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DISLOCATION MOVEMENT IN DISTORTED CRYSTALS 

Natuurkundig Laboratorium, Westersingel 32, Groningue, Pays Bas 

Rksume. - On demontre que la methode topologique commun6ment utilisee pour definir le 
vecteur de Burgers d'une dislocation, peut conduire a violer la loi de conservation du vecteur de 
Burgers dans les cristaux distordus. La solution proposk ici est de considerer la stabilitk d'une 
dislocation comme une propri6t6 physique du rkseau qui impose le module du vecteur de Burgers 
et son orientation par rapport au reseau. Si d'autre part le vecteur de Burgers est conservatif dans 
l'espace euclidien, la loi de conservation geomktrique est rigoureusement assuree. Avec ce modele, 
il est necessaire de consideer tout changement de I'orientation ou du module du vecteur de Burgers 
comme cause par l'tclatement de dislocations partielles qui peuvent Ctre stables ou pas. Les vec- 
teurs de Burgers des dislocations instables laisdes, dans chaque cellule unite, sur un plan de glisse- 
ment incline, par une dislocation stable, peuvent s'exprimer au moyen d'un changement de mktrique 
et du vecteur de Darboux le long des trajectoires decrites par chaque point de la ligne de dislocation 
sur le plan de glissement inclid. 

Summary. - It is demonstrated that the topological method of defining the Burgers vector of a 
dislocation, which is at present commonly used, may lead to violation of the (( Burgers vector con- 
servation law )) in distorted crystals. The remedy proposed here is to consider the stability of a dis- 
location as a physical property of the lattice which prescribes the Burgers vector modulus and 
orientation relative to the lattice. On the other hand, if the Burgers vector is considered as conser- 
vative relative to Euclidean space, the geometrical conservation law is rigorously ensured. It is 
necessary in this model to regard any change in Burgers vector orientation or modulus as being 
caused by splitting off partial dislocations that may be stable or not. TheBurgers vectors of the 
unstable dislocations left in each unit cell on a bent glide plane by a stable dislocation may be 
expressed in terms of the changing metric and Darboux vector along the trajectories described by 
each point of the dislocation line on the bent glide plane. 

Introduction. - I t  is generally accepted that if a 
crystal is bent, the dislocations in it that would have 
moved on straight slip planes in the undistorted 
crystal will continue to glide on the bent slip planes 
in the distorted crystal. Direct experimental evidence 
supports this view, as dislocation movement in hea- 
vily bent thin foils has in fact frequently been observed 
in the electron microscope, and, of course, in any 
bending experiment performed on single crystals 
or polycrystals the dislocations glide exclusively on 
the bent crystal planes. Accordingly, the method 
invented by F. C. Frank [ l ]  of determining the Burgers 
vector of a dislocation by comparing the Burgers 
circuit described around the dislocation in the (( bad )) 
crystal that contains it with the same circuit, consisting 
of the same steps from lattice point to point in a 

good )) reference crystal is insensitive to rotation 
or dilatation of the bad crystal. 

We might add that this is not surprising : the pro- 
cedure for describing circuits on surfaces is a most 
familiar one in topology. Frank's method of compa- 
ring Burgers circuits is essentially topological, and 

it brings out well the topological oddity of the (( bad D 

crystal containing the dislocation. It  does not - and 
it cannot - predict that a dislocation will be stable, 
nor does it specify in what sense a ((Burgers vector 
conservation law )I would hold ; it does only give a 
topological definition of a dislocation of which the 
quantitative properties still have to be established. 
To unambiguously achieve the latter is a difficult 
task, especially so for partial dislocations. It may be 
emphasized here that there is no topological difference 
between perfect and partial dislocations as is some- 
times implied. 

Surprisingly, it does not seem to be well-known 
that Burgers circuits can be described with equal 
precision around a partial dislocation as around a 
perfect one by applying a simple expedient. It  consists 
in subdividing the interatomic distances in such a 
way that not only lattice sites actually occupied by 
atoms are given, but in addition those of the same 
lattice that might be occupied if stacking faults or 
twins would occur ; in this manner a " common " 
lattice is defined. If, for instance, lattice points are 
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described to the b. c. c. lattice along the < 111 > 
directions at 116 a < 11 1 > spacing, the partial dis- 
locations bordering the twins and stacking faults 
commonly occuring in that lattice on (112) planes 
could be described by Burgers circuits consisting of 
successive steps from common lattice point to com- 
mon lattice point, whether occupied or not, in pre- 
cisely the same fashion as perfect dislocations are 
described by Burgers circuits connecting occupied 
lattice points. Figure 1 illustrates the method ; it may 

some of the results of this approach as suspicious. 
There is, for instance, the curious limitation on the 
types of crystals that may be taken into consideration 
enunciated by Frank [2] : they should not be Mobius 
crystals )), by which the crystal configurations shown 
in figure 2 were meant. This exception was, introduced 
because otherwise it would be impossible (( to have 
a single-valued correspondence between directions 
in the real crystal and in the reference lattice N. This 
requirement was taken over later by Bilby, Bullough 

1/6(111) TWINNING DISLOCATION 1/6(111) PARTIAL DISLOCATION 

o occupied l a t t i c e  s i te  
vacant common l a t t i c e  s i t e  
atom on lower plane 

FIG. 1. -Projection of the b. c. c. lattice on { 110). By defining a (( common )) lattice of points that may be 
occupied by the ~ o r m a l  lattice and by its twin, a normal Burgers circuit can be described around a twinning dislocation 
(Fig. a) or a partial dislocation (Fig. b) in the common lattice. 

be verified that no closure on the stacking fault 
or twin boundary is required, as in the method at 
present commonly used. It may be concluded that 
topologically no difference exists between a partial 
and a perfect dislocation. , 

The failure of the law of Burgers vector conserva- 
tion. - The term c( conservation of Burgers vec- 
tor )) is often employed in various shades of meaning. 
It is the conservation law that is invoked both for 
explaining why an edge dislocation spontaneously 
cannot start to move on a new glide plane without 
having first taken part in a dislocation reaction, 
and for explaining why the same dislocation will 
move on a curved glide plane without undergoing 
any dislocation reaction. It is used to make clear 
that no single dislocation can be created spontaneously 
inside a crystal, and it is implicitly assumed in any 

and Smith [3] in their article on (c surface dislocations 
This consideration is entirely correct, and from the 
point of view of the topological method it is a sensible 
and cautious requirement, as will be demonstrated 
in what follows, but on the other hand, one may well 
ask whether it is at all logically consistent to require 
that a crystal should : 

FIG. 2. - Mobius crystals (after Frank). 

dislocation reaction equation. Indeed, the whole a) be simply connected )), and : 
concept of a Burgers vector would be devoid of 
meaning or value if it could not be regarded as a b) contain dislocations. 

conservative physical vector quantity. The question is whether the fact that a crystal 
Nevertheless, the question may be asked whether contains a dislocation does not automatically render 

the topological approach is complete and unexcep- it ((multiply connected D. If the holes in the t( Mobius D 
tionable. In fact, there are reasons for regarding solids are (c shrunk away Somigliana dislocations 
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are left in the crystals. These dislocations exert the 
same long-distance influence as an array of ordi- 
nary Volterra dislocations, which may replace the 
Somigliana dislocations. No proof was given by either 
Frank or Bilby and coworkers (loc. cit.) that excepting 
the (( Mobius )) solid is permissible for a crystal that 
is supposed to contain dislocations. 

It must be remarked, parenthetically, that the topo- 
logy of crystals is not an established discipline compa- 
rable to the topology of surfaces. Although the term 
(( Mobius )) crystal is used with some confidence and a 

although we are intuitively sure that such a crystal 
is very different from an (( ordinary 1) torus made of 
the same type of crystal, it may be verified easily 
that the same Euler-Poincart characteristic [4] X = 0 
is valid for the surfaces of both the crystalline torus 
and the Mobius crystal (*). It would appear that a 
proof that a crystal may contain dislocations and be 
(( simply connected )) has to wait for further develop- 
ments in lattice topology. 

A stringent reason for limiting the crystals under 
consideration to " simply connected " ones is appa- b 
rent from figure 3, where the sequence abcd shows 
that a dislocation in a Mobius crystal may annihilate 
itself by splitting in two equal dislocations, one of 
which is caused to change its sign by having traversed 
the circuit of the Mobius crystal once. And conver- 
sely, the sequence dcba demonstrates that a disloca- 
tion may be created spontaneously by introducing 
two dislocations of opposite sign at the same point 
in the crystal, and having one of these traverse the - 
circuit. The choice of the travelling dislocation deter- 
mines the sign of the resulting dislocation ! Most 
evidently, the Burgers vector is not a conservative C 

quantity in Mobius crystals. 
Mobius crystals in the extreme forms shown in 

figure 2 and 3 are not to be commonly expected, as has 
been remarked by Frank, although they may occur in 

pathological crystals like chrysotile 1).   evert he less, 
the situation remains far from satisfactory, as it is 
not clear precisely on what principle certain types 
of crystals should be excluded ; the term (( pathologi- 
cal 1) is not sufficiently precise. Is it really the (c connec- 
tivity 1) of the Mobius crystal that makes it a (c patho- 
logical 1) case, or does the topological method contain 
loopholes ? 

The question acquires more depth if we consider FIG. 3. - The sequence a-b-c-d shows that a dislocation in a 
Mobius crystal may annihilate itself by splitting in two equal 

(*) The Euler-Poincar6 characteristic of a is defined components, one of which acquires the opposite sign by traver- 

as X = V + F- E, in which : V = the number of vertices, F sing the circuit the crysta1. 

the number of faces and E the number of edges that may be 
described on the surface. For a cube X = 8 + 6 - 12 = 2. 
Topologicaliy, the surface of a sphere is equivalent to that of a the in the in figure 4- 
cube. In the left hand side of the figure a twin crystal is 
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shown. It is assumed that the crystal structure is 
such that perfect dislocations gliding across the cohe- 
rent boundary can do so only by leaving behind twin- 
ning dislocations. For instance, Sleeswyk and Verbraak 
[5] have shown that in the b. c. c. lattice +[l 1 l ]  disloca- 

T W I N  B E N T  CRYSTAL 

FIG. 4. - A  twin and a bent crystal, which differ only 
in the crystallographic configuration of their middle parts. 

tions gliding across a (112) coherent twin interface 
will decompose as follows : 

The Burgers vector 1/6[151] in one twin half is equal 
to +[l111 in the orientation of the other half of the 
twin, while 1/3[lil] is the Burgers vector of one of 
the two possible types of {l 12) < 11 1 > twinning 
dislocations in b. c. c. If, therefore, the dislocation in 
the upper half of the crystal glides across the twin 
boundary, it leaves behind a twinning dislocation - 
schematically shown in the figure - before it may 
continue on a new glide plane in the lower half, 

We now consider the bent crystal, of the same struc- 
ture, presented in the right hand side of the figure. 
The bending has been carried out in such a fashion 
that the orientation of the top half of the crystal 
is the same as that of the top half of the twin crystal, 
and that the orientation of the lower halves is also 
equal. We consider the same glide plane as in the 
twin crystal ; whether or not the bending of the crystal 
has introduced dislocations is immaterial as long as 
the dislocations moving on the glide plane do not 
react with the others, i. e. as long as the other disloca- 
tions are not located on the glide plane. This is assumed 
to be the case. If we now consider a dislocation gliding 
from top to bottom in the bent crystal, it is evident 
that according to the current convention no dislocations 

are produced during the process, in contrast to what 
happens in the twin. 

If the Burgers vector were really a conservative 
physical quantity pertaining to a dislocation, the pas- 
sage of the latter from one region of the crystal to 
another should uniquely be connected with or without 
production of dislocations independent of the path 
followed or the crystal structure traversed. Most 
obviously, this basic requirement is violated in the 
above example, and unfortunately, it is impossible 
to have recourse to pathology of the crystal, nor 
is it possible to maintain, for instance, that the twin- 
ning dislocation produced by the dislocation passing 
through the twin boundary is topologically different 
from a perfect dislocation. If the Burgers conservation 
law is applicable to Burgers vectors in Euclidean 
space in the case of the twin, and to Burger vectors 
defined relative to the curvilinear coordinates presented 
by the distorted lattice directions in the case of the 
bent crystal, the apparent contradiction is eliminated, 
but then the question why two different reference 
systems should have to be used remains unexplained. 
That in the present usage the Burgers vector is not 
rigorously a conservative property, even in (( sound 
crystals, appears to be the ineluctable conclusion : 
as will be shown in the following, it is chiefly due to 
the intuitive topological method used. 

Unstable dislocations and the conservation of the 
Burgers vector. - If we compare the progress of the 
perfect dislocation in the twin crystal across the twin 
interface with that of the dislocation in the bent 
crystal from one unit cell to the next one, there is in 
fact no basic difference in the initial conditions. The 
adjoining unit cells in the bent crystal are differently 
oriented, and so are the unit cells at both sides of the 
twin boundary : there is only a difference in degree 
of relative disorientation. Apparently disorientation 
is a necessary but not a sufficient condition for produ- 
cing dislocations upon the passage of a perfect disloca- 
tion through the lattice. It would seem obvious that a 
second condition is the stability of the resulting dis- 
location. 

The twinning dislocation produced in the twin 
boundary by passage of a perfect dislocation is eviden- 
tly stable ; very small partial dislocations might for- 
mally have been produced by the perfect dislocation 
upon going from unit cell to a neighbouring one 
possessing a slightly different orientation, if the for- 
malism that a Burgers vector is a vector in Euclidean 
space is adopted. These very small partials annihilate 
themselves by elastic deformations : formally, of 
course, any gradient of elastic deformation in a crystal 
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may be represented by assemblies of very small dis- 
locations, and an elastic deformation can be considered 
as the movement of such dislocations. 

To illustrate the point, and to show in what way a 
self-consistent model of dislocation movement can 
be obtained figure 5a may be considered. A small 
section of a bent crystal is schematically depicted ; 
it is assumed that a dislocation with a Burgers vector 
which is inclined to the glide plane may glide between 
the second and the third glide plane, and that the 
lower part of the crystal is fixed with respect to the 
reference system, and the upper part mobile. The 
atoms above the planes between which the dislocation 
moves will be displaced over a certain distance when 
the dislocation has passed, i. e. when the influence 
of the stress field around the dislocation is negligible. 
Although the Burgers vector, which is identical to 
the displacement vector on the glide plane, is assumed 
to be a conservative vector in Euclidean space, it is 
convenient and entirely permissible to assume that 
the displacement as transmitted to other planes and 
cells follows the metric of the distorted lattice. By 
adopting this convention it is possible to describe a 
rotation of a portion of the crystal lattice by passage 
of stable dislocations without being obliged to for- 
mally introduce unstable partial dislocations through- 
out the lattice. 

In figure 5a the displacement vectors d are decom- 
posed in a component d, tangential to the circle of 
bending, and a component d, radial to it. The radial 

DISPLACEMENT 
VECTORS 

distance between planes is a constant, and the dis- 
placement vectors d, are all equal to the radial Burgers 
vector component b,. If the dislocation that may be 
associated with this component would glide upwards 
on the radial glide plane on which it is situated, all 
radial displacement vector components d, would be 
annihilated, and only a tangential Burgers vector 
b, and tangential displacement vectors d, would 
remain. 

IF now the stable, perfect dislocation gliding on a 
bent plane is considered, a similar situation arises if 
the dislocation goes from one unit cell to the next 
one. The stability conditions of the lattice are supposed 
to require that the Burgers vector of the perfect, stable, 
dislocation remains perpendicular to the radius of 
curvature of the glide plane. This implies that as the 
stable dislocation moves, it leaves as unstable partial 
in each of the unit cells it traverses. The situation is 
illustrated in figure 5b, where the Burgers vectors of 
the stable dislocation are shown in the two positions 
in which the dislocation enters and leaves the crystal, 
together with the Burgers vectors of the tiny unstable 
partials left behind in the crystal. The latter may 
formally annihilate themselves by gliding towards 
the surface on radial planes in the portion of the lattice 
that is supposed to be mobile. These Burgers vectors 
are depicted on a larger scale in the Cremona dia- 
gram - well-known in applied mechanics - in 
figure 5c, in which it is shown that the vector sum of 
the partials is equal to the vector difference of the 

CREMONA DIAGRAM 
OF BURGERS VECTORS 

C 

FIG. 5. -Burgers vector in a bent crystal. The assumption that the Burgers vector is a conservative pro- 
perty in Euclidean space leads to the formalism that unstable dislocations are left on the glide plane if a 
stable dislocation moves on it. 
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Burgers vectors of the stable dislocation when it enters 
and leaves the crystal. 

In the above two dimensional model it is not difficult 
to give an expression for the Burgers vector of the 
partial dislocation that may be left behind by a stable 
dislocation going from one unit cell to the next one. 
If the curvature of the dislocation trajectory at a 
certain point is equal to K, and if the tangential and 
normal unit vectors at that point are t and n respecti- 
vely, the derivative of t with respect to the unit length 
of arc s along the trajectory may be expressed by : 
dt/ds = Kn. If we consider only dislocations posses- 
sing Burgers vectors tangent to the dislocation tra- 
jectory, we may express the Burgers vector b as : 
b = bt. Differentiation gives : 

The local lattice parameter along the dislocation 
trajectory is a. If a 4 1/K and b < 1/K the partial 
that is left behind in a unit cell by the passing stable 
dislocation has a Burgers vector Ab given by : 

In three dimensions the trajectory of a point on 
the dislocation line may be defined unambiguously by 
requiring the stable Burgers vector to be everywhere 
tangent to the trajectory. The trajectory is a three- 
dimensional curve - which in general is not a geodesic 
of the glide plane-of which n, pointing towards the 
centre of curvature, and the tangent t define the oscula- 
ting plane [6]. The binormal c is a unit vector defined 
by c = t A n, as shown in figure 6a. The tendency of 
the curve to leave the osculating plane is expressed 
quantitatively by the torsion T of the curve. It is 
defined by dblds = - Tn. It is possible to define the 
vector of Darboux D as being composed of : 

This vector possesses the property that the derivatives 
of the unit vectors in the trihedron ntc, which are given 
by the Serret-Frenet expressions, may also be expressed 

as the vector product of the unit vector and Darboux 
vector. Thus : dt/ds = Kn = D A t ; 

dnlds = Tb - K t  = D A n ; 
dc/ds = - Tn = D A b .  

The exp~ession for Ab is now : 

FIG. 6. -Figure a : trihedron of orthogonal unit vectors 
ascribed to a spatial curve. Figure b : the composition of the 
vector of Darboux. 

The length of the Burgers vector of a stable dislo- 
cation is nearly always a certain fixed fraction of the 
lattice parameter, so if the latter changes along the 
dislocation trajectory, dblds # 0, and one or more 
partials will be left if the dislocation follows the tra- 
jectory. If the cause of the change in lattice parameter 
is a stress, the partial dislocations will be quickly 
annihilated because the lattice simply changes with 
the stress field. If, on the other hand, the change 
in lattice parameter is due to the fact that a different 
crystal lattice lies on the trajectory, the partial may 
very well be stable. In figure 7 a dislocation is shown 
in the process of going from a lattice with a lattice 
parameter a to one with a', and a small partial with a 
Burgers vector of magnitude (a' - a) is left at the 
boundary. If the stable dislocation would be followed 
by more of the same type, the partials left by each of 
these might coalesce eventually into new mobile dis- 
locations. In other words : the formalism developed 
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evidently a closed loop of vectors, and the Cremona 
diagram of the twisted portion consists of a half-loop 
of vectors describing a helix not lying in the plane of 
the closed vector loop. The total Cremona diagram of 
the stable dislocation passing once through the Mobius 
crystal is presented in figure 8. 

FIG. 7. - The sequence a-b shows a perfect dislocation gli- 
ding from crystal lattice with a spacing a into one with spacing a'. 
A partial dislocation with a Burgers vector of modulus (a'-a) 
is left at the boundary. 

here predicts that if dislocations pass from one 
crystal lattice to another one, the number of disloca- 
tions leaving one crystal is not necessarily equal to 
the number of dislocations entering the other one. 
From the point of view of a simple shear model this 
seems plausible enough, but the topological approach 
to dislocation theory would not necessarily lead to 
the same prediction. 

Discussion. 

If we now first return to the problems that inspired 
the definition of the Burgers vector as a conservative 
vector in Euclidean space, viz. the Mobius solid and 
the bent crystal-twin paradox, it would seem reasona- 
ble to request that it would be demonstrated that the 
original difficulties have been dissipated by the diffe- 
rent approach. The twin-bent crystal paradox has in 
fact already been treated : the Cremona diagram in 
figure 5c makes it clear that the vector sum of the 
Burgers vector of the unstable dislocations produced 
in the bent crystal in figure 4 must be equal to the 
Burgers vector of the twinning partial left in the twin 
boundary. 

The case of the Mobius crystal given in figure 3 is 
somewhat more complicated. We may, in order to 
simplify the discussion, regard this Mobius crystal as 
being composed of two parts : one part in which the 
crystal is bent over 3600 in the plane containing the 
central axis, and one portion in which the crystal is 
twisted around its axis over 1800. If we now consider 
the stable dislocation passing once through the Mobius 
crystal, the Cremona diagram of the bent portion is 

FIG. S. - Cremona diagram of the Burgers vector of the 
dislocation traversing the circuit of the Mobius crystal in figure 3. 
The points o, a, b, c and d are lying in the plane which contains 
the centre-line of the distorted prismatic crystal of 'which the 
Mobius crystal was created. 

Let oc be the Burgers vector of the dislocation in 
its original position and oa the Burgers vector in the 
final position. The original Burgers vector oc is accoun- 
ted for by the following chain of Burgers vectors 
consisting of the final stable Burgers vector and the 
Burgers vectors of the unstable partials : 

o a - b - c - d - a - e - c .  

The conservation law for Burgers vectors remains valid 
if the Burgers vector is defined relative to Euclidean 
space even for (( Mobius )) crystals. 

The method has been used previously by the author 
171 in a discussion on tilt walls. These were supposed 
to result from a hypothetical mechanism in which 
they would result from reactions between dislocations 
arriving at the tilt wall from both halves of the bi- 
crystal. The expression for the relation between the 
tilt angle 0, the Burgers vector b  of the dislocations 
in the tilt wall, and the spacing d between them, was 
found to be : 

bld = sin 0 (4) 

in contrast to the more widespread expression : 
bld = 2 sin (0 /2) ,  which results if a little portion of 
crystal in an intermediate position is assumed to exist 
at the tilt wall. The dislocations arriving from both 
halves of the bi-crystal would glide in this hypothetical 
region and thus acquire the correct orientation. The 
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author believes that the method outlined above tion reactions according to a rigorously applicable 
is more rigorous, and should be employed in all cases Burgers vector conservation law. 
where the orientation of the crystal is important. 
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