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DISLOCATION DIPOLES AND DISLOCATION LOOPS 

F. KROUPA 
Institute of Physics, Czechosl. Acad. Sci. Vinie.na 7, Prague 2 

ResumB. - L'auteur presente les id& thkoriques de base relatives aux proprietes de deux 
configurations de dislocation particulikres, les dipales de dislocation et les boucles de dislocation 
prismatiques. I1 donne aussi ses rksultats recents fondes principalement sur l'application du modhle 
du continuum klastique a ces dkfauts cristallins. I1 discute l'influence des dip6les et des boucles 
sur diverses propriCtBs mtcaniques. 

Abstract. -Basic theoretical ideas on the properties of two special dislocation configurations, dis- 
location dipoles and prismatic dislocation loops, are presented. Some of the author's recent results, 
based mostly on the application of the model of elastic continuum on these crystalline defects, are 
also given. The influence of dipoles and loops on different mechanical properties is discussed. 

1. Introducticm. - Basic theoretical ideas on the 
properties of two special dislocation arrangements 
will be reviewed : dislocation dipoles (i. e. pairs of 
parallel dislocations with opposite Burgers vectors) 
and prismatic dislocation loops (i. e. dislocation loops 
with Burgers vectors that do not lie in the loop pla- 
nes). These arrangements have been observed in 
crystalline materials by transmission electron micros- 
copy after different kinds of treatment : the dipoles 
after plastic deformation, the prismatic loops after 
quenching, irradiation, and after plastic deforma- 
tion. 

The density of these defects is often very high. 
Therefore, they can influence considerably the mecha- 
nical as well as some other physical properties of 
crystalline materials. 

Some properties of the dipoles and prismatic loops 
are rather similar : e. g. their stress field decreases 
more quickly with distance than that of straight indi- 
vidual dislocations, which leads to a much weaker 
mutual elastic interaction and to the possibility of 
formation of a very high local density of these defects ; 
both of them can disappear by climbing at elevated 
temperatures. In fact, dipoles can be described as 
elongated prismatic loops. Therefore, it may be useful 
to review both these defects simultaneously. 

model of elastic continuum, will be pointed out. 
Recently, the elastic properties of dislocation loops 
have been similarly reviewed by the author [2]. 

2. Formation of dipoles and prismatic loops. - 
The actual forms of dislocations differ considerably 
from the idealization mostly used in the theory of 
dislocations - from the straight infinite dislocation. 

Dislocations in as-grown or in well annealed single 
crystal form two-dimensional nets in the mosaic 
block boundaries and three-dimensional nets inside 
the mosaic blocks. The main part of the dislocations 
formed during the plastic deformation or during the 
different thermal treatment is in the form of loops. 

By a dislocation loop we understand a dislocation 
whose dislocation line is closed inside the crystal. 

The dislocation loops are usually formed in special 
crystallographic planes and according to the relative 
position of the Burgers vector and the loop plane 
they can be divided into two groups (Fig. 1) : 

- 

More attention will be given to the dipoles, and 
only some analogical properties of the prismatic FIG. 1. - Dislocation loops : a) slip loop, 6) prismatic loop. 

loops will be mentioned 
Basic properties of the dipoles and their influence on i) slip loops, the Burgers vector of which lies in the 

the physical properties have recently been reviewed loop plane, 
by Gilman [l]. In the present paper, some new results ii) prismatic loops, the Burgers vector of which 
for dipoles, based mostly on the application of the does not lie in the loop plane. 
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Siip loops are usually formed in slip planes under 
external shear stress, e. g. by Frank-Read source 
mechanism or by stress concentration on non-homo- 
geneities. These loops can further extend by gliding 
and reach dimensions of a few p up to 100 p ; in single 
crystals of pure metals they may be even larger. 

During the expansion of loops in the slip planes, 
dislocation dpoles are formed by different processes 
[3]. Two of them seem to be most important : 

i) When parts of two loops pass one over another 
in parallel slip planes close to each other (Fig. 2), they 

FIG. 2. - Dipole formation by dislocations gliding 
in parallel slip planes. 

can reorientate into a parallel section and, thus, form 
a stable configuration. This configuration, i. e. two 
parallel dislocation segments with opposite Burgers 
vectors (in other words : two antiparallel segments 
with the same Burgers vectors) is called a dislocation 
dipole. It can be expected that the dipoles will be 
formed mostly by edge dislocations because two 

FIG. 3. - Dipole formation by motion of 
screw dislocations with large jogs. 

Re. 4. - Dipoles in Cu (Z. S. Basinski [4]). 

screw segments can easily annihilate by a cross slip, 
especially in metals with a high stacking fault energy. Typical heights of dipoles observed are 100 to 

This mechanism of dipole formation seems to be l000 A. 
very frequent at the beginning of plastic deformation Dipoles formed by the first process should be ori- 
when a great number of dislocation loops expand in ginally open at both ends, those formed by the second 
parallel slip planes. mechanism should be originally open at one end. 

ii) Dipoles can also be formed by the motion of However, the dipoles can be terminated by different 

screw dislocations with large jogs (Fig. 3) with a jog slip processes [5, 61 or by climbing [7, 81. Shorter 

length of at least several Burgers vectors. Similar segments of dipoles, terminated at both ends and 

jogs can be formed by the cross slip of parts of the left behind the screw dislocations, are often called 
dislocation debris. Figure 5 shows an example of screw dislocation or by the concentration of unit 

jogs formed by intersection with other dislocations. debris formed in deformed silicon-iron crystals [9]. 

The jogs have an edge orientation and cannot glide They can be also called (( elongated n prismatic dislo- 

with the screw dislocation. As a result, cusps and edge cation loops because the longer dislocation segments 

dislocation dipoles are left behind the gliding screw lie in different slip planes and, therefore, the Burgers 
vector cannot lie in the plane of the debris. dislocation. 

The dipole distribution in strongly deformed metals 
Dipoles formed by these two mechanisms in Cu will be complicated (Fig. 6 )  : bundles of dipoles for- 

are shown in figure 4 adopted from [4]. med by the meeting of dislocations from neighbouring 
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FIG. 5. - Dipoles in Fe-3 % Si alloy (A. Gemperle [9]). 

FIG. 6. -Distribution of dipoles in deformed crystals 
(schematically ; plane parallel to the slip plane). 

sources and dislocation debris left behind the moving 
screw dislocations ; a lot of screw dislocations from 
neighbouring sources will annihilate. In combination 
with the remaining individual dislocations and different 
intersections and reactions with dislocations from 

secondary slip systems, dipoles will begin to form 
complicated dislocation tangles. 

Different processes of formation of prismatic dis- 
location loops will now be summarized. The most 
important mechanism, the precipitation of point 
defects, was first proposed by Nabarro in 1947 [IO]. 
He assumed that the vacancies precipitate in special 
crystallographic planes and form discs. A prismatic 
dislocation loop can then be formed by the collapse 
of the vacancy disc (Fig. 7). A prismatic loop can 

FIG. 7. - Formation of prismatic dislocation loop 
(schematically). 

glide along its slip prism or slip cylinder. In its plane 
a prismatic loop can only move, expand or contract 
by climbing, i. e. by diffusion of point defects. 

Prismatic dislocation loops have already been 
observed in different metals by transmission electron 
microscopy, first in aluminium in 1958 1111. They 
are formed after quenching, which produces a high 
over-saturation of vacancies, and during subsequent 
annealing, which enables diffusion and precipitation 
of vacancies to take place. Typical diameters of these 
loops are a few hundred A and their maximum density 
is 1015 to 1016 loops/cm3, which corresponds to a 
dislocation line density of 10'' to 10" per cm2. 

Prismatic dislocation loops can also be formed by 
precipitation of interstitial atoms in irradiated 
crystal [12]. 

The process of point defect precipitation depends on 
the type of point defects, the crystal structure, the 
stacking fault energy, the content of impurities, the 
density and distribution of dislocations, the specimen 
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or grain size, and on different conditions, e. g. the Surprisingly, it has been recently found that in 
quenching temperature, quenching rate, and ageing very pure aluminium (99.999 %) pri'smatic lbops 
temperature. with stacking faults and with radii up to l000 A 

For example, in f. c. c. metals the disc of vacancies are formed after quenching [13]. This can be explained 
formed on the most densely packed atomic plane (1 11) by the fact that for transforming a partial prismatic 
(Fig. S) will collapse first into a prismatic dislocation loop into a complete one, nucleation of a slip loop 

with the Burgers vector (116) [l121 in the loop plane 
(4 TO) is necessary. In low purity metals, the non-homoge- 

neities cause this nucleation. In very pure metals, 

FIG. 8. - Collapse of a disc of vacancies in a f.c.c. metal (a) 
into a partial dislocation loop (with stacking fault) (b) and its 
transformation into a complete dislocation loop (without 
stacking fault) (c). 

loop with the Burgers vector (113) [l 1 l ]  enclosing a 
stacking fault. After a further growth by precipitation 
of vacancies, this partial dislocation loop may change 
into a complete dislocation loop with the Burgers 
vector (112) [l101 without a stacking fault and so 
decrease its total energy. The critical radius for this 
change is approximately proportional to lly where 
y is the stacking fault energy. Therefore, in metals 
with a high stacking fault energy, e. g. in Al, all loops 
should be without stacking faults. 

In fact, in aluminium of purity up to 99.99 %, 
only complete prismatic loops have been observed. 

the above simple condition for the critical radius 
cannot be used. The process of nucleation and growth 
of the additional slip loop and the energy barrier 
connected with this process have to be taken into 
account [14]. 

Other defects can also be formed in f. c. c. metals 
after quenching. In metals with a very low stacking 
fault energy, the tetrahedra of stacking faults on (1 11) 
planes have been observed, e. g. in gold [15]. It has 
been shown [l61 that their energy is lower than that 
of the prismatic loops with stacking faults. 

In quenched A1-4 % Cu alloy [l71 most vacancies 
precipitate on dislocations and transform the screw 
dislocations, previously straight, into helical disloca- 
tions. This may be due to the difficult nucleation of 
the loops in this alloy. 

Recently, also larger cavities with regular shapes 
have been observed in quenched aluminium [l81 ; 
their formation can be explained by the presence of 
gas impurities. 

Of course, prismatic dislocation loops can be for- 
med not only by point defect precipitation but also 
by the so-called punching effect during annealing [l91 
or pressurization [20] of crystals containing precipi- 
tates, and, moreover, during plastic deformation as 
the already mentioned dipole debris. Surprisingly, 
stacking fault tetrahedra have recently been also 
found in different plastically deformed f. c. c. metals 
[21] with low stacking fault energy. They are proba- 
bly formed on split jogs on the moving screw disloca- 
tions and can also be called debris. 

There are, therefore, some new surprising results 
concerning the formation of loops and precipitation 
of point defects in f. c. c. metals which have been so 
far mostly investigated, and other new results can be 
expected. 

Much less is known about similar problems in 
h. c. p. and b. c. c. metals. For example, no prismatic 
loops have been found in quenched b. c. c. metals, 
but different loops have been already found in irradia- 
ted b. c. c. metals, e. g. in iron [22], which are proba- 
bly formed by interstitials. 

It can be concluded that the problems of precipita- 
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tion of point defects are far from being completely 
solved and that the main interest shifts from f. c. c. 
to h. c. p. and especially to b. c. c. metals, similarly 
as in the problems of plastic deformation. 

3. Basic properties of dipoles. 

3.1 DIPOLES WITHOUT EXTERNAL STRESS FIELD. - 
For the sake of simplicity, let us consider an infinitely 
long edge dipole in an infinite elastic isotropic conti- 
nuum (Fig. 9a). Because of elastic interaction, the 

7 1  

FIG. 9. - a) Edge dislocation dipole. 
b) Force from dislocation 1 on dislocation 2. 
c) Total elastic energy of a dipole. 

stable arrafigement, the total elastic energy (per unit 
length) is approximately 

where D = Gb/[2 n(1 - v)], G is the shear modulus 
and v the Poisson ratio. The energy of two indepen- 
dent straight dislocations (per unit length) is 

where R is the outer radius of the body. The binding 
energy (per unit length) with respect to gliding is, 
therefore, 

When the height of the dipole h is small, e. g. bet- 
ween 10 to 100 b, the total energy of the dipole will 
be much smaller than that of two independent dislo- 
cations, and the dipole binding energy will be very 
high, of the order of 10 eV per atomic plane. 

The two positions of stable equilibrium are separated 
by the unstable equilibrium position with a local 
energy maximum. In order to change the orientation 
of the dipole, e. g. from cp = + 45O to cp = - 4 5 O ,  
the energy barrier (per unit length) 

must be overcome. This energy is called the flipping 
energy; it does not depend on the dipole height h 
and is of the order of 0.1 eV per atomic plane. 

The high stability of the dipole is due to the fact 
that the stresses of both dislocations of opposite sign 
practically cancel at large distances. More precisely, 
the dipole stress field crij (Fig. 10) can be written as a 
sum of stresses of both dislocations 

(1) (2) two dislocations forming the dipole influence each oij(v) = oij (r) + aij (V) = de)(r) - o$)(r - a ) .  (5) 
other by forces given by the Peach-Koehler formula 
[3] ; these forces have components in the slip plane For large distances, i. e. for ( V ( S ( a I,  it follows that 
as well as perpendicular to the slip plane. oij = a .  grad 0:;) = t(80$;'/ax) + h(aoi;)/ay) . (6) 

3.1.1 At low temperatures, the dislocations 
can only move in their slip planes and the elastic Y 
interaction leads to three equilibrium configurations 
of the dipole. They are apparent from the dependence 
of the force Fx which dislocation 1 exerts on a unit 
length of dislocation 2 (Fig. 9b), and from the depen- 
dence of the total elastic energy per unit length of the 
dipole (Fig. 9c). There are two stable equilibrium 
positions for </h = & 1 (i. e. for 9 = + 450) and 
one unstable position for 5 = 0 (i. e. for 9 = 900). 
Without an external stress field, the dipole will occupy FIG. 10. - Dipole stress field as a sum of stress fields 
one of the two stable equilibrium positions. For this of two dislocations. 
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The long range dipole stress field is expressed in this 
equation by means of the stress gradients of one 
edge dislocation. Since the stress field of a dislocation 
decreases with the distance r as llr, it simply follows 
that the long range stress field of a dipole decreases as 
l/r2. 

The stress field in the close neighbourhood of the 
dipole is complicated. Only the stress field at the 
centre of the dipole will be mentioned (Fig. 11). It is 

where the + sign holds for the extensional dipoles 
(Fig. lla), and the - sign for the compressional 
dipoles (Fig. llb). The stress components ox, of both 

FIG. 11. - Stress field at centre of : 
a) extensional dipole, b) compressional dipole. 

dislocations do not cancel in the centre, on the contra- 
ry they add. Thus in the case of extensional dipoles 
there is a large tensible stress ; for h/b -- 10 to 100, 
ox, G120 to G/200. Consequently, places with a 
high density of extensional dipoles represent a wea- 
kening of the crystal and can become nuclei of frac- 
ture. 

3.1.2 The elastic interaction also leads to non- 
zero force components perpendicular to the slip 
planes (Fig. 12). The corresponding motion of the 
two dislocations out of the slip plane is only possible 
by climbing, i. e. at elevated temperatures. 

According to the Peach-Koehler formula, the 
force F, (on unit elements) which dislocation 1 exerts 
on dislocation 2, is 

In accordance with a recent paper by Weertman [23], 
the deviator stress components should be used instead 
of the stress components in the Peach-Koehler formula 

l +- * 
-S -i - j  -2 -i '0 L t j 4 S 

FIG. 12. - pependence of force F, (form Peach-Koehler 
equation) and of F; (from equation modified by Weertman) on 
5. Force is given in units 

Gb2 1 
2741 - v)%' 

because the hydrostatic stress cannot make the dis- 
locations climb ; if it is so, instead of (8) we obtain for 
the force 

The dependence of Fy and F: is shown in figure 12. 
The two dislocations attract each other in the y direc- 
tion in all mutual positions. For the equilibrium posi- 
tion, 5 = f h, it follow that 

where /3 = 1 for the original formula, and j3 = (2 - v)/3 
for the modified Peach-Koehler formula. 

Under this driving force, climbing is made possible 
by diffusion of vacancies to or from jogs on the dis- 
locations. The compressional dipoles will absorb 
vacancies and the extensional dipoles will emit them. 

The velocity v of the climbing of each of the two 
dislocations is, according to [3], 

where a is the atomic coordination number, v, an 
atomic frequency, L the mean distance between the 
jogs, U, the activation energy of self-diffusion. 

After integrating [10], the time dependence of the 
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dipole height h, at constant temperature T, can be 
found. This dependence is plotted in figure 13 ; the 
time to necessary for the dipole annihilation is called 
the life time of the dipole. 

field while the individual dislocations tend to move 
in opposite directions. 

Two different cases can take place (Fig. 14), which 

FIG. 13. - Dipole width h as a function of time t at a cons- 
tant temperature T. Non-dimensional arguments are used 
(K = Gb3/[2 x(1 - v) kT],  cj = b/L, D is self-diffusion coef- 
ficient). 

It should be stressed that the above concept of the 
dipole annihilation is rather a simplified one. 

The process of approach of dislocations is obviously 
unstable along the dipole. When the jog density 
cj  = b/L locally increases, the velocity of climbing 
also increases and this will lead to local annihilation 
of the short parts of the dipole, i. e. to the formation 
of the dipole constrictions. The decomposition of a 
long dipole into a shorter dipole debris can be expected 
in the first stage of annihilation, in the second stage, 
the debris will preferentially annihilate from the ends. 
This complicated process can be very roughly described 
by the gradual approach of the two straight disloca- 
tions with an effective value of the jog density cj of 
the order of 112. 

In some metals, e. g. in Zn [7], the decomposition 
into shorter debris is due to the pipe-diffusion. Without 
doubt, the bulk diffusion is responsible for further 
annihilation of the debris. 

The dipole annihilation may be one of the impor- 
tant processes in the mechanism of creep. A corres- 
ponding model has been proposed by Chang [24] : the 
dipole formation causes hardening, while dipole 
annihilation causes recovery. 

3.2. DIPOLES IN A STRESS FIELD. 

3 .2 .1  Consider the homogeneous external shear 
E stress ox,. It  exerts on the individual dislocations, 

composing the dipole, forces F:) = - F:') = boE XY 

which are equal and of opposite sign : there is no net 
force exerted on a dipole in a homogeneous stress 

FIG. 14. - Dipole polarization or decomposition 
in external stress field D&,. 

depends on whether the value of o: is smaller or larger 
than the maximum value of the stress component 
og) from dislocation 1 in the slip plane of dislocation 2, 
which is expressed by 

When a:, < cc, only the equilibrium distance 5 
of the dipole will change ; the dipole will polarize 
but will keep its stable equilibrium. When o:, > a,, 
the dipole is not stable any more and the two disloca- 
tions will separate and move to infinity ; the dipole 
will decompose. The same critical stress is necessary 
for flipping a perfect dipole. The binding stress o, 
is a function of the dipole height h. In a given external 
shear stress ofy only those dipoles remain stable for 
which 

3 .2 .2  If the applied stress field o$ is non-homoge- 
neous (i. e. if it depends on X or y), the net force 
i?id) = F:) + on the dipole, is generally non- 
zero and the dipole can also move as a whole. For 
small gradients of the external stress, the force 
can be written in the form 

where the + sign holds for the extensional dipoles 
and the - sign for the compressional ones. It can be 
concluded that the dipoles will not move as a whole 
in the external stress field, which is usually homoge- 
neous, but can move as a whole in the stress field of 
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other defects (especially of dislocations) which is 
always non-homogeneous. 

4. Interaction between dipoles and other defects. 

4.1. DIPOLES AND POINT DEFECTS - Let us consider 
the simplest possible model of a point defect, the 
so-called dilatation centre, i. e. a sphere with the radius 
R' inserted into a spherical cavity with the radius R 
(Fig. 15). The interaction energy between a dilatation 
centre and the dipole stress field, and the trajectories 
of the motion of a dilatation centre in the dipole 
stress field can be easily calculated 1251 ; they are 
shown in figure 16 for a dipole in the equilibrium 
position. 

FIG. 15. -Edge dipole The time dependence of the drift of the dilatation 
and dilatation centre. centres to the dipoles, due to the elastic interaction, 

FIG. 16. -Curves of constant interaction energy Exnt between dipole and dilatation centre (solid lines ; numbers give Eint 
in non-dimensional units). Trajectories of dilatation centre (dashed lines). 

11 
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can be solved in a similar way as Cottrell and Bilby [26] 
have done for individual dislocations. If only the 
long-range dipole stress field is considered, we get the 
law for the dipoles in the form n N t% (where n is 
the number of dilatation centres, e.g. of impurities 
that arrive at the dipoles between the times 0 and t )  
instead of the Cottrell and Bilby's law for individual 
dislocations, n N t 2 I 3 .  It should be emphasized that 
these calculations based on the elastic interaction 
only, without taking into account the diffusion due to 
concentration gradients, are only valid for the initial 
stage of diffusion. 

From our results it can be concluded that the time 
dependence of the diffusion of impurities to the dis- 
locations and, therefore, also the time dependence of 
ageing of some alloys depends, in the initial stage, 
on the dislocation distribution and, in the case of a 
high density of dipoles, the t% law can also be expec- 
ted. 

4.2 DIPOLES AND STRAIGHT DISLOCATIONS. - Let US 

discuss separately the cases when the dipoles and 
dislocations are parallel and non-parallel. 

4.2.1 The elastic interaction between dipoles and 
parallel dislocations has recently been discussed 
in detail [27]. 

A dipole, together with another straight parallel 
dislocation, can form a stable configuration called 
a tripole ; four possible types are shown in figure 17. 

FIG. 17. - Four general types of edge dislocation dipoles 
(Chen, Gilman, and Head [27]). 

It can be shown again that the tripoles are very stable 
when the distances between the slip planes of individual 
dislocations are small. The main difference between 
the properties of the dipoles and tripoles follows 
from the fact that a tripole has a non-zero resultant 

Burgers vector equal to one b. Thus it can move as a 
whole also in a homogenous stress field, and its long- 
range stress field is practically equal to that of one 
dislocation. 

A tripole can trap another dislocation and form a 
new stable configuration - a quadrupole ; one exam- 
ple of a special, very stable quadrupole is shown in 
figure 18. In a similar way, higher order multipoles 

FIG. 18. - Symmetric quadrupole 
(Chen, Gilman, and Head [27]). 

can be formed. Again, they represent a stable confi- 
guration with much lower stress field than that of n 
randomly distributed dislocations. The binding stress, 
necessary for their decomposition by gliding, is appro- 
ximately equal to that for decomposition of the 
dipoles. 

In an external stress field c:,,, the multipoles with 
an average height h between the slip planes, 

remain stable. During the plastic deformation, 
further dislocations are trapped by multipoles and 
the local density of dislocations in multipoles can 
be expected to be extremely high. 

One terminological remark can be added; an 
isolated dislocation could also be called a dislocation 
monopole. This term seems to be interesting but 
superfluous. 

The trapping of gliding dislocations during the 
plastic deformation and the formation of stable 
configurations, and a high density of dipole debris 
inhibit the motion of dislocations and lead to a strain 
hardening. Gilman has shown [28,27] that this harde- 
ning should be linear. Of course, a detailed theory 
of work hardening cannot be based only on the for- 
mation of dipoles. It should also take into account the 
interaction with dislocations from other slip systems 
the influence of other dislocation configurations, e.g. 
dislocation pile-ups, the specific dislocation properties 
in special crystal structures, e.g. the splitting of dislo- 
cations, and it should explain the formation of the 
cell-substructure. 
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On the other hand, any detailed theory of work 
hardening should also consider the influence of dipoles 
because, as experiments show, their density, e.g. 
in plastically deformed metals, is very high and, 
sometimes, a majority of dislocations is in the form 
of dipoles and multipoles. 

For instance, dipoles are considered in a recent 
Hirsch's theory of linear strain hardening 1291 : 
bundles of dipoles form long obstacles which block 
dislocation loops emitted from sources and start the 
formation of cell-substructure. 

4.2.2. Let us now consider a dipole and a non- 
parallel dislocation in an infinite medium (Fig. 19). 

FIG. 19. - Dipole and non-parallel dislocation. 

When the dislocation L, moves in the stress field of 
the dipole D, the distribution of the forces on unit 
elements of L, changes in a complicated way, but very 
simple conclusions can be drawn for the total force F 
(which is an integral of forces on elements along the 
whole dislocation). 

When the dislocation L, does not intersect the ribbon 
between the two dislocations L,, L, forming the dipole, 
the total force is exactly zero. When the dislocation L, 
intersects the above mentioned ribbon the total force 
F is generally non-zero and constant; it does not 
depend on the exact position cc inside the dipole. 
It acts in the direction of the shortest distance between 
L, and L,, i. e. only the Ey component is non-zero. 

The following conclusion follows for the theories 
of hardening : the contribution to the hardening of the 
elastic interaction between the dipoles and non-parallel 
dislocations, in case that they run outside the dipoles, 
can very well be neglected. There remains, of course, 
the formation of intersection junctions and also the 

short-range elastic interaction for those dislocations 
intersecting the dipole ribbons. 

5. Further remarks on dipoles. 

a) The equilibrium of edge dislocation dipoles 
composed of extended dislocations has already been 
considered [31]. Let us only mention one important 
conclusion : because of mutual elastic interaetion, 
the width of extended dislocations in the dipoles will 
be lower than that of isolated dislocations. 

b) The elastic solution can only be used for dipoles 
with a height h b, practically h > 3 b. Dipoles with 
a smaller height can be better described as rows of 
point defects, i. e. the extensional dipoles as rows of 
vacancies and the compressional dipoles as rows of 
interstitial atoms. From this it follows that the pro- 
perties of these two types of dipoles for small height 
will differ, e. g. the compressional dipoles will have a 
larger energy than the extensional ones. 

c) The main properties of dipoles have been derived 
using the model of infinitely long dipoles, but some 
special problems concerning the dipole ends have 
already been studied, e. g. the stress field of dipole 
ends [32] and their interaction with point defects [33]. 
Recently, the interaction between the ends of two 
neighbouring dipoles [34] has been discussed and it 
has been shown that they can join to form one longer 
dipole. 

cl) The two equilibrium positions of the dipole are 
equivalent and it can be expected that they will alter- 
nate along the dipole. The two types of the dipole 
orientation must be connected by the so-called ovien- 
tation junction (Fig. 20). 

FIG. 20. - Orientation junctions (Gilman [35]). 

The motion of these junctions along the dipoles in an 
oscillating external stress field leads to a small cyclic 
plastic deformation and mechanical relaxation [25]. 

e) The flipping of dipoles can be important at high 
stresses, e. g. in fatigued metals. The dipoles debris, 
formed during the first few per cent of life, is probally 
responsible for the cyclic strain hardening because it acts 
as obstacles to the motion of gliding dislocations. In the 
later stages of life the hardening does not increase any 
more. This has been explained by Feltner 1361 : when 
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the crystal is filled up with debris, the motion of the 
gliding dislocations pratically stops and the cycles 
of plastic deformation are fundamentally perfomed by 
the flip-flop motion of the dislocation debris from 
stable equilibrium orientation to another without any 
further strain hardening. 

f )  A possible influence of the dipoles on some 
mechanical properties of the crystals has already been 
mentioned (strain hardening, cyclic strain hardening, 
internal friction, creep, nucleation of cracks). 

Gilman [l] proposed that also the changes of some 
other properties by plastic deformation can be, at 
least partly, explained by the influence of the dipoles. 

Some of other mechanical properties can be explai- 
ned in this way : the decrease of the elastic moduli 
in cold-worked metals can be caused by polarization 
of the dipoles, and the Bauschinger effect by the line 
tension of the dipoles connected with the screw dislo- 
cations, which helps in their reverse motion. Also 
intrusions and extrusions on the surface of the fatigued 
specimens can be simply explained by the emergence 
of the extensional and compressional dipoles. 

g) Most of the other physical properties, e. g. 
electrical, magnetic, and thermal, are influenced by 
plastic deformation and the idea to discuss this influen- 
ce in terms of dipoles seems to be very attractive. 
The main reason for this is that the earlier theoretical 
treatment in terms of individual dislocations was 
not very successful in some cases, especially in the 
problems of scattering of phonons and electrons by 
dislocations. The calculated values are often much 
lower than those obtained from experiments. This 
may be due to the fact that individual dislocations 
with the stress and strain fields proportional to I/r, 
i. e. with a slowly varying field, have only a small 
influence on the scattering. The main part of the 
scattering could be due to much more concentrated 
stress fields of dipoles that decrease as l/r2, and also 
to especially high dilatations in the dipoles centres. 

6. Prismatic dislocation loops. 

6.1. L o o p s  WITHOUT EXTERNAL STRESS FIELD. - 
a) The stress field of dislocation loops is complicated 
and must be treated as a three-dimensional problem (in 
contrast to dipoles, the stress field of which can be 
mostly treated as a two-dimensional problem because 
of their predominant length). Nevertheless, the stress 
field and the energy of loops of different shapes have 
already been calculated by different authors (for 
references see [2]). Let us only mention that the long- 
range stress field (at distances much greater than the 
dimensions of the loop) decreases as l/r3, i. e. faster 

than that of a dipole (l/r2), and much faster than that 
of a straight isolated dislocation (Ilr). The loop 
energy can be generally written in the form [37] 

where p is the perimeter of the loop, and the constants 
C,, C, depend on the elastic constants and on the 
detailed shape of the loop. The energy per unit length 
of the loop is much lower than that of a straight 
dislocation (similarly as in the case of the dipoles). 
and the core energy will already become an important 
part of the total energy of the small loops. 

An analogy to the study of the stable equilibrium 
position of a dipole is the study of the minimum energy 
positions of a prismatic loop which is able to change 
its orientation by rotation on the glide prism (Fig. 21). 

i 
FIG. 21. - Loop rotation on the glide cylinder. 

This is a more difficult problem because, during this 
rotation, the shape and area of the loop change. One 
special case was studied [38] using isotropic theory 
of elasticity : it was shown that the energy of rhombus 
shaped prismatic loops with a (112) [Oli] Burgers 
vector (in f. c. c. metals) should be lower when they 
lie on the planes (012) instead of on (011). However, 
the result can strongly depend on the elastic anisotro- 
py of the crystal. Similar calculations for loops are 
also very sensitive to the conditions chosen at the 
dislocation core. The position of the loop plane can 
also be given by the original plane of the discs of 
point defects and by the splitting of dislocations on 
that plane. The rotation of the loop, even if it should 
lead to a decrease of energy, can be suppressed by 
a large critical stress on the prism faces which need not 
be parts of the usual slip planes. 

b) A prismatic loop can change its area in the loop 
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plane by climbing, the driving force for it being the 
dislocation line tension and the super- or undersa- 
turation of point defects. Under different conditions, 
the loops grow or disappear by climbing. 

Let us only mention that the annealing-out of the 
loops [39] can be studied in a similar way as the 
annihilation of the dipoles. The main difference in the 
case of the loops formed after quenching follows 
from the fact that all the loops are made of vacancies. 
Shrinking of all the loops is not possible in the bulk 
material because it would lead to a high supersatura- 
tion of the vacancies. Thus, only the smaller loops will 
disappear during annealing while the larger loops will 
grow. In thin foils, however, all the loops will be 
annealed out because vacancies can migrate to the 
surface. 

6.2 LOOPS IN A STRESS FIELD. - a) In an homogeneous 
stress field there are forces on elements of the disloca- 
tion line of a loop but the total force is zero (Fig. 22a). 

d<, - C.., f. it. 0 

a b 

FIG. 22. - Forces on a loop in : 
U) homogeneous stress field, b) non-homogeneous stress field. 

The components of the forces perpendicular to the 
loop plane tend to rotate the loop, i.e. there is the 
total moment of forces on the loop (this is an analogy 
to the polarization of a dipole) ; the components in 
the loop plane tend to expand or contract the loop 
and this effect can be called the induced surface 
tension in the loop. 

b) In a non-homogeneous stress field, there is also a 
non-zero total force and the loop can move as a whole 
(Fig. 226). The component of the total force in the 
Burgers vector direction tends to move the loop by 
gliding along the glide cylinder ; the component in the 
loop plane tends to move the loop by a special interes- 
ting type of motion called conservative climb which 
is due to the pipe-diffusion of vacancies (Fig. 23). 
Vacancies travel along the dislocation segments in one 
direction and, therefore, the loop moves in the same 
direction as a whole. The loop area is conserved 
during this motion and no bulk diffusion of vacancies 
is necessary. 

This type of motion of loops due to a non-homo- 
geneous stress field of an edge dislocation has been 
observed in Zn [40]. 

FIG. 23. - Motion of a prismatic loop 
in its plane by conservative climb. 

6.3. INTERACTION BETWEEN LOOPS AND OTHER DE- 

FECTS. - Elastic interaction between prismatic disloca- 
tionloops and different other defects (e. g. point defects, 
other loops, surface) has already been studied (for 
references see [Z]). Let us only mention the interaction 
between small prismatic loops and moving dislocations 
which seems to be responsible for the main part of 
quench hardening and can also contribute to the irra- 
diation hardening in pure metals. There are two types 
of theories, one based on elastic interaction between 
loops and moving dislocations 1411, and the second 
based on formation of intersection junctions 1421. A 
rough estimation [43] of the increase of the critical 
resolved shear stress AT, due to a random distribution 
of prismatic loops gives 

where R is the loop radius, n the number of loops 
per cm3, and p' the dislocation line density of loops 
(p' = 2 nRn). With values of R and n measured in 
[39] we get, e.g. for AI, AT, - 0.5 kg/mm2, which 
is in good agreement with experiments. 

This estimation can be also applied to the cyclic 
strain hardening in fatigued metals where dipole 
debris seems to be the main obstacle. We get, e. g. 
for iron (for p' = 10'' cmw2) for an increase in the 
yield point Ao, -- 9 kglmm2. 
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6.4 A NOTE ON INFINITESIMAL LOOPS. - a) The 
main properties of small dislocation loops can be 
described by the concept of the so-called infinitesimal 
loop (Fig. 24), i. e. a loop with the Burgers vector b, 

FIG. 24. - Infinitesimal loop and synthesis 
of infinitesimal loops. 

normal n, and area dA. The displacement field at the 
point x of such a loop, situated at X', is given by 
144,451 

where p = 1 x - X' 1 and p, = X,  - xi ; the Einstein's 
summation convention is employed. The stress 
components then follow from the Hooke's law 

This stress field also describes the long-range stress 
field of a finite loop if its (final) area 6 A  is taken instead 
of dA. 

From the view-point of the continuum theory of 
elasticity, an infinitesimal loop represents a special 
point singularity. Different quantities can be very 
simply introduced for infinitesimal loops : e. g. the 
interaction energy in an external stress field 0:. (X') 

the total force on the loop is 

the moment of forces with respect to the loop centre 

and the induced surface tension 

The concept of infinitesimal loops considerably 
simplifies the study of the interaction between small 
dislocation loops and other defects. 

b) A pedagogical remark on the foundations of the 
theory of dislocations might be added. I t  is usual to 
start with the derivation of stresses around a straight 
infinite dislocation in continuum. However, disloca- 
tions in crystals are formed by nucleation and growth 
of loops, and there are no straight infinite dislocations. 

Therefore, it seems more logical to start the theory 
of dislocations in continuum with infinitesimal loops. 
The growth of a loop and, generally, the motion of 
dislocations can be imagined as a gradual joining of 
other infinitesimal loops. The stress field of any finite 
dislocation loop (and also of a straight infinite dislo- 
cation) can be derived by surface integration of 
stresses of infinitesimal loops, 

This method was first adopted in a special case by 
Nabarro [46]. An infinitesimal loop can be taken for a 
ct basic solution )) (or c( Green's function B) of the 
theory of dislocations in continuum. 

The concept of dipoles of infinitesimal width can be 
introduced in a similar way [47] ; as a matter of fact, 
this concept was used in this paper in Eq. (6) and (13). 

A volume synthesis of infinitesimal loops differently 
orientated in space can describe a plastically deformed 
continuum with internal stresses [45] ; this concept is, 
of course, only another interpretation of the conti- 
nuum theory of dislocations. 
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