
have a spectrum of eigenvalues which can be used for 
calculation of other functions and, in order of increa- 
sing eigenvalue, these are given by 

of energy 2 e'; + e';, 

a ( l )  a(2j 4 3 )  F a , ( l j  a1(2) b,(3j (46h) 

of higher eigenvalue 2 e'; + e:, which is the Hal-tree 
a,. and the two degenerate functions 

and 

a , ( I )  a2(2) bl(3) ( 4 5 ~ 0  

of eigenvalue ry + e l  + e:. This last eigenvalue is, 
by the definition of H,, always of higher energy than 
that of the previous function (46b). The orbital eigen- 
values have been calculated by J. M. Schulman [23] 
and are - 2.49, - 1.23, - 0.1 8 and - 0.32 for 
ey, e:, e h a d  e! respectively, and the energies of the 
four states are thus - 6.21, - 5.16, and - 4.04 
(doitbly-degenerate). These four functions can now 
be used in perturbation theoretic calculations to 
obtain tlie lowest four solutions (I)\''''. (fi\l"l. ~1~\'"' 
and @\'.'I to the symmetric problem ilsing the notation 
o f  Section 111 abo\-e. 

5 
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Clearly if @[1'6'1 is taken as (46a) this should provide 
convergence to @\"'I as there is no other solution in 
the vicinity of the desired eigenvalue. Furthermore, 
although (460) is not symmetric under P,,, there is a 
significant overlap of orbital b,  with orbital a so that 
P,, aab,  is not terribly different from aab, itself, 
with < aab, I P,, aab, > = < a 1 b, > 2 .  

The treatment of the next three solutions is straight- 
forward once one remembers the usual perturbation 
theoretic argument which prohibits crossing of energy 
levels as a function of the perturbation parameter, A, 
unless the matrix elements of the perturbation connec- 
ting the states vanish. The latter is not the case here 
since there is no PI,  and P,, symmetry to the problem 
until the perturbation is fully (( sw,itched or1 )), i. e. 
3, = 1, and the behaviour of the solutions is that 
sketched in figure 3. Since (46b) is symmetric under 
P I ,  and is of next lowest eigenvalue it is clearly to be 
taken as @\:$I and when the perturbation expansion 

FIG. 3. - The likely convergence of non-symmetric Do's for the 
three electron system. 

is carried out it is expected to converge to  @\2"1 
the lowest remaining eigenfunction that is symmetric 
under PI, .  Now, the remaining two exact solutions 
differ in P 1 2  symmetry, which is degenerate 
with @?"I being antisymmetric and @\"ll being 
symmetric. As the two remaining approximate solu- 
tions are degenerate in zeroth-order, they must be 
diagonalized before perturbation theory can be 
applied which leads to the immediate choice of 
(unnormalized) 

and 

and the convergence should be as indicated in figure 3. 

Notice that the use of non-symmetric eigenfunc- 
tions and the convergence of figure 3 are predicated 
on the (reasonable) assumption that there exists a 
one-to-one correspondence between eigenfunctions of 
H, and eigenfunctions of H. This, however, requires 
that a single Ho is used to  generate all the @iqo's which 
is not the case when projected Oi,,'s are used. I t  also 
assumes that the assignment of configurations is 
equally valid for Ha as for H,  and thus, for example, 
assumes that the lowest approximate ls2 3s state is 
higher in energy than the highest approximate Is2 2s 
solution. 

As a last remark it should be noted that in excep- 
tional cases perturbation theory might appear to  
converge to a sum of functions belonging to diffe- 
rent representations which are nearly degenerate in 
energy. When this occurs, the energy so obtained 
should be sufficiently close to that of the solution 
desired that no  further correction is necessary for 
most purposes. The desired eigenfunction itself can 
be simply projected out of the (( converged )> solution 
with DE!, it always being easier to do the projection 
a t  the end of the calculation as with these non-symme- 
tric methods, than a t  the beginning of calculations as 
with usual determinantal methods. If D\.;! cPi actually 
is close to zero, or equivalently if for normalized Qi, 
< Qi I D?; P,Ii > < I ,  then the solution contains no 
component of the desired symmetry, and the proce- 
dure for non-symmetric @i,o's breaks down. It is, 
of course, only a matter of convenience whether one 
tests for this breakdown of the procedure by projec- 
tions with D:?', or by anti-symmetrizing the product 
@;a,).](,.) zz2>.~ (IT). It is likely that the procedure should 

not often fail but it is also satisfying to know that 
such an ultimate test of its validity can be performed 
in so straightforward a manner. 

B. USEFUL NON-SYMMETRIC He's. - Although, 
in principle, any arbitrary lion-symmetric Ho can 
be used in developing a perturbation theoretic expan- 
sion for the Oi(r.), in practice it is desirable and almost 
necessary that the choice of Ho be restricted to those 
possessing certain partial syminetries as well as other 
properties. These restrictions on Ha serve to assure 
that the solution Qi  will possess the correct symmetry 
properties as they enable a relatively simple collection 
of the eigenfunctions into configurations, permit the 
general determination of the lowest eigenvalue within 
that configuration, and associate the solution with a 
standard Young tableau which has a correspondingly 
simple spin function, rather than the more general 
linear combination of such tableaux and corresponding 
spin-functions. 

Procedures based on non-symmetric Ho's have 
been argued to  be of particular utility under either 
of the following two conditions : [3b, c] (1) SPi,, 
is symmetric under a sufficient number of transposi- 
tions such that only one Young tableau of less than 
three colunlns can possess such symmetries ; or 
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(2) is antisynimetric under a sufficient number of 
transpositions such that only one Young tableau of 
fixed maximum column length can possess such 
symmetry. 

The first of these conditions allows for solutions of 
most closed-shell and slightly open-shell atoms and 
molecules since it enables the desired solution to be 
the allowed solutiorl of lowest energy to which the 
perturbation expansion must, of necessity, converge, 
if it does converge. The second of these conditions 
allows for alterliant molecular orbital treatments for 
both closed and partially open shell molecules since 
the number of different orbitals is limited by the 
maximum column size, no solution exists within that 
configuratio~i of longer column. This therefore excludes 
solutions of (( liigl~er a n t i s ~ ~ n l ~ ~ i e f ~ j ~  )) on the grounds 
of their not existing within the given configuration 
whereas the first condition excludes solutions of 
(( higher sj-rlll?letrj3 D, as they will be, according to the 
generalized Hunzd's rule, of high energy, and pestur- 
bation theory will generally take the lowest eigen- 
function of Ho into the lowest eigenfunction of H. 
In terms of Yorrng tableaux a sufficient set of transpo- 
sition symmetries would be those under P,,,,,+, 
(n odd) correspo~iding to the tableau [I ,  I ]  of figure 4 
and which are possessed by no tableau or  linear 
combination of tableaux of less than three columns 
[3b]. A sufficient set of antisymmetries would be those 
under 26, ,,,,, N,2  and under ~ t ( ~ ~ ~  + ,) ,,,,, ..,, corresponding 
to the tableau [I ,  21 of figure 4. Althougli these same 
antisymmetries are also possessed by the tableau 
[2, 11 of figure 4. if the orbitals of the first N/2  electrons 
are related to the orbitals of the second N/2 electrons 
such that the solution belongs to a limiting term 
a q 2  c2, ..., there is no solution belonging to this 
configuration transforming as this totally antisymme- 
tric tableau. 

FIG. 4. - Some illustrative Young tableaux for N = N. 

The Hartree-like procedure [3b] for singlet states 
which satisfies the first of these two conditions looks 
for an expression which will converge to a solution 

belonging to the tableau [I, 11 of figure 4, and in order 
to  d o  this takes Ho to be a sum of one electron ope- 
rators symmetric under P ,,,, +, (n odd), i. e. 

TIie non-degenerate eigenfunction @, is defined as 

Qo = a(1) a(2) b(3) b(4) ... (49) 
where a = a, the lowest or  Is  eigenfunction of h, 
satisfying 

and b = b,, the second lowest or  2 s eigenfunction of 
h, satisfying 

(11, - rf)  b, = 0 , etc. (50b) 

It  is important that H, not possess higher symmetry 
than under P,,,,,, , (11 odd) since otherwise 4, of (48) 
would not be a non-degenerate eigenfunction of Ho 
and the first order secular equation would have to be 
diagonalizcd. It is also important that Ho be symmetric 
under Po,,,+, ( 1 1  odd) since this greatly restricts the 
possible tableaux to which the converged exact solu- 
tion can belong to a certain subset (or linear combi- 
nation thereof) of all the tableaux. 

The Hartree choice of the one electron Harnilto- 
nian which defines the one-electron orbitals to be 
screened by all other occupied orbitals can be seen 
to give the I-elationship between the corresponding 
eigenfunctions, 

e;' < e: ; eh, < ; etc. (51) 

As 1 e'; I > I e! 1 > I e; 1, etc. this relationship can be 
seen to imply that the eigenvalue of Do of(49) 

should be the lowest eigenvalue of N o  within the 
configuration aZ b2 cZ ... Since the eigenfunctions of 
Ho and H are in a one-to-one correspondence, the 
non-crossing rule assures that the @, of (49) corres- 
ponding to this E, will converge by (41) to the eigen- 
function of H within this configuration belonging 
to the lowest eigenvalue, i. e. to the desired @['"', 
exactly as sketched in  figure 3 for the three-electron 
example. 

In  a sirnilar way, the procedure which calculates 
wave functions for alternant hydrocarbons [3c] 
introduces a sufficient set of restrictions into the 
non-symmetric Ho to enable the appropriate and 
well-defined perturbation theoretic solution to be 
obtained, even though such was not the purpose of 
the original argument. For example, for singlet sys- 
tems, H, is taken to  be symmetric under permutation 
of the first N/2 indices and under the last N/2 indices, 
i. e. 
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The zeroth-order solution, that approximating the 
result of Alternant Molecular Orbital (AMO) theory, is 

where ~ . h .  ... and a, b,  ... are the lowest N / 2  eigenfunc- 
tions of h and /I respectively and .-t.,,z antisynime- 
trizes with respect to tlie appropriate N / 2  indices. 
Since the eigenvalue spectra of h and 11 are similar 
- for benzene they are the same. as h and h are 
related by a GO0 rotation about the six-fold symmetry 
axis - there is no solution belonging to the same 
term tliat is totally antisymmetric. This, along with 
antisymmetry in the two sets of N / 2  indices, implies 
that convergence of  the perturbation expansion 111ust 
lead to the solution belonging to the representation 
with two equal columns, and transforming as the 
tableau [I, 21 of figure 4. This is so merely because 
there exists no solution within that configuration 
transfot-ming as the only other possible tableau, tlie 
totally antisymmetric [2, I]. 

There are, of course, other possible choices of No's 
which are symmetry-restricted yet which are not 
totally symmetric, and which may be of utility in 
coniputations of wave functions : some of these have 
been given in Ref. 4c to describe excited states in 
alternant systems, and others can be generated as 
desired for particular problems. Again, it should be 
emphasized that symmetry and other restrictions are 
not necessar~~,  but are only conue17ient as they enable 
simple recognition of the partic~llar state to which 
the expansion will converge. 

To  appreciate this point, it is of interest to recall 
the original argument on the non-symmetrical wave 
function for the two-electron problem of the hydrogen 
molecule [3a] as the result for two electrons is so 
easily visualized. All eigenfunctiotis of the two- 
electron Hamiltonian are either even or odd under 
P I ,  and therefore, if perturbation theory converges, 
it must converge to a function which is either even or 
odd under PI , ,  there being i n  general no degenerate 
solutions other than those due to spatial symmetry. 
The eigcnval~re spectrum of the non-symmetric Hamil- 
tonian 

where I r ,  and h,, are the hydrogen-atom Hamiltonians 
located on  centers A and B, can be worked out in a 
straightforward manner, and the convergence of the 
different perturbative solutions can be worked out in 
n manner analogous to that of figure 3 with only the 
additional complication of the nilclear symmetry 
to take into account. The lowest eigenvalue is clearly 
non-degenerate so that perturbation theory on the 
zeroth-order function 

OD = n- '  exp - ( r , ,  + r ze )  (56)  

IIIII.\/ converge to the exact eigenfunction of ground- 
ytate molecule. symmetric under P I ? .  i f  it converges 

at  all. I t  is, however, only because of the simplicity 
of the two-electron two-center probleni that it is 
possible to classify tlie eigenfunctions of this H ,  
which contains 110 symmetry whatsoever, and to 
discuss the behaviour of the perturbation theoretic 
solutions i n  an n prio1.i m'inner. I t  is clear that, in 
general, such an analysis is not possible for many- 
electron problems, and the utility of SLICII (( tot all^. 
17on-s~+1711?ietric )) H,'s must be liniited in  practice. 
if not, as pointed out above, in principle. 

The extension of these ideas to large molecular 
systems is obvious and would involve cl~oosing as a 
0, a simple product constructed from al-bitrarily- 
determined localized orbitals a,  b, c, ... and where an 
approxilnation to 0 could be found by minimizing 
the small coefficients, r ,  p, .. . in 

This would provide an approxin~ation to all the desired 
physical properties even though it would surely be 
a linear combination of many nearly-degenerate 
spatial eigenfunctions, with the advantage that the 
orbitals c o ~ ~ l d  be chosen (( pl7jeicaIly D. The parame- 
ters can be varied freely as long as the variational 
space is not too large as within the context of a 
perturbation solution @ must describe a function 
belonging to the same configuration a2 b2 ... as @, 
itself. 

V. Concluding Remarks. - In the study of spatial 
eigenfunctions of H presented here the simplifying 
assumption has been made that the exact Hamiltonian 
is spin-independent, this assu~nption being necessary 
for the definition of the problem. In general, of course, 
any real Hamiltonian contains spin-dependent terms. 
the most important being tliat of the spin-orbit 
~nteractioti, and which become increasingly significant 
as Zr approaches 1. For the most part, however, sucli 
effects can be treated using perturbation theory, and the 
corrections to ~k given by (3) can be obtained in a 
straightforward, if intricate, manner following Wigner 
[I]. Also. i n  attempting to keep the discussion as simple 
and transparent as possible, the problem has been 
restricted to s-state solutions in which there is no addi- 
tional degeneracy due to non-vanishing components of 
angular momentum. Wlie~l configurations with orbi- 
tals of / # 0 are included certain linear combinations 
of orbital products are necessary in order that the 
individual @,,,'s be eigenfunctions of total L2. The 
procedure for obtaining these, however, is exactly 
the same as for obtaining Yo's which are eigenfunctions 
of L2, and can be worked out as necessary. In other 
words the various algebraic problems which are 
encountered in dealing with open-shell problerns can, 
in principle, be worked out using the formalism of 
the spatial eigenfunctions of the spin-independent 
Hamiltonian. This has not been done here since 
the purpose of the present study was to illustrate i n  
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the simplest possible way the beliaviour ol' the spatial 
eigenfunctions rather that  to  develop them for imme- 
diate applicability to tlic variety o f  problems of atomic 
and molecular spectroscopy a n d  atomic collision 
theory. 

Two methods for  obtaining approximate, but  
accurate, spatial eigenfunctions have been considered 
explicitly since there is sonie l i  kelihood that  these 
procedures will prove quite useful in future calculations. 
The  non-symmetric procedures [3] sllould prove 
useful in  simplifying the algebra for  calculations on 
medium size a toms  and  molecules, and  even when the 
Hund's rule argunients fail a n d  the perturbation 
solution converges to  a n  cc zwdesired )) state tlie zeroth- 
order solution plus first-order corrections should 
provide energies and  expectation values very close 
t o  those of  the desired state. These procedures are, 
to  be sure, essentially untried relative to  the tradi- 
tional methods used in atomic and  molecular calcu- 

lations. altd their utilit! in a wide variety of problems 
1.emains t o  bc con\.incingly denionstrated. I t  is hoped, 
liowcver. that the present article will lend t o  a Inore 
widespread understanding of  tlie behavior ot'the spatial 
eigenf~mctions. \vIiich in turn niight lead to a greater 
exploitation of their potential. If such exploitation can 
indeed be realized, then it will be possible t o  claim 
that  these procedures provide usel'ul alternatives t o  
the deter~iiinantal methods used in virtually all of 
a t o ~ n i c  and  molecular physics. 
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