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BAND STRUCTURE DETERMINATION BY THE GREEN'S 
FUNCTION METHOD 

by 0 .  MADELUNG and J. TREUSCH 

Institut fiir Theoretische Physik (11) der Universitat Marburg-Lahn 

Summary. -- Recent work on band structure calculations shows that the Green's function 
method (KKR) is appropriate not only for metals but also for semiconductors such as selenium, 
tellurium, and zinc sulphide. The method belongs to the so called (( first-principle n methods, in 
contrast to the interpolation schemes (based e. g. on a pseudopotential). Distinguishing features are 
its mathematical rigor and rapid convergence. The only shortcoming is that the method only 
applies to a muffin-tin potential. But since the bands do not depend strongly on the special form of 
the assumed potential, one should expect reliable results if the real potential is not very far from 
spherical symmetry. The energy bands calculated for Se, Te, and cubic ZnS fit experiments satisfac- 
torily and are comparable with pseudopotential results. Moreover they are even better than those 
obtained by tight-binding calculations. That is very promising since there is only one fitting 
parameter, against e. g. six in the interpolation scheme used in the work on ZnS. Therefore KKR- 
calculations are an excellent starting point for energy band analysis specially since they require few 
experimental data. A recent modification of the Green's function method includes spin-orbit cou- 
pling from the very beginning. 

Rksum6. - Les derniers travaux sur la determination thkorique de la structure des bandes 
montrent que la methode dite de la fonction de Green (K K R) n'est pas seulement applicable aux 
mktaux, mais aussi a des semiconducteurs tels que Se, Te et ZnS. Cette mkthode fait partie des 
mkthodes dites de ((first principles D, en contraste avec les schkmas d'interpolation (basks par 
exemple sur le pseudopotentiel). Les faits qui l'en distinguent sont la rigueur mathkmatique et la 
rapide convergence. Son seul desavantage reside dans le fait qu'elle ne s'applique qu'au (( muffin- 
tin u potentiel. Mais si la structure de bandes ne dkpend pas excessivement du potentiel utilisk et 
si le vkritable potentiel ne dkvie pas beaucoup de la symktrie spherique, on doit pouvoir obtenir 
des resultats satisfaisants. Les bandes d'energie calculkes pour le Se, Te et le ZnS satisfont aux 
rksultats expkrimentaux et sont comparables aux rksultats obtenus par la mkthode dite du pseudo- 
potentiel. D'autre part, ils sont meilleurs que ceux obtenus par la methode dite du (( tight- 
binding )). Ceci est trks prometteur, surtout si Yon remarque qu'il suffit ici d'un seul paramktre 
pour expliquer l'expkrience, au lieu de six par exemple dans le schCma d'interpolation applique ?i 

ZnS. De tels calculs (K K R) peuvent btre de prkcieux points de depart pour l'ktude des bandes 
d'energie, surtout dans les cas ob il n'existe que peu de rksultats expkrimentaux. Une modification 
de la mkthode de la fonction de Green comprenant le couplage spin-orbite dks le dkbut de la thkorie 
a kt6 dkveloppke rkcemment. 

Among the methods used in band structure cal- these methods the OPW-method seems to be most 
culations three groups can be distinguished, suitable. But until now it has never been possible to  

1) methods that try to  get self-consistent solutions of carry out completely self consistent band structure 

the Schradinger equation for the one-electron calculations for the following reasons : a) The C ~ ~ C U -  

periodic potential problem lations are extremely long. b) The results depend 

2) methods that use ad hoc potentials, and strongly on the accuracy of some orthogonalization 
integrals. c) Furthermore they depend on the validity 

3, methods that use data to fit of some physical assumptions (e. g. core-shift, corre- 
known parameters in interpolation schemes, i. e. lation effects). For this reason some fitting parameters 
to get the band structure in k-space from have to be introduced aposteriori in order to avoid bad 
known energy values in certain symmetry points. agreement between theory and experiment [I, 2, 3, 41. 

The self-consistent methods are of course the only Among the ad hoc potential methods the APW- 
ones that can predict the band structure of a given method (augmented plane waves) [5] and the KKR- 
solid without any experimental knowledge. Among method (Green's function method by Korringa [6] ,  
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Kohn and Rostoker [7]), share the best reputation. 
Both methods use a spherical potential around each 
lattice point and a constant potential outside these 
spheres (muffin-tin potential). Recently they have been 
proved to be almost equivalent. The disadvantage of 
using an idealized potential is balanced by many 
advantages. The theory is transparent, the numerical 
calculations are fewer than in a self-consistent theory, 
and there is only one free parameter namely the value 
of the constant potential outside the spheres. 

The basic disadvantage of the interpolation schemes 
is the necessity to know the band structure at certain 
points in the Brillouin zone a priori. Experimental 
values of optical transitions can help if available, but 
wrong attachment of 'these values to critical points 
in the Brillouin zone leads to wrong band structures 
[3, 41. Some approximations in the physical assump- 
tions [2], which do not necessarily hold for semicon- 
ductors as they do not hold e. g. for transition metals 
(e. g. replacement of the non local dynamic repulsive 
potential by a local potential, (overlapping) spherical 
potential around the atoms, etc.), lead to some restric- 
tions. Thus by the pseudopotential interpolation 
scheme [8] no d-bands can be described, whereas the 
tight-binding interpolation scheme [9] can give no 
(( free electron ))-bands. The combined interpolation 
scheme of Mueller [lo] seems to overcome these 
difficulties. Apart from these points especially the 
pseudopotential method has turned out to be a very 
strong tool for rapid and extensive band structure 
calculations in relatively good known solids [Ill. It is 
the only method up to this day which almost gives 
the energy bands not only at symmetry lines in 
the BZ, but at general points in k-space as well. 

The APW - or the KKR-method will be chosen 
in two cases : 

1) If the muffin-tin potential assumption is a good 
approximation, as e. g. in solids with a high coordina- 
tion number, especially in cubic metals with Bravais 
lattices. Here excellent results have been obtained 
[12, 13, 14, 151. 

2) If no (or only tentative) experimental data exist 
for a solid, the muffin-tin methods are a good starting 
point for band structure calculation. 

APW - and KKR-methods have been proved to be 
closely related [16, 17, 18, 191. But the KKR-method 
seems to be advantageous in many respects. The 
convergence relative to the l-summation is better than 
in the usual form of the APW-method as was shown by 
calculations on cubic ZnS [20, 211. The solutions are 
continuous with continuous derivatives at the surface 

of the muffin-tin spheres [22]. The greatest advantage 
as to the numerical calculations is a complete separation 
of the influences that the lattice symmetry and the 
potential have on the band structure. Thus the 
so called (( structure constants )) (that need by far the 
greatest amount of computing time) can be calculated 
once and for all for a given crystal or group of crystals, 
and the potential used can then be changed very 
easily. The spin-orbit coupling, the relativistic Darwin 
term and the mass-velocity correction can be treated 
separately [23]. Thus the influence of different assump- 
tions on the results can be investigated during the 
calculations. For this treatment the relativistic Pauli 
equation must be used. Beginning with the Dirac 
equation leads to almost the same results in the 
frame of the usual approximations but without the 
possibility to separate the different terms [24, 251. 

The application of the KKR-method to semicon- 
ductors has been extensively investigated at the first 
time by Sandrock and Treusch for the band structure 
of Se and Te [22] (besides some tentative work on Ge 
by Segall [26]). Other work concerning these two semi- 
conductors up to this time had been based upon the 
tight-binding method. There, atomic orbitals have 
been used as trial functions [27]. Taking into account 
only nearest neighbours, one hurts the Bloch condi- 
tion severely and gets the band structure along the 
hexagonal A-axis only. These restrictions throw some 
doubt on the Se-results of Olechna and Knox [28]. 
Results that are more complete have been obtained by 
Hulin [29, 301 for Te. He takes into account second 
nearest neighbours too, thus gets the band structure 
for the four main symmetry axes and finds the gap to 
be situated in the corner of the Brillouin zone (H). 
In contrast to Olechna and Knox who start with a 
definite potential and fit by just changing the value 
of the exchange potential, Hulins calculation is more 
empirical. Unfortunately, he fits effective masses instead 
of energy values. That leads to an energy gap which 
is ten times larger than the experimental value. Other 
work (done by Hulin [30] to show the suitableness of 
the tight-binding method in the case of Te) gives 
reason to conclude that the muffin-tin approximation 
will exhibit good results in Se and Te, since the valence 
electrons are concentrated near the ion cores of the 
lattice atoms. 

The KKR-calculations for Se and Te give the follo- 
wing picture (Fig. 1, 2) : the valence and conduction 
band originate from the p-terms of the lattice atoms 
and do mix only to a small degree with the free elec- 
tron terms. This result shows that pseudopotential 
calculations are not as appropriate as e. g. tight 
binding calculations. The energy gap according to the 
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FIG. 1. - Band structure of Se in accordance to 1221. 

KKR-calculations lies also in the point H for both Se 
and Te and is of the right order of magnitude. Optical 
transitions and the 1 1  p band found experimentally 
can be described correctly. The pressure dependence of 
the energy gap in Se can be explained quantitatively. 
Especially this last result, which can only be won 
by taking the full lattice structure into account 
(that means not only neighbour atoms in the chains 
but neighbouring chains too), shows the superiority 
of the KKR-method. At first glance spherical potentials 
seem to be a bad approximation to the chain struc- 
ture of Se and Te, but the proximity of the spheres in 
the chains and the relatively great distance between 
the chains gives the necessary anisotropy of the 
chemical bond. Pseudopotential calculations by Beiss- 
ner [31] are restricted to the A-axis. Therefore, and 
by the reasons stated above they seem to be unre- 
liable. 

After our encouraging results, we investigated the 
application of the KKR-method to semiconductors 
with zincblende structure. As in the case of Se and Te 
the spheres fill only about a third of the space. Thus the 
assumption of a muffin-tin potential is incisive. 
Nevertheless, the muffin-tin approximation seems 
justified if by a heteropolar bond the electron bridges 
are polarized. As our first example, we chose cubic 
ZnS. For the potential inside the spheres the self 
consistent atomic potentials of Herman and Skillman 
[32] were used, although a more ionic potential 
would seem to be more nearly adequate ; but the results 
do not depend strongly on the exact form of the 
potential inside the spheres. Changing, for example, 
the potential in the region of the sphere radius by as 
large an amount as 15 eV does not essentially change the 
resulting band structure. Tab. 1 shows the resulting 
energy values [21]. The value of the potential outside 
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transition 
rl5-rl 

rl 5-L 1 

rl5-Xl 

r 1 5 - l - 1 5  

X5-xl 

x5-x3 

XI-x3 

L3-Ll 

L 3-L 3 

mg 

Eckelt [21] 
3.7 

5.3 
5.8 
9.0 
7.2 

7.5 

0.3 

5.9 

9.9 

(0.35-0.40) mo 

exp. C & B (11) 
3.7 3.7 

(3.8) 
5.3 
5.2 

8.4 8.9 
7.03 6.7 
(6.8) 
7.35 7.5 
(7.3) 
0.32 0.8 

(0.5) 
5.82 5.8 

(5.9) 
9.65 9.2 

(9.5) 
(0.39 rt 0.01) mo < 0.35 mo 

TABLE 1. - Energy splittings of cubic ZnS in eV. The expe- 
rimental values are measured by Cardona and Harbeke (Phys. 
Rev., 1467, 137 A, 1965), except the transition r 1 5 - r l 5  which 
was measured recently by Baars (to be publ.). The values given 
in brackets are those that were fitted by C & B. They originate 
from the same experiment, but were extrapolated to T = 0. 
rn; was measured by H. Kukimoto et al. Phys. Letters, 1965, 
19, 551. 

the spheres was obtained by fitting the experimental 
value of the energy gap (optical transition TI,-TI). 
The other optical transitions known from experiment 
are in good accordance with the respective energy 
differences of the theoretical band structure. The 
results are very similar to those obtained by Cohen and 
Bergstresser [l  11 who used the pseudopotential 
method with six fitting parameters. In  contrast to  
these results, our calculations give the lower d-bands 
too. More details will be published elsewhere [21]. 

The tentative results about the energies in the point 
of the Ge band structure obtained by Segall [26] from 
the KKR-method are not very promising. We are 
investigating the question of whether these results can 
be improved or whether the KKR-method fails if 
applied to such a covalent crystal. Work is in progress 
to include spin-orbit coupling and relativistic effects 
into the band structure of Se and Te. 

The results described above are very encouraging 
since they demonstrate the following facts : 1. the 
KKR-method is able to yield quantitative results also 
for semiconductors, if the muffin-tin approximation 
is not too far from nature ; 2. the method is able to 
exhibit bands originating from atomic levels as well as 
free-electron bands, that means, it can be used to  
start band calculations in a special case and to decide 
what kind of interpolation scheme is suitable if one 
wants to know the energy throughout the Brillouin 
zone ; 3. the method is able to take into account rela- 

tivistic effects from first principles and separately 
without enlarging the computational effort essentially. 

Hence it seems promising to  further investigate the 
KKR-method : to extend it, for example, by parame- 
terization (as proposed by Heine) in order to  get a 
semiemperical scheme that shares the advantages of 
the original method and those of an interpolation 
scheme, and to use it in cases, where self-consistent 
calculations are too extensive and interpolation 
schemes are impossible due to  a dearth of experimen- 
tal data. 
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DISCUSSION 

F. GAUTIER. - 1) Vo est-il ajustC & l'expCrience 
pour Se ? 

2) Comment pouvez-vous reprksenter la variation 
de la structure de bandes (en mCthode KKR) avec 
la distance entre les chaines ? 

0. MADELUNG. - 1) Oui, mais un ajustement 
total n'est pas possible (voir TREUSCH et SANDROCK, 
Phys. Stat. Sol., 1966, 16, 487). 

2) Comme la mkthode KKR est bas6 sur l'incorpo- 
ration de toute la symttrie dks le dCbut des calculs, 
une nouvelle determination des bandes d'Cnergie en 
fonction de la distance entre les chaines est facile, si 
1'011 a dCtermink les (( structure constants )) respectifs. 

AMAR. - IS there any labor reduction in the deter- 
mination of the KKR structure constants due to the 
chain structure of Te and Se ? 

0. MADELUNG. - There is the usual reduction due 
to symmetry arguments, but the latter hold only for 
the diagonal structure constants. The non diagonal 
structure constants which appear, since we have no 
Bravais lattice in the case of Se and Te, are rather 
laborious to evaluate. 

D. CURIE. - IS it possible to define some kind of 
effective charge for the zinc and sulfur ions in zinc 
sulfide, as a result from your calculations. 

0. MADELUNG. - NO. AS a first approximation we 
used for our calculations the self-consistent atomic 
potentials of Herman and Skillman, without taking 
into account the ionicity of the chemical bond in cubic 
ZnS. As a second approximation one should use more 
ionic potentials and look if the results are changed 
essentially. But from our results we do not expect 
this to be the case. 


