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Résumé. 2014 Le temps caractéristique de déclin des fluctuations de concentration à petit vecteur
d’onde est estimé pour des phases de membranes aléatoires telles qu’on en rencontre dans les
microémulsions ou les phases éponges. Nous considérons les effets de deux temps microscopiques
(supposés longs) : l’un correspondant à la relaxation de la topologie du film, et l’autre à celle des
volumes respectifs des deux régions continues. Ces effets peuvent être observables par des

expériences de diffusion dynamique de la lumière, saut de température et biréfringence
magnétique. L’ordre de grandeur du temps de relaxation topologique pour des phases éponges de
SDS/dodecane/eau/pentanol est estimé être de l’ordre de 0,01 s.

Abstract. 2014 We estimate the decay rates for surfactant and oil/water long-wavelength
concentration fluctuations in phases of random fluid films, such as microemulsions and « sponge »
L3 phases. We consider the effects of two (possibly long) microscopic time scales : one for local
relaxation of the film topology, and one for relaxation of the relative volumes of the two regions
partitioned by the film (when this is not conserved). These effects may be observable in dynamic
light scattering, temperature jump and magnetic birefringence studies. For dilute

SDS/dodecane/pentanol/H2O sponge phases we use experimental data to estimate bounds for the
topological relaxation time, and find this to be of order 0.01 s.
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1. Introduction.

In certain systems, self-assembly of surfactant molecules leads to the formation of extended
random surface structures. In balanced microemulsions, for example, a surfactant monolayer
divides regions of oil and water. In the « sponge » (L3) phase [1-3] of bilayer-forming
surfactants, it appears that an extensive bilayer interface divides space into two regions of
identical solvent, which may be designated « inside » (I) and « outside » (0) (Fig. la). In
either of these two systems, we can expect two additional conserved quantities not present in
ordinary single-component fluids. In a microemulsion, these may obviously be taken to be the
volume fraction 0 of surfactant, and the fraction cl of the remaining volume occupied by oil
(we loosely refer to 03C8 as the volume fraction of oil in this paper). The surfactant volume
fraction is obviously conserved in an L3 phase as well. It is less obvious but still true that if
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there is no flow of solvent through the bilayers, then the partitioning of fluid into 1 and 0
regions is maintained dynamically [4]. Hence, the volume fraction cl of « inside » fluid is a
conserved quantity if we assume dynamics in which bilayers fuse and reconnect without
tearing, as shown in figure 1 b. More physically, if fluid may be slowly transported across the
bilayers, the volume fraction cl of « inside » fluid is not quite a conserved variable, but has
some slow non-conservative dynamics associated with the leakage of solvent through the
bilayer. Neither of the currents corresponding to the two conserved quantities e and .0
described above is itself conserved, so the related hydrodynamic modes are both diffusive,
i.e., the dispersion relation must be of the form oi = Dq 2.

Fig. 1. - (a) The L3 phase or « sponge » (Ref. [2]). The surfactant forms a bilayer surface without tears,
edges or seams. Such a surface, even if it has disconnected components, divides space into two disjoint
regions which may be called « inside » and « outside ». (Here, the inside volume (say) has been shaded ;
however, the fluids in the inside and outside volumes are identical in an L3 phase.) The free energy is
unaltered if the labelling of these regions is interchanged ; this symmetry is not usually present in
microemulsions for which e.g., « inside » may be identified with oil and « outside » with water. (b) A
change in the topology of a surfactant interface may occur when a narrow « neck » between two fluid
regions is created or destroyed.

In this paper, we estimate the values of D and describe the corresponding hydrodynamic
modes (eigenvectors of the hydrodynamic matrix), and how they each depend on quantities
characterizing thé microemulsion or L3 phase, namely the mean volume fraction of

(respectively) oil or «inside» 03C8&#x3E; and surfactant ~&#x3E; . We shall show that the symmetric
state 03C8&#x3E; = 1/2 has particularly simple dynamics, with 03C8 decoupled from ~. As the symmetry
is broken, the decays of oil and surfactant autocorrelations are mixed.

Also, we consider the effect of a slow microscopic timescale for relaxation of the topology
(as depicted in Fig. 1 b) of the surfactant (bi)layer on the oil and surfactant autocorrelation
functions. This gives rise to a crossover from decay rates corresponding to « quenched » Euler
characteristic at high wavenumbers, to decay rates for « annealed » topology at lower
wavenumbers. We may expect the microscopic timescale to be slow when the activation
energy for the fusion process is large.

In the case of a balanced microemulsion, the symmetry of oil and water is approximate, but
can be made almost exact by tuning the salt content etc. so a to obtain a symmetric phase
diagram. For the L3 phase the symmetry is exact in the Hamiltonian ; it is maintained in the
symmetric sponge (t/J = 1/2) state, but can break spontaneously to make an asymmetric
sponge or vesicle state. From now on we use the language of balanced microemulsions (« oil »
and « water ») as opposed to « inside » and « outside » ; however, many of our results are
actually more pertinent to L3 systems for which the exact symmetry exists.
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2. Relaxation processes and conserved quantities.

2.1 LOCAL SOLVENT FLOW. - We may make an estimate of the diffusion constant for

transport of (say) oil in the microemulsion by equating the work done by viscous dissipation
and the lowering of the free energy upon the relaxation of a fluctuation, as follows. We
imagine that transport of oil occurs by hydrodynamic flow on the characteristic « cell size » or
length scale e (corresponding to the peak in S(q )), which must involve velocity gradients
Vv of the order of e - v . Now we consider an initial state in which 03C8 has the average value
o, and the value 4&#x3E; + 6 e in some hydrodynamically large (» region of size

q - 1. The corresponding free energy change per unit volume is &#x26;FI&#x26; e.
The microscopic flow velocity is of some characteristic magnitude v, and the corresponding

current is

Viscous dissipation does work per unit volume at a rate

The corresponding change in the free energy density occurs at a rate

Equating these two rates of work done gives the scale of microscopic velocity as

(The factor of q arises from the term V. v, since it is only gradients of the macroscopic
velocity (coarse-grained on a scale &#x3E; )) which have the hydrodynamic length scale

q- 1, and are effective in relaxing ôj and hence F.)
Now we may substitute the value of v into the continuity equation

to obtain the hydrodynamic equation for relaxation of 03C8,

where F03C803C8= 8 2F 18,p 2, with similar notation to be used throughout the paper. (For the L3
phase, this equation neglects fluid flow across bilayers, which would lead to nonconservative
relaxation of 03C8, discussed below.)
We may make an analogy with so-called permeation flow in porous media [5]. There it is

argued that a pressure gradient Vp across a porous rock induces a macroscopic flow velocity v.
On dimensional grounds, if we require that op/v is proportional to viscosity, we find
immediately Darcy’s law,

If we now identify p with osmotic pressure variation f/Jo F 03C803C8 8 03C8 and use the expressions for
the current and conservation of e, we arrive at the same hydrodynamic equation,
equation (6).
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2.2 SURFACTANT MOTION. - Now consider the transport of surfactant. In microemulsions
and L3 phases, we may consider two possible modes of transport for surfactant : 1) diffusion
across intervening fluid regions, where the surfactant solubility is small but nonvanishing ;
and 2) flow which « smooths out wrinkles » in the surfactant (bi)layers separating fluid
regions, and sweeps surfactant along the fluid-fluid interface [6].
We examine these in turn. First, the solubility of surfactant in the bulk fluids is quite low,

and the resulting macroscopic diffusion constant is proportional to the volume fraction of
surfactant in the bulk fluid. We will neglect this process in the present work.
Next, the smoothing out of wrinkles of all length scales f up to f = e involves microscopic

velocity gradients on the scale f. If some excess area is to be added or removed, perhaps
forced by some local adjustment of the surfactant chemical potential, the energies of the
lowest modes are most affected, and so their amplitudes will be most changed. In other
words, the largest wrinkles give the dominant contribution to the change of surfactant density
among all undulations. Hence we may say that the viscous dissipation associated with
smoothing out undulations occurs primarily on the scale f - e. Then the argument given
above for the rate of decay of fluctuations of the oil volume fraction e may be repeated for the
surfactant volume fraction 4&#x3E;, and an Onsager coefficient corresponding to a pore size C is
again obtained [6], D 2 1 o 0 2F,00.
This result for Do , and equation (6) for D,, involve the thermodynamic derivatives

F t/Jt/J and F.., whose scaling will be discussed in more detail in section 3.2. As shown there,
the basic scaling expected for both Dk and D 03C8 is (to within logarithmic corrections)
D - kTI (~e). This behavior is similar to that in semidilute polymer solutions and other
systems with thermal energies and a well-defined correlation length. With a viscosity of 1 cP
and a cell size e in the range 100-1 000 Á, we have D - 10 - 6_ 10- 7.

2.3 « LEAKAGE ». In the L3 phase, we expect the inside volume fraction «/J to be
nonconserved, on a timescale governed by an activated « leakage » process ; namely, the
« inside » and « outside » fluid in the L3 phase may exchange by opening small holes in the
bilayer. These holes are expected to be very rare so that their effects are negligible for static
properties ; however, their dynamical effects may be significant. If these holes are molecular
in size, we are really describing diffusion of solvent molecules directly through the bilayer, a
process which is known in thermotropic smectics as permeation [7]. Larger holes (of size

03BE) would lead to actual hydrodynamic flow of fluid through the bilayer. In any case, the
effect of « leakage » across the bilayer is to add a term T4 1 03C8 to the right-hand side of the
relaxation equation (6) for cl. Note that 7- V, = oo for microemulsions ; such a term is absent for

1 

microemulsions since oil and water are not locally interchangeable.

2.4 TOPOLOGICAL RELAXATION. In addition to this long microscopic timescale, there is
another important activated local process to consider in the dynamics of microemulsions and
L3 phases. This process is fission or coalescence of fluid regions which changes the topology of
the surfactant layer (Fig. 1 b). We may imagine a process in which a « neck » in the surfactant
layer is 1) created by the collision of two nearby layers and the opening of a neck between
them ; or 2) destroyed, by pinching off a neck and retracting the separated pieces. (Physically,
we expect such topological changes to be activated because the intermediate state of the
interface undergoing such a change is energetically unfavorable, containing sharp bends
and/or bilayers in close contact).

If we forbid such changes in the topology of the surfactant layer, then it is clear that a
different state is reached if some control parameter is changed. For example, consider the
effect of reducing the surfactant chemical potential with and without topological relaxation.
With full equilibration of the layer, including topological relaxation, we expect states of
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Fig. 2. - In the L3 phase, in which the fluids on either side of the bilayer are identical, transport across
the bilayer may occur either through the opening of large holes in the bilayer through which fluid can
flow (2a), or by diffusion of fluid molecules across the bilayer (2b).

different 0 to be related by a dilation [1, 8] (this is true up to logarithmic corrections, at least
in the symmetric state), and the number of handles per unit volume, for example, would scale
with - 3. Without topological relaxation, the Euler characteristic for the surfactant film is
fixed ; we might expect this state to contain more surfactant (to form the extra handles) than
the totally relaxed state at the same chemical potential.

If no topological changes could occur in the surfactant layer, we would have a new
conserved variable in the system, which might be taken to be the Gaussian curvature [9], or
equivalently the Euler number per unit volume ; we shall define h to be the negative of this
quantity and refer to it loosely as the « handle density ». Since we expect the kinetics of local
processes involving the formation and removal of handles in the surfactant layer to be
activated, the relaxation of the handle density h should be non-conserved, but may be rather
slow if the activation energy is large. We characterize this by a time scale Th. In general this
timescale will be rather different from r , as different activation barriers are involved for
changing topology and leaking solvent across bilayers. It is possible in an L3 phase to have
Th « T 03C8 if leakage of solvent across the bilayer is slow.

3. Thermodynamic couplings.

We now turn to the issue of the thermodynamic and kinetic couplings between the variables
03C8 0, and h, and how these couplings change when the oil-water or « inside-outside »

symmetry « f/J) = 1/2) is broken.

3.1 HYDRODYNAMICS IN THE SYMMETRIC STATE. - First we consider the thermodynamic
couplings, i.e., the entries in a matrix

where u, f3 are one of {f/J, l/J, h }. These entries may be estimated from some « microscopic »
model of microemulsions, for which we shall use the model of Safran et al. [10, 2]. The model
Hamiltonian has (in the absence of spontaneous curvature) the symmetry 03C8 --&#x3E; (1 - 03C8),
which means that all off-diagonal terms in X -1 1 involving f/J vanish in the symmetric state. (This
symmetry of the Hamiltonian is expected to be an exact one for an L3 phase.) Physically, we
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may say that in the symmetric state, a small change in 03BC~ or 1£ h cannot produce a linear
change in  t/J ) because the sign of the supposed change reverses under the symmetry
operation.

In contrast, there should be linear couplings between  and h even in the symmetric state,
as we argued above that a state with more handles must have more surfactant, all other things
being equal. We may guess the size of this coupling to be such that a doubling of the number
of handles gives rise to a similar increase in the amount of surfactant present. In other words,

Here 0 0 and ho are the mean volume fraction of surfactant and handle density respectively.
From the model of Safran et al. it can be shown that ho - const. x ç - 3 in the symmetric state.
We may make similar arguments for the vanishing of the off-diagonal couplings involving f/J

in the matrix of Onsager coefficients. Namely, the direction of a current of oil volume fraction
j,, in response to a gradient in either »,, or gh reverses under the symmetry operation of
relabeling oil as water (e --+ (1 - e», so such a current cannot exist in the symmetric state.
We could in principle have off-diagonal couplings in the Onsager matrix between 4&#x3E; and h,

which would be proportional to q 2 (since 0 is conserved, and the Onsager matrix is

symmetric). Since these variables are already coupled thermodynamically, we will neglect
these crossterms for simplicity in the present work. Finally, h itself can be relaxed by
conservative transport (diffusion of handles) as well as activated local processes ; this suggests
that Ahh should have a permeation-like term similar to A",,,, and A-00.
Hence we have, for the symmetric state,

where a, b, and c are coefficients of order unity, and 03C4 03C8 = oo for microemulsions. The inverse
susceptibility matrix is

The linearized hydrodynamic equations for our microemulsion degrees of freedom are then
(in matrix form)

3.2 DYNAMIC LIGHT SCATTERING PREDICTIONS. In a dynamic light-scattering experiment,
we may observe most easily in microemulsions the autocorrelations of f/J, and in the L3 phase
(where there is no contrast between inside ( 03C8 ) and outside (1 - e) regions, which contain
identical solvent) the autocorrelations of çb [11]. Hence we are interested in the decomposition
of the oil or surfactant volume fractions in terms of the hydrodynamic eigenmodes of the
system. In the symmetric state, the e autocorrelation function S03C803C8 (q, t ) decouples, and gives
for microemulsions the simple diffusive behavior anticipated in equation (6) :
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The autocorrelation of the surfactant volume fraction 0 is more complicated ; its coupling
to a nearly-conserved handle density gives a q-dependence to the apparent diffusion constant
for .0. The effect may be summarized as follows. For q such that the relaxation time
Th is short compared to the timescale (D. q 2)-l 1 of conservative relaxation of surfactant
density, the handle density may be regarded as annealed. This would be the conventional
hydrodynamic assumption, and gives

In contrast, for q large enough that D t/J q2  Th 1, the relevant susceptibility is that found at
fixed h, and we have

The ratio of the two results for D .~ is given by the thermodynamic relation

Hence there should be a crossover from the quenched prediction D03C8/h to the annealed
expression D0 1 Mh’ which is smaller by a factor of order unity [12], on the timescale

7"h.
Note finally that when the dependence of Fko and F,,, on cell size e is taken into account,

both Do and D . scale as

Here a stands for either 0 or 03C8 eK is the persistence length, and the {xa} are constants. This
scaling holds because the dimensionless inverse susceptibilities a2 Fa a both scale [8, 13] as

kTle3 K x In (x/xa)/x3, with x - elCK and {x,,,l as above. Except for the logarithmic
corrections [8, 13], this is evident from dimensional analysis, as the thermodynamic
derivatives are both energy densities, and the scales of energy and length in these systems are
kT and e respectively.

3.3 BROKEN SYMMETRY. - The oil-water or inside-outside symmetry may be broken, either
spontaneously in the L3 phase, or by the imposition of a nonzero spontaneous curvature of
the surfactant monolayers in a microemulsion. There is no longer a cl - ( 1 - cl ) symmetry,
hence there are off diagonal couplings involving cl in the thermodynamic and Onsager
matrices. One may guess that for the L3 phase, these couplings will be of order
s - (2  f/J) - 1 ) times the appropriate coupling scale. That is, we expect

For a « minimal » thermodynamic model, we may take such an off-diagonal coupling between
f/¡ and the surfactant volume fraction in the free energy. For simplicity we assume an annealed
handle density in the broken symmetry case. This is equivalent to taking a linear coupling, of
the form given above, between e and an annealed variable . 4&#x3E; - hF h4&#x3E; / (2 F 4&#x3E;4»’ and
omitting a separate coupling between e and h.
At the same level of approximation, we assume in the Onsager matrix that symmetry-

breaking introduces only off diagonal couplings between 0 and 03C8, of the form
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where d is a positive coefficient of order unity. (Here the sign is determined by the
supposition that the surfactant current will tend to follow the current of the minority fluid
phase ; this is motivated by a picture of moving droplets.)
With these assumptions, we may summarize the effect of the symmetry-breaking on the

eigenmodes (in the case of annealed topology) as follows. The O(E) couplings shift the two
eigenvalues of the hydrodynamic matrix by an amount of order 0 (82), and split the modes by
a similar amount. The eigenvectors are also changed, such that the mode which was for
e = 0 purely surfactant transport at fixed oil volume fraction now involves oil flow at

O (E).
This mixing may be difficult to see experimentally, for the following reason. As remarked

above, the dimensionless inverse susceptibilities u- 2 Fa a for a = cP, ’" scale [8, 13] in the same
way with e; similarly, the permeabilities for oil and surfactant transport were argued to be of
the same order, (qç)2 TI -1. Hence the two eigenvalues which are being mixed may not be
widely separated, and have the same scaling dependence on 03BE etc. The symmetry breaking
introduces an 0 (e) admixture of a relaxational mode of a comparable decay rate to the mode
already observed for the symmetric state. Because separation of the sum of two exponentials
of similar decay rate can be experimentally difficult, this effect could be misinterpreted as an
9(c) shift in the decay rate, with a decrease in the goodness of fit.

In addition, if we examine an asymmetric L3 phase in which T, (presumed here

&#x3E; T h) falls in the experimental timescale, we should expect to see a q-dependent crossover in

D,o as we pass from wavenumbers with r 4, «,,: (D,# q 2)-1, at which 03C8 is quickly relaxing
(annealed) compared to 0 fluctuations, to wavenumbers at which cl is slowly relaxing
(quenched). This fractional shift in D~ for q crossing D~ q 2 ~ T 03C8 1 will be 0 ( e 2).

4. Estimating T h.

As a final topic, we turn to the question of how we can determine the timescale

Th for relaxation of the microemulsion topology. We have already argued that the kinetics of
this relaxation is activated, according to the process shown in figure 1 b. The attempt
frequency for the activated process should be set by the so-called « Zimm time »

TO ’" ç 2 D (ç)- required for a fluid region of size e to diffuse its own length. The relaxation
time T h then has the form (/3 == (kB T )-1 )

where the diffusion constant for a region of size e is simply

Rather than trying to determine AE from some microscopic model of the surfactant layer,
we will try to bound this T by considering 1) the viscosity of the microemulsion or L3 phase,
and 2) the sensitivity of the system to shear. (Our numerical estimates are pertinent to the
very dilute SDS-dodecane-pentanol-water L3 phase of Ref. [3].)
We expect a contribution to the viscosity from the long relaxation time T to go as

8 TJ -- G (0) T, where the instantaneous modulus G (o) of the mesophase is of order
G (0) - kT / ç 3 (by a scaling argument, which maintains that the characteristic energy of a cell
of size e is of order k1). This gives rise to a contribution to the viscosity which is simply
8 TJ -- 71 exp[/3 DE ] , where q is the solvent viscosity. Because microemulsions and L3 phases
are not extremely viscous, 6 AE cannot be very large, and so T is bounded above. For the very
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dilute L3 phases of reference [3], we may take 8 Tl $ 100 Tl 0’ and ) - 1 000 À ; then we find
Th  10-1 s.
On the other hand, preliminary experiments [14] in most of these dilute L3 phases indicate

that characteristic shear rates for shear-induced birefringence (and possibly a transition to
lamellar order) are on the order of y - 100 s - 1. This suggests some relaxation time

Th which is no shorter than about 10- 2 s. The two estimated bounds taken together suggest
that the topological relaxation time T in the dilute L3 phase is in the neighborhood of
10- 2 s (though perhaps much shorter in microemulsions, which are usually less viscous and
less dramatically affected by shear). This estimate implies an energetic barrier to creation of
handles of around 5 kT for the most dilute L3 phases of reference [3].

Relaxation times of order 10- 2 s are readily observable, for example in temperature-jump
experiments [15]. (Shorter time scales, as might arise in microemulsions or less dilute sponge
phases, can also be easily resolved by this technique.) Furthermore, the crossover in the q-
dependence of the decay rate for surfactant fluctuations may give evidence of the size of
Th. We may compare a relaxation time of order 10- 2 s with the conserved relaxation rate to
determine the magnitude of q for which the diffusion constant and amplitude of fluctuations
might be expected to change ; we obtain

which for the typical L3 parameters used above gives q - 104 cm - 1, which should be accessible
by dynamic light scattering.

5. Conclusions.

We have described the hydrodynamic modes associated with fluctuations of oil and
surfactant volume fractions ("’, cf&#x3E; ) in microemulsions. For the analogous « sponge » or L3
phase, e is not « oil » but the volume fraction of « inside » solvent [2]. Two relevant
timescales are : 1) r , the « leakage » time of solvent across the bilayer in the L3 phase
(T f/I = oo in microemulsions, where solvents on opposite sides of a surfactant interface are
distinct) ; and 2) ’rh, the relaxation time for the topology of the surfactant interface, which
may be very long in phases with sharply-defined interfaces and high activation barriers.

In the simplest case, in which the phase respects the oil/water or inside/outside symmetry
( 03C8 &#x3E;) = 1/2), the hydrodynamic decay rates for 03C8 and .0 fluctuations are displayed in figure 3.
To summarize : fluctuations of cl decay as D03C8q2 for large q, and as T-1 1 for small q.
Fluctuations of 0 decay as Db (q) q 21 with Db (q) crossing over from a value at small q
appropriate to an annealed topology, to a larger value at large q corresponding to a quenched
topology. The crossovers occur when the relaxation rates of cl and cf&#x3E; fluctuations equal
T; 1 and T h 1 respectively. In the broken-symmetry phase (03C8&#x3E; #= 1 /2 ), 03C8 and 0 fluctuations
are coupled at 0 ( 03C8&#x3E;) - 1 /2 )2, and the resulting fluctuation decays are not single-exponen-
tial.

By considering the observed sensitivity to shear and moderate viscosity of L3 phases, we
conclude that Th for the dilute L3 phases of reference [3] should be of order 10- 2 s’. This

relaxation time may be observed either in small-q crossover of relaxation rates off
fluctuations in L3 phases, or in temperature-jump experiments [15].
A magnetic birefringence measurement, in which a square wave pulse of magnetic field is

applied to the system, would give striking behavior for the optical signal as the duration T of
the pulse is increased beyond Th. For short pulses with T « T h, the topology would be unable
to adjust to the imposed field before it was removed again ; in this case the decay of the
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Fig. 3. - Shown are the different wavenumber-dependences at small q 2(qe .-r. 1 ) of the characteristic
decay rates to . and w , for the volume fractions of oil and surfactant in a symmetric microemulsion. The
dashed curves are asymptotic diffusive behaviors ; the dotted line indicates the crossover frequency
Th 1, near which the apparent diffusion constants of the two modes changes from the « quenched
topology » (high-frequency) value to the « annealed topology » (low-frequency) value. (We have
assumed arbitrarily for this figure that w,,(q) lies above w,(q).) In the symmetric sponge phase, the
timescale r,, is finite, and the « oil » mode (unobservable by scattering) decay rate approaches
T; 1 as q approaches zero. In the broken-symmetry phase, the modes are mixed as described in

section 3.3.

optical signal should be govemed by local solvent and surfactant flow with a relaxation time of
order 7-0 _ e2 IDO(e-’) - 6 _ffq e 3/ T. The topology could adjust to a new equilibrium value if
the duration of the pulse exceeded 7-h ; then the decay of the optical signal after the removal of
the field would show the slow relaxation time r h - 7- 0 exp (,B AE) in addition to a fast part
with time To. As discussed above, these times may be well separated if the activation energy
for topological change is large enough.
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