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SYMMETRY PRINCIPLES IN ATOMIC SPECTROSCOPY 

B. G. WYBOURNE 

Physics Department, University of Canterbury, 
Christchurch, New Zealand 

Résumé. — Bien que la théorie des groupes compacts conduise à un élégant formalisme mathé­
matique pour le calcul des propriétés des systèmes à plusieurs électrons, elle ne mène pas à une 
interprétation physique significative de ces propriétés. On discute l'avantage d'appliquer les grou­
pes non compacts aux systèmes à plusieurs électrons. Comme étude préliminaire, l'algèbre des 
opérateurs tensoriels de SO(4) est développée en utilisant les coefficients connus du couplage vec­
toriel de SO(4) qui, à leur tour, sont employés pour étudier la chaîne canonique 

qui donne une réalisation physique dans la symétrie dynamique des états liés de l'atome d'hydro­
gène. Ces résultats sont étendus aux représentations du groupe non compact de Sitter SO(4, 1) 
construit dans la base canonique SO(4, 1) => SO(4) = SO(3) => SO(2). La possibilité d'appliquer 
la théorie des groupes non compacts aux atomes à plusieurs électrons est alors considérée. 

Abstract. — It is suggested that while the theory of compact groups leads to an elegant mathe­
matical formalism for calculating the properties of many-electron systems, it does not lead to a 
physically significant interpretation of these properties. The desirability of applying non-compact 
groups to many-electron systems is discussed. As a preliminary study the tensor operator algebra 
of SO(4) is developed using the known SO(4) vector coupling coefficients which in turn are used 
to study the canonical chain SO(5) => SO(4) = SO(3) = SO(2) which finds a physical realization 
in the dynamical symmetry of the bound states of the hydrogen atom. These results are then exten­
ded to the representations of the non-compact de Sitter group SO(4, 1) constructed in the canonical 
basis SO(4, 1) = SO(4) = SO(3) => SO(2). The possibility of applying the theory of non-compact 
groups to many-electron atoms is then considered. 

1. Introduction. — Racah's applications [1, 2] of 
compact groups to the theory of complex spectra 
were largely concerned with the setting up of an 
elegant mathematical formalism to permit the calcula­
tion of the properties of many electron systems. 
No attempt was made to attach any physical signifi­
cance to the various groups used in making these 
calculations. Later work has continued the develop­
ment of the mathematical formalism [3-5]. 

Two applications of group theory where physical 
significance can be attached to the relevant group 
representations are well-known, namely to the three-
dimensional isotropic harmonic oscillator (SU(3)) and 
to a single charged particle moving in a pure Coulomb 
potential (SO(4)). In each case the non-relativistic 
degeneracies of the single particle energy levels can be 
interpreted in terms of the symmetry properties of 
the relevant Hamiltonian [6]. The symmetry group 
SU(3) has been successfully exploited in the case of 
nuclei even for systems containing more than one 
nucleon [7]. 

In the atomic case as soon as more than one electron 

systems are encountered the SO(4) symmetry of the 
central Coulomb potential is destroyed by the inter-
electron Coulomb repulsion [6, 8]. Thus while SO(4) 
symmetry is physically significant for the case of the 
hydrogen atom it does not seem to be relevant to the 
helium atom and beyond. Attempts to find other 
examples of approximate symmetries have been 
relatively unsuccessful. Thus while the states of 
the (5 d + 6 s)2 complex of La II provide a good 
example of SU 3 symmetry in an atomic problem such 
an example must be regarded as an accident rather 
than a general symmetry principle for atomic sys­
tems [9]. 

Thus it would appear that there are relatively lew 
examples where compact groups can be employed in a 
physically significant manner. Most problems of 
physical interest must take into account the fact 
that a given system may exist in an infinity of different 
states. The irreducible representations of compact 
groups are all finite dimensional and thus do not 
supply the possibility of enveloping the infinite 
dimensional Hilbert space associated with real pro-
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blems. As an attempt to get out of this demise we 
are led to explore the properties of non-compact 
groups which possess infinite dimensional unitary 
representations. The application of the non-compact 
de Sitter group SO(4, I) and the conformal group 
S0(4,2) to the hydrogen atom has been remarkably 
successful [lo, 111 in supplying single infinite dimen- 
sional unitary representations that have the pro- 
perty of enveloping the eigenf~~nctions of the complete 
set of bound states, in the case of SO(4, I), and the 
complete set of bound and contini~ilrn states in the 
case of SO(4, 2). In these cases it has been possible 
to calculate all the relevant physical properties of the 
hydrogen atom in terms of the matrix elements of 
the relevant group generators. 

It is of considerable interest to explore the possi- 
bilities of extending the methods of non-compact 
groups to many-electron atoms. Here the representa- 
tions that must be considered are of considerably 
greater complexity and in this paper we limited our 
attention to the special case of the representations 
of the de Sitter group SO(4, 1). The representation 
theory of the group SO(4, I) is well-known [12-161. 
The traditional approaches to the theory of the de  
Sitter group have tended to revolvc about the cxploita- 
tion of the basic commutation properties of the group 
generators following the manner of Thomas [I21 and 
Harish-Chandra [17]. 

In the present paper we give a method of exploring 
the properties of the de Sitter group that makes full use 
of the Racah tensor operator algebra. While this 
approach has a number of novel features no claim can 
be made for the originality of the final results. The 
methods used here do, however, give a n  interesting 
insight into the properties of non-compact groups 
and their relationship to compact groups. To  make 
our development possible we first sketch the relevant 
tensor operator algebra of the group SO(4) and then 
develop expressions for the reduced matrix elements of 
the generators of SO(5). The SO(4) vector coupling 
coefficients are then used to construct the eigenvalues 
of the two Casimir invariant operators of SO(5). 
These results are then carried over to the development 
of the corresponding results for the de Sitter group 
SO(4, 1). 

2. Tensor Operator AIgebra of SO (4). - The 
basic theory of the group SO(4) has been outlined by 
Pauli [I81 and Biedenharn [I91 and here we follow 
the notation of Biedenharn. The group generators 
may be represented in terms of the components of 
the tensor operators L( ' )  and A(' '  where L(" is the 
usual angular momentum vector and A'" the Runge- 
Leriz vector. The irreductible representations of SO(4) 
may be labelled by a pair of integers or half-inte- 
gers [pq]  such that p 2 I q 1 3 0 and q may be positive 
or negative. 

Biedenharn 1191 has utilized the local isomorphism 

of the group SO(4) with the group SO(3) x SO(3) 
to obtain the SO(4) vector coupling coefficients for 
those representations in which the subgroup SO(3) 
is diagonal. Thus the complete coupling coefficients 
for the canonical chain SO(4j 3 SO(3) 3 SO(2) 
are known. Biedenharn's result may be written as 

x ( 2  jl + 1) (2 j 2  + 1) (2 J12 + I)]" 

(condt) 

I t  is useful to be able to construct tensor opera- 
tors T[pqIK that have well-defined transformation 
properties not only with respect to SO(3) and SO(2) 
but also SO(4). Using the Wigner-Eckart theorem [3] 
we have 

The reduced matrix element on the right-hand-side 
may now be written as 

where we have absorbed a factor [p, -k q ,  + 11% 
in our definition of the SO(4) reduced matrix elements 
so  that later equations assume a more symmetrical 
form. 

The evaluatioll of thc reduced matrix elements of 
coupled products of SO(4) symmetrized operators 
may be effected by use of the Innes-Ufford iden- 
tity [20] or by the diagrammatic methods of Jucys 
et al. [21] to give the result 
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Comparison of Eqs (3) and (4) gives the additional result 

Equations (1) to (5) allow us to factorize out the JM 
dependence of any SO(4) symmetrized operator 
leaving us with reduced matrix elements that are 
independent of any labels associated with the repre- 
sentations of SO(3) and SO(2). To proceed further 
we must determine the SO(4j reduced matrix elements 
of the generators of SO(4). 

3. Reduced Matrix Elements for SO(4). - Butler 
and Wybourne [22] have shown that the generators 
of the group O(n) transform according to the [ l l ]  
representation. In the particular case of SO(4) we 
find that L + A and L - A transform as the [I I ]  
and [l-11 representations of SO(4) respectively. It is 
a simple exercise to calculate the diagonal matrix 
elements of L(') and A(" [19]. These results may then 
be compared with Eq. (3) to yield 

This result, used in conjunction with eqs (2) and (3), 
allows the computation of all the matrix elements of 
the group generators of SO(4) together with those 
of L and A separately. 

4. Algebra of SO(5). - We now consider the 
enlargement of the algebra of SO(4) to that of SO(5). 
The infinitesimal operators J,, of SO(5) may be defined 
in terms of five real variables x i  ( i  = I ,  2, ..., 5)  as [2] 

where J,, = - J,,. The basic commutator may lbe 
written as 

[J*,, Jcpl = i{6,, J,, + d,,J,, + a,, J,, + 
+ d,, J,, I . (7) 

We may introduce sets of tensor operators such that 

The tensor operator component JL" provides the 
generator of SO(2) while the components of J ( I 1  
generate the algebra of SO(3). The tensor opera- 
tors J'" and A'" may be used together to construct 
the SO(4) algebra [4, 8, 221. Adding the tensor ope- 
rator B'" and the scalar operator 5';'' to J"' and A"' 
allows us to enlarge the SO(4) algebra to that of S0(5), 
and thus complete the canonical chain 

The matrix elements of J'" and A"' are already found 
and it remains to obtain expressions for those of B(' '  
and s?'. As noted earlier, the generators J ( ' )  and A']) 
together span the [ I  I] and [ I - 1 1  representations 
of SO(4) while the new generators B") and s?' that 
enlarge the canonical chain transform as the [lo] 
representation of SO(4). 
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The eigenvalues of sbO' and B:" acting on a ket 
I y[pq] Jnl > may be readily found to be 

and 

= 1 C ( -1)J ' -M' [3(2~+1)(2J '  + l ) ] ' ~  
[p'q'] J'M' 

where we make use of eqs (2) and (3). Since B( ' )  
and SF) are group generators of SO(5) their reduced 
matrix elements must be diagonal in the auxiliary 
quantum numbers y which presumably may later be 
identified with the labels of SO(5) representations. 

Noting the commutation relation 

[ A V ) ,  sr)] = - ~ ( 1 )  
0 

readily leads to the identity 

< y[p'q'II I SC'OII I Y [ P ~ I  > = 

= - < Y[P'  9'1 I I B['O1 1 I y[pql > (12) 

while application of the Wigner-Eckart theorem to the 
conjugate reduced matrix elements leads directly to 
the result that 

We now endeavour to find formulae giving the 
explicit dependence upon [pq] of the reduced matrix 
elements, initially using the result 

Explicit evaluation of the relevant vector coupling 
coefficients leads to the two identities 

< Y [ P  + 1 7  q rt_ 1 1  I I B['O1 I I Y [ P  + 1 ,  ql > x 

x < y[p + 1,ql I I B['O1 I I y[pql > 
= < y[p + 1 ,  q + 1 1 1  I BC1O1I I Y I P ,  9  + 1 1  > x 

x < y[p,q + 1 1 1  I B C ' O I I I ~ [ ~ q l  > (15) 

and 

< Y [ P  & 1 , q T  l l I I B r l O I I I ~ [ ~  + 1,ql > x 

x < y[p * 1, ql I I B['OII I y[pql > 
= < Y [ P  + I , q  f ~ l 1 1 B [ ' 0 1 1 1 ~ [ ~ 7 ~  T 1 1 >  x 

x < y[p, q F 1 1  I I BC'OII I Y [ P ~ ]  > 
Use of eq. (13) then leads to the two identities 

I < YIP + 1 7  q  + 1 1  I I BCLO1 I I Y [ P  + 1, ql > l 2  = 

= I  < Y [ P , ~ +  1 1 1  IBCloll l y[pq l> l 2  = f ( q )  C16a) 

and 

The above identities are entirely equivalent to those 
found by Kemmer, Pursey and Williams [23] who 
exploit the isomorphism between SO(4) and 
SU(2) x SU(2). While their method has a number 
of important simplifying features we have deliberately 
avoided it so as to give a prototype calculation for 
later extension to more complex cases where simpli- 
fying isomorphisms are absent. 

Equations ( l6a )  arid (16b) may be solved inductively 
following the method of Kemmer et a1 [23] to give 

and consequently, 

f ( P )  = - $ ( ( p  + 3)' [(p + 5)' + y ]  + S ) (17b) 

and 

The unitarity of the representations of compact 
groups ensures that for a given irreducible represen- 
tation of SO(5) p and q have upper bounds k and 1 
respectively such that f (k )  = f  (1) = 0 and hence 

and 

Using these results in eqs (17b) and (l7c) then gives 

and 

Noting the reality of the reduced matrix elements of 
B'" we may fix our phases so that the square roots of 
f ( p )  and f (q)  are positive and label the irreducible 
representations of SO(5) by the pair of positive integers 
or half integers, [k  I ] .  

It is apparent from eqs (10) and (11) that B(" 
and S'O) play the role of ladder operators stepping 
up or down p or g b y  one unit at a time. Under the 
restriction SO(5) -+ SO(4) we find that the irreducible 
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representations [kl] of SO(5) decompose into the set 
of irreducible representations [pq] of SO(4) such that 

with each representation of SO(4) occurring just 
once. In particular we note that under SO(5) + SO(4) 
we have 

Thus we may use a single representation [n - 1,  01 
of SO(5) to  envelope all the eigenfunctions of the 
bound states of a hydrogen atom up to those of prin- 
cipal quantum number 11. Since the representations of 
compact groups are all finite dimensional we cannot 
expect a single representation of SO(5) to envelope 
all the eigenfunctions of the bound states of the 
hydrogen atom. As is well-known we must go over to 
the non-compact group SO(4, 1) to accomplish this 
task. Before investigating SO(4, 1 )  we first consider 
the construction of the Casiniir invariant operators of 
SO(5). 

5 .  Casimir Invariants of SO(5). - The represen- 
tations of SO(5) may be equivale~ltly labelled by the 
eigenvalues of two Casimir invariant operators that 
commute with all the infinitesimal operators of 
SO(5). One is a quadratic function and the other a 
quartic function of the group generators. 

The quadratic invariant I, must be a scalar under 
SO(4) and its subgroups and be collstructed from 
second degree products of the group generators of 
SO(5). Remembering that under SO(4) B") and 
S(O) together transform as the [lo] representation we 
have from eqs (2) to  (4) 

< ct[pq] J M  I ( B"O1 J ~ [ O o l ~  I ~ ' [ p '  q'] J' M' > = 

which from eq. (17a) becomes 

But for SO(4) we have the Casimir invariant 
2 F = (J2 + A2) which has eigenvaluesp(p + 2) + q2 
and hence 

is a Casimir invariant of SO(5) with eigenvalues 

where y is as given in eq. (180). We note that eq. (23) 
may be equivalently written as 

and in terms ot' the [kl] representation of SO(5) has 
the eigenvalues 

1, I r[kl] [pq] J1Z.f > = 

= [k(X- + 3) + l(1 + I)] I x[X-11 [pql J M  > . (26) 

The construction of the fourth-order Casimir 
invariant I, is somewhat more tedious. We proceed 
by constructing fourth order operators out of J, A 
and B which are scalars under SO(4) 3 SO(3) 3 SO(2). 
Since under SO(4) we have [I I] x [I - I ]  = [20] 
and [lo] x [lo] 3 1201 we may start by considering 
the matrix elements of the fourth-order scalar operator 

which is obviously diagonal in the 

canonical chain. Use of eq. (2) followed by eq. (4) 
and explicit evaluation of the relevant 3 11 - , j  symbols 
yields eq. (27) as 

= < x [ p q ] I I [ ( J + ~ ) [ " ~ ( J - - A ) ~ ' - ' ~ ] ~ ~ ~ ~ I I c c [ p q ] > x  
x < ~ [ p q ]  I 1 [B['O1 BCIO1 1 C201 I 1 d ~ q l  > X 

x ( 3 ( p 2  - q2 + 2 p  + I ) ) - ' .  (28) 

The reduced matrix elements may then be evaluated 
using eq. ( 5 )  followed by eq. (6) and eqs (160) and 
(1 6h) to  give eq. (28) as 

The above result may then be simplified using eqs 
C17b) and (17c) to give eq. (29) as 

Clearly the matrix elements of the invariant operator 
I, cannot depend on p and q and hence a term must 
be added to  the operator in eq. (27) to cancel the 
additional terms in eq. (30). A convenient choice for 
I, is 

where 

= 6 ( [(J + A) L"](J - A ) ~ ' - ' ] ] [ ~ ~ ~  x 

and G is the second invariant of SO(4) with eigenvalues 
q(p + 1). We now have the eigenvalues of I, as being 
just 



In the [kl] representation of SO(5) we find 

(34) 

We note that I4 is an invariant of SO(5) and as such 
can differ from the conventional fourth-order Casimir 
operator [2] by at most a scale factor and an additive 
constant. We may, if desired, use the eigenvalues of 
I2 and 74 to label the different irreducible represen­
tations of SO(5). The results we have obtained here 
are not significantly different from those found by 
Kemmer et al. [23]. 

6. Algebra of the de Sitter group SO (4,1). — 
The de Sitter group SO(4, 1) finds a realization as the 
ten-parameter group of transformation matrices that 
acting on the five variables vv, x, y, z and / holds inva­
riant the indefinite quadratic form 

(35) 

Then ten infinitesimal operators of SO (4,1) satisfy 
the commutation relations 

(36) 

w h e r e ^ = 0 except forg,, = g12 = gi3 = g44 = - 1 
and g55 = 1. 

We can define a set of tensor operators J (" , A ( ' ' , 
B"1 and S<0) exactly as in eqs (8a) to (8c). The compo­
nents of the tensor operators J(1> and A(I) satisfy the 
same commutation relations as for SO(4) and may be 
used as the generators of SO(4). The commutators 
involving the components of J (1) or A ( " with those 
of B(1) or S(0) also remain unchanged. However, 
we now find that the commutators for the components 
of B (1) and S(0) occur with the opposite sign to those 
for SO(5). Thus we may carry over much of the theory 
developed for SO(5) to SO(4, 1) with only some 
minor, though significant, changes. 

In going from SO(5) => SO(4) => SO(3) => SO(2) 
to SO(4, 1) z> SO(4) => SO(3) => SO(2) we find that 
eqs (12) and (13) remain unchanged while the sign 
on the right-hand-side of eq. (14) is reversed. This 
has the nett effect of changing the sign of eqs (17a) 
to (17c) to give 

(37a) 

(376) 

and 

(37c) 

The matrix elements given in eqs (22) and (30) 
change sign, as a consequence of the sign change in 
f\p) and / ( a ) , and the two group invariants for 
SO(4, 1) become 

(38) 

and 

(39) 

5 y 1 
with eigenvalues of - + y and — 5 — -. — -r-p respec-

2 4 16 
tively. 

The irreducible representations of SO(4, 1) may be 
labelled either by the permissible values of y and b or, 
perhaps more appropriately, by the eigenvalues of 
I2 and 74. The unitary representations of SO(4, 1) 
are all infinite dimensional and upon restriction to 
SO(4) yield infinite series of SO(4) representations, 
each occurring with multiplicity one or zero. 

The possible representations of SO(4) contained in a 
representation of SO(4, 1) are determined by consi­
dering the conditions under which f(p) and f{q) are 
non-negative. The representations of SO(4) will be 
labelled by the pairs of integers or half integers p 
and q with p ^ | q | ^ 0 . There is no upper bound on p 
but there are always lower bounds on p and q. 

We may classify the different representations of 
SO(4, 1) by considering the different possible 
minimum values of p and a and their consequences in 
eqs (37a)-(37c). Two distinct series of SO(4, 1) repre­
sentations arise, those where the eigenvalues of I2 

may assume a continuous range of values and those 
associated with only discrete values. These two series 
of representations may be somewhat arbitrarily divided 
into various classes as has been done, for exemple, 
by Newton [13]. We obtain the following results. 

CONTINUOUS REPRESENTATIONS. — Class I. 

(40) 

where /2 has a continuous range of values. These 
representations decompose into the direct sum of 
the SO(4) representations 

(41) 

Class III. 

(42) 

where I2 has a continuous range subject to the lower 
bound restriction. There is a representation for each 
permissible value of J and I2 and each representation 
decomposes into the direct sum of the SO(4) repre­
sentations 

(43) 

DISCRETE REPRESENTATIONS. — Class II. 

(44) 
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[here is one representation for each value of n which Our results differ from those of Newton [I31 in 
upon restriction to  SO(4) decomposes into the direct a number of minor points arid are in accord with 
sum the amendments of Newton's results published by 

[n, 01 + [n + 1, 01 + ... (45) 
Dixmeir [I 51. 

of SO(4) representations. 
Conclusions. - We have developed the algebra of 

the de Sitter group SO(4, 1) using the tensor operator 
Class ZV. methods of Racah and the known expressions for the 

I, = - t(t - 1) - (s - 1) (s + 2) SO(4) vector coupling coefficients. The same method 

= 112, l , 3 /2 ,2 ,  512, ... could be readily extended to the groups: 

These representations of SO(4, 1) are labelled and 
distinguished by the various possible pairs of integers 
or half integers (s, t). Two distinct SO(4, 1) represen- 
tations arise for each choice of (s, t) and have been 
designated by Newton [I31 as Class IV a and IV b. 
These representations are distinguished by their 
different decomposition into the direct sum of SO(4) 
representations upon the restriction SO(4, 1) + SO(4). 
For Class IVa we obtain the direct sum of SO(4) 
representations. 

SO(4, 1) 3 SO(3, I), SO(4, 2) 3 SO(2) x 
x S0(3), SO(4, 2) 2 SO(2) x SO(4) 

and SO(4, 2) 3 SO(3) x SO(2, 1) using the known 
coupling coefficients. Studies of these series of groups 
are currently under study. 

The use of Gelfand states woi~ld give a natural 
method of extending our results to groups of higher 
dimensions as has indeed already been considered by 
Fronsdal [I I]. 

While it is a con~paratively simple matter to express 
the Hamiltonian for a hydrogen atom in terms of 

{[s,  -s]+[s, - s+I ]+ . . .+ [ s ,  - t ] ) +  group generators of SO(4, 2) and obtain a complete 

{ [$+ 1, [S+ 1, -S+ I ] +  ...+ [$+ 1, + . .  , allalysis of the hydrogen atom spectrum it is likely 

, . -, to be a far from trivial matter to extend the theory 
(4') to manv-electron svstems due to the Dresence of the 

{[s , t ]+[s ,  ~ + I I + . . . + [ s , s I ) +  ~ o u ~ o l n b  repulsionaterms 1 e ' ~ r , ~ .  l ieally we would 
{ [ ~ + 1 ,  t ] + [ ~ + l ,  t + l ] + . . . + [ ~ +  I, S] )+ -  . i i  j (48) like to develop new global quantum numbers for 

I t  will be noted that the representations in eq. (47) many electron atoms and studies along these lines are 
are simply the conjugates of those found in eq. (48). currently being undertaken. 
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