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Résumé. 2014 La phase fluide isotrope « anormale » du système DDAB/tétradécane/eau est très
différente des autres microémulsions dans des systèmes voisins. A partir des mesures de diffusion
de rayons-X et de neutrons à l’échelle absolue nous montrons que la structure est celle d’une
bicouche froissée aléatoire contenant de l’eau. Les autres structures en lamelles aléatoirement
connectées décrites jusqu’à présent sont restreintes à un domaine étroit de composition et de
température. Dans le système décrit ici, la rigidité intrinsèque de la bicouche et sa courbure faible
permettent la formation de cette structure dans une grande région du diagramme de phases
ternaire à température ambiante. Les autres modèles structuraux de microémulsions sont discutés
et leurs prédictions confrontées aux résultats expérimentaux.

Abstract. 2014 The « anomalous » fluid isotropic phase in the DDAB/tetradecane/water system
differs in important ways from microemulsion phases in related systems, and is thus a useful test
for models. On the basis of absolute scaled neutron and X-ray scattering data we show here that
the microstructure is best characterised as a randomly folded reverse bilayer. All previously
reported examples of this structure are restricted to a narrow range of composition and
temperature. In this case of a stiff bilayer with low spontaneous interfacial curvature it extends
over a large region of the ternary phase diagram at room temperature, the boundaries of which
are explained in terms of simple geometric constraints. Other possible microstructures are

critically reviewed.
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1. Introduction.

Ternary systems containing the double-chain surfactant didodecyldimethylammonium
bromide (DDAB) form microemulsions over a large composition range. We have previously
explained the behaviour of these fluid, isotropic solutions by adopting a geometric approach
[1-5] : the constraints on microstructure are that the polar volume fraction 4S, the interfacial
area per unit volume 1 and the interfacial curvature (set by the surfactant packing parameter
Vlat [6]) must match the values set by the composition. We have constructed an approximate
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model which satisfies these constraints using spheres and cylinders decorating a random
Voronoï lattice (the DOC cylinders model). For the systems with DDAB, water and alkanes
from cyclohexane to dodecane, this allows prediction of approximate phase boundaries [7]
and conductivity thresholds [4] and calculation of full scattering spectra on absolute scale [8]
for all these systems. Other microemulsion models either introduce free parameters or are
incompatible with the experimental data [9].
The system DDAB/tetradecane/water exhibits qualitatively different behaviour to ternary

systems containing the same surfactant but shorter-chain alkanes and alkenes [10-13]. The
phase diagram has been studied in detail by Larché [14] from whose work figure 1 is redrawn.
At room temperature there is a large isotropic phase in the centre of the three-phase triangle,
which we refer to as Lx. This solution does not show Bragg peaks and hence must have a
disordered structure.
Unlike the L2 phases for the shorter oils, the L,, phase cannot be diluted with tetradecane

without separating into two phases. On dilution with water it separates into two phases with
the water-rich lamellar phase L’ in excess, rather than demixing to spill out water, which is
the usual behaviour of such systems [15]. Towards the top of the phase diagram, the

L,, phase is in equilibrium with excess oil, whereas increase in surfactant concentration gives
rise to equilibrium with the surfactant-rich lamellar phase L2a.

If one dilutes the Lx phase with a binary surfactant/water mixture at constant surfactant to
water ratio, a cubic phase is obtained. This transition is extremely temperature-sensitive [14].

Fig. 1. - Phase Diagram of the DDAB/tetradecane/water system, redrawn from Larché [14]. The label
Lx refers to the microemulsion phase of interest, L’ to the water-rich lamellar phase, L 2 to the

surfactant-rich lamellar phase, and Cub to the cubic phase. The lines marked a and b refer to the water
dilution lines studied ; along each the samples are numbered in order of increasing water content.
Compositions are given in table I. Slight discrepancies between the marked sample positions and the
phase boundaries are the result of the different temperatures used. The tie lines drawn are illustrative
only.
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As for the other oils, the cubic phase region is probably a reversed bilayer (water inside the
film separating two bulk oil regions) lying on a periodic minimal surface with a cubic
underlying lattice [16]. For the other oils, this region contains several structures with different
topologies [17, 18].

In contrast to the systems with short chain alkanes or alkenes [10-13], the conductivity of
the Lx phase is always high, which means that the structure has to be water continuous
throughout. There is no antipercolation. If oil penetration determines interfacial curvature
[13], then the surfactant parameter v/al is expected to be close to one since tetradecane does
not penetrate the surfactant tails. It is reasonable to expect a value between 0.95 and 1.05.
These observations suggest a qualitatively different picture to that established for the

systems with shorter-chain oils. As the tetradecane does not interpenetrate the surfactant
tails, the interface is consequently much flatter. This conclusion is supported by the
observation that upon addition of strongly penetrating hexane, the tetradecane system reverts
to the previous behaviour, with both a percolation threshold and the possibility of dilution to
the oil corner. Addition of a single-chain surfactant has the same effect, while adding a long-
chain alcohol to the dodecane system switches its behaviour to that of tetradecane. All of this
can be explained by a qualitative difference in behaviour between systems with v lal= 1 and
v/aQ &#x3E; 1.

Since there is no cosurfactant added and essentially no oil penetration, we cannot be
satisfied by a model which requires ad hoc variation of the total interface per unit volume 1 or
the packing parameter v lat with composition. Without the fixed area constraint one could fit
all scattering curves, even on absolute scale, to a model of ellipsoids or polydisperse spheres
[9]. As for the other systems, the relative lack of temperature dependence of the phase
diagram and of the scattering - in this case, repeat scattering runs at 80 °C show little
difference in the results - suggests that the interface is rather stiff.
At first sight, no satisfactory explanation for the behaviour of this phase exists. It cannot be

a dispersion of spherical droplets : water droplets in oil would not conduct and could be
diluted to the oil corner ; oil droplets in water could be diluted with water. Further, neither
would give reasonable curvature. It also seems unlikely to be a DOC-cylinder structure like
that used to model the microemulsion phases for the shorter-chain oils, because this structure
can be diluted by oil, has a high interfacial curvature and displays a conductivity percolation.
A DOC-lamellar or random bilayer structure, already proposed for other ternary systems [2],
is not expected to exist over a large composition range ; it is usually found in temary or
quaternary systems only over a very narrow temperature and composition range close to a
lamellar phase [19, 20].
The structure of the remainder of this article is as follows. First we review the main

microemulsion models found in the literature ; then present the results of our experiments ;
and finally compare the predictions of the models with our data.

2. Microemulsion models.

2.1 INTERACTING SPHERICAL DROPLETS. - One supposes that one of the two volumes -

polar or nonpolar - is « internal » and is distributed in a dispersion of interacting
monodisperse spherical droplets. The interface 1 and the internal volume fraction 0 are set
by the composition, and hence as

the radius R and density n of the droplets are known a priori at any composition.



2608

The scattered intensity 1 (q) can therefore be calculated on absolute scale, without any
parameter, by using the factorisation [21] ]

where the form factor P (q ) reflects the scattering of one sphere and the structure factor
,S(q ) the interference between adjacent particles. Hayter and Penfold [21] showed that the
structure factor can be calculated analytically for identical spherical particles interacting via a
screened electrostatic potential using only three physical parameters : the effective charge per
micelle, the aggregation number and the hydration. This has been extended to various types
of attractive interactions using the work of Sharma and Sharma [22].
This model has been extremely useful in the exploration of micellar structure and

interactions in many surfactant systems [23]. In many situations, however, the assumption of
spherical droplets with predetermined radius R fails to predict the observed scattering [1, 24].
In this situation, there is a strong temptation to fit the data to another droplet radius or to
allow polydisperse or elliptical aggregates, as this always allows reconciliation of the observed
scattering peak with a simple structural picture [25]. This will not do, because then 1 is
incompatible with the composition or the measured Porod limit. In other systems the droplet
model is also incompatible with the electrical properties [9, 26] and the isoviscosity lines of the
phase diagram [27]. A review of inconsistencies obtained from the droplet model is available
[28].

2.2 PARAMETRIC MODELS. - A totally different approach to microemulsions is embodied in
the parametric models. On the basis of general thermodynamic arguments, Teubner and
Strey [29] deduce that the scattered intensity should have the form

where a2, cl and c2 are parameters with cl  0, a2, C2 :&#x3E; 0. This expression has been extremely
successful at fitting a large number of scattering curves even on absolute scale. From the
damped periodic correlation function which gives this scattering, one can then derive values
for the « spatial periodicity » d, the correlation distance e and the internal surface X.
This expression has been recast by Chen et al. [30] in terms of a different set of parameters :

CI, the ratio of the peak positions predicted by the Cubic Random Cell model (see below)
and measured in the experiment ;

C2, an analogue of osmotic compressibility extended to more general networks, and
C3, which is related to interfacial behaviour and is seen at the high-q limit.

An interesting phenomenological observation made using this model is that when the peak
width is large and there is strong scattering at high q, then C3 exceeds 10. It is asserted that
this is a condition for bicontinuity which is independent of such measurements as conductivity
or self-diffusion [30].
Another general expression, similar to that of Teubner and Strey, has been derived by

Vonk, Billman and Kaler [31]. For an ideal lamellar structure with periodicity D, water
fraction ~ and thickness polydispersity u, they derive the correlation function y °( r ) . They
then introduce distortions - arising from twisting or bending of the lamellar structure -

which cause the correlation function to decay as
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where d is the « distortion length ». This gives a very similar expression for the scattering to
that of Teubner and Strey.
However there is no guarantee that a given set of d, e and Z or of D, d and a leads to a

geometrically possible microstructure, nor do these models include any treatment of

spontaneous curvature. Furthermore, both expressions depend on three parameters and
hence will fit virtually any scattering curve [9].

2.3 THE RANDOM WAVE MODEL. - This model was proposed by Berk [32] using an
algorithm of Cahn [33]. The idea is to produce a random structure of typical size
D * by superposing waves of wavelength D * with random phases and directions. Space is then
divided into polar and nonpolar regions by cutting the resulting random field at some chosen
threshold value - the polar region is that in which the total amplitude exceeds the threshold.
The threshold value is set by volume fraction.
This random structure produces a scattering peak in the desired position but it is sharp

rather than broad. To rectify this, a polydispersity in the magnitudes of the wavevectors needs
to be introduced. This has been done in two dimensions by Welberry [34] and in three
dimensions by Berk and by Chen et al. [30].
With a suitable choice for the functional form of the wavelength polydispersity, this allows

control over the total interface X and the morphology of the structure, but in a rather non-
intuitive way. A better solution [35] is to remove the long-range order implied by the infinite
propagation of the waves, and to introduce local correlations which allow the interfacial area
and the curvature to be controlled.

2.4 THE TALMON-PRAGER MODEL. - This was the first model to offer a continuous
transformation from water droplets to oil droplets via a bicontinuous network [36]. It is

constructed as follows :

1. choose a random distribution of points in space with density n and construct a Voronoï
tessellation of space using the bisector planes. The Voronoï cell belonging to each of these
centres is thus the region of space which is closer to that centre than any other ;

2. fill the Voronoï cells with water or oil at random in the proportions 4S and
1 - 0 ; e is thus both the number fraction of water-filled cells and the water volume

fraction ;
3. place a surfactant monolayer between adjacent cells with different contents.

This structure is bicontinuous for polar volume fractions between 18 % and 82 % with a
percolation threshold at 18 %. Observed electrical conductivity behaviour is often much more
complicated than this. The scattering from the Talmon-Prager model has been calculated
analytically [37] and has no peak, making this model incompatible with most microemulsions.
At this point it is useful to introduce formally the Talmon-Prager Repulsive (TPR) model.

This is constructed as for the original Talmon-Prager model except that the initial distribution
of points is subject to a condition of closest approach, thus replacing the original random
distribution by a « hard sphere » distribution. This has the effect of introducing a

characteristic distance in the structure and hence a peak in the scattering at D
n _ 1/3.

This structure is drawn schematically in figure 2 ; it is the simplest of the models derived
from a « hard core » Voronoï lattice. It is bicontinuous over some volume fraction range and
is roughly equivalent to the CRC model explained below.
The simplest prediction of the TPR model is that the correlation length fe should be equal

to the periodicity D *. Such behaviour has never yet been found experimentally [38, 39].
When fe is much smaller than D *, a local microstructure within the cells must exist, reducing
fc while keeping D * constant. Alternatively anti-correlations between the filling of adjacent
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Fig. 2. - Schematic two-dimensional illustration of the different model structures derived from the
hard core Voronoï lattice by the addition of microstructure. The distribution of centres of imaginary
hard spheres allows the construction of a Voronoï tesselation of space. This random lattice is then used
as the base on which are placed spheres, a connected network of spheres and cylinders (the DOC
cylinders model) or of bilayers (the DOC lamellar model). Filling the cells at random with water or oil
gives the Talmon-Prager repulsive model. Since the underlying lattice is the same for all four models,
the peak position is approximately the same.
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cells must be intrdduced, moving thescattering peak while keeping Pc constant. It is possible
using this latter approach (with the CRC model) to explain both the phase diagram and the
peak position [40, 41].

2.5 THE CUBIC RANDOM CELL MODEL. - This model was first introduced by De Gennes as a
modified Talmon-Prager model [42], and the two are clearly closely related. The construction
is exactly that of the Talmon-Prager model but with the Voronoï lattice replaced by a simple
cubic lattice of repeat distance e. Again the cells are filled with water or oil at random

according to the volume fraction 0. The edge length e is fixed in the random-filling
approximation by

and the peak position will be at D * = 2 ir /qmax = 03BE. This model has only one distance built
in. It is bicontinuous over roughly the same volume fraction as the TPR model and produces
identical conductivity variation with water content.

Calculation shows that this model gives no peak at all in scattering [5, 8] : the zero of the
form factor of the cubes exactly cancels the sharp Bragg peak due to the underlying lattice.
This is an artefact of the exact calculation and of the random filling approximation. The peak
will reappear when even slight correlations between neighbouring cells are introduced.
As noted by Auvray et al. [43], the peak in scattering from microemulsions is usually

observed at about D * = 2 e, twice the distance predicted by the model. This is indeed the
prediction of Milner et al. [44] when local anti-correlations between the filling of neighbouring
cells are introduced. It is worth noting that this result is not automatic : longer-range
correlations could easily produce still different peak positions.

2.6 THE DOC CYLINDERS MODEL. - Starting from the same hard core Voronoï construction
as for the TPR model, we add local structure so that the model depends on two distances.
These are essentially the spontaneous curvature of the interface, determined by the nature of
the surfactant film, and the characteristic distance or average lattice spacing, which is
determined by the composition.
The three fundamental geometric constraints on structure have to be satisfied [4].
(i) The polar volume fraction 4S is set by the composition.
(ii) The water/oil interfacial area per unit volume X is set by the surfactant concentration.
(iii) The average interfacial curvature must agree with the spontaneous curvature of the

surfactant film as set by the surfactant parameter v /al (see Appendix 2).
Within the hard-core Voronoï tesselation, we construct a random connected surface with

variable connectivity by gluing together spheres and cylinders. This gives an approximation,
at the resolution of the scattering experiment, to the actual microstructure, which we imagine
as a surface of constant v/al separating water and oil domains. Depending on the

composition, the three constraints are satisfied by structures ranging from a dispersion of
spherical droplets to highly connected networks of cylinders. The actual construction together
with the predictions of peak position, approximate phase boundaries and scattering curves
have been described elsewhere [4, 7, 8].

This model applies when the spontaneous radius of curvature of the surfactant film -
related to persistence length and manifested here as the sphere radius Rs - is small compared
to the spatial periodicity D *. For persistence lengths of the same order of magnitude as the
periodicity, that is for flatter interfaces, the behaviour goes over to that of the DOC lamellar
model set out below. For more flexible films, thermal fluctuations dominate [40] and this
framework will break down.
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2.7 THE DOC LAMELLAR MODEL. - When v lai is close to one, the DOC cylinders model
gives way to a random lamellar structure. This is identical to the Talmon-Prager repulsive
model except that instead of water and oil separated by a monolayer, we have two fictitious
different types of water separated by a normal bilayer or two types of oil separated by a
reversed bilayer [2]. This structure is clearly closely related to the sponge phase model of
Cates et al. [19] with the cubic lattice replaced by the hard sphere Voronoï. The structure is
constructed as follows.

1. Take the same « hard core » Voronoï lattice as for the TPR or DOC cylinder models.
2. Label the cells A or B at random, with probabilities (and thus volume fractions) cl and

1-03C8.
3. When two adjacent polyhedra have different labels, set a bilayer on the polygon

between the two polyhedra. For the direct model this is a normal oil-swollen bilayer of
thickness 2f + 2 t separating water A from water B ; for the reversed model it is a reversed
bilayer with water thickness 2 t separating oil A from oil B.

Schematic drawings of the different microstructures derived from the Voronoï lattice are
shown in figure 2 ; the local geometries of monolayers and direct and reversed bilayers are
shown in figure 9. When cl is close to 1 the film is connected throughout space, as are the two2
bulk regions A and B ; when cl is close to 0 or 1 the structure is essentially that of single-walled
vesicles (Fig. 3).

Fig. 3. - Two-dimensional illustration of the evolution of the DOC lamellar structure with increasing
values of the pseudo-volume fraction 03C8. When 4r is small the structure consists of isolated vesicles, while

for 03C81/2 it is a random connected bilayer. Note that while two-dimensional structures can never be
2

bicontinuous, in three dimensions the film and both bulks are continuous over a large range of values
of tb.

Derivation of the area-averaged mean and Gaussian curvatures (H&#x3E; and (K&#x3E;, and of the
packing parameter v /al as a function of the pseudo-volume cl are given in Appendices 2 and
3. Since the bilayer thickness can be of the same order as D *, the average curvature at the oil-
water interface is by no means negligible ; moreover, at given polar volume fraction 4l,
interfacial area Z and surfactant parameter v laf, only one combination of half-thickness t,
density of Poisson points n and pseudo-volume fraction cl will satisfy these three constraints
(Appendix 4). Assuming a DOC-lamellar structure therefore allows prediction of the

approximate peak position assuming

or better, the calculation of the whole scattering curve.
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2.8 « BICONTINUOUS » MODELS. These models derive from a proposition originally made
by Scriven [45] and revived more recently [46, 16]. The idea is to « melt » or disorder the
structures of cubic liquid crystal phases to obtain a structure with the same properties but
which does not give Bragg peaks in the scattering. Cubic phase structures have been shown in
several cases to consist of a normal or reversed bilayer centered on (and presumably
fluctuating about) a periodic minimal (zero mean curvature) surface which separates two
distinct external subvolumes [16] ; when « melted » this is believed to give rise to the structure
of the isotropic « sponge » or L3 phase [20].
This model envisages the microstructure as that of a random bilayer, and is thus rather close

to the DOC lamellar model, remembering that the latter is to be thought of as an
approximation to the true structure at experimental resolution. The difference is that for the
molten cubic phase the area-averaged mean curvature (H) is always zero, independently of
the volume fractions on either side, while for the DOC lamellar model (H) depends on the

pseudo-volume fraction 1/1 and is only zero when 03C8 =1/2 (see Appendix 3). Such considerations
2

must depend on the treatment of the bending energy and in particular on the importance or
otherwise of higher-order terms than those in the familiar Helfrich form [47].

Unfortunately, there is no known algorithm for generating a zero or other constant mean
curvature surface on a random network. So this model is a qualitative one which cannot yet be
tested by experiment.

3. Experimental procédure and results.

Compositions of the samples are indicated in table I, and also on the phase diagram in
figure 1. Measurements were made at 28 °C ; at that temperature the samples were all

monophasic. Since the molecular volumes are known, the polar volume fraction 0 can be
calculated from the composition by adding the volumes of water and ionic headgroups. Since
no cosurfactant is used, a good estimate of the interfacial area per unit volume 1 can be made,
assuming only that the area per molecule is the same as in the neighbouring lamellar phases.

Small angle X-ray scattering experiments were done on the high resolution small-angle

Table I. - Quantities determined from the composition for the two series of samples examined
in the system DDAB/tetradecane/water. Cs is the surfactant concentration, [W ] / [S] the water-
to-surfactant molar ratio, [O ] / [S] the oil-to-surfactant ratio, 0 the polar volume fraction, 03A3 the
calculated interfacial area per unit volume, assuming a headgroup area of 68 Â2 per molecule
and p 1 and p 2 the electronic densities in the polar and nonpolar regions respectively.
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camera D22 at LURE (Orsay, France), and neutron scattering oh the same samples (all with
D20) at the PACE facility at Orphée (Saclay, France). Data reduction was made using
standard methods, including absolute scaling by comparison with scattering of pure D20 [23].

Spectra from along a typical water dilution line are shown in figures 4 and 5. The peak
position shifts with water content, D * increasing with water dilution. A well-defined Porod
regime allows an unambiguous determination of 03A3 The neutron and X-ray spectra are very
similar, hence the assumption of constant bromide counter-ion concentration is valid within
the experimental resolution (qmax = 0.5 Â-1, giving a resolution of 12 À in real space). This is
contrary to the result obtained with SDS systems, in which details of the local electronic
densities or scattering length density distributions are responsible for the peak shape and
position [48].
We can calculate several quantities of interest from the scattering curves before making

reference to any model. The simplest of these is the peak position D* = 2 ’TT /qmax- The
experimental value of the specific surface X can be deduced from the absolute value in cm-5
of the plateau in a Porod plot q4 I (q ) against q. The invariant Q * is given by

Fig. 4. - Absolute scaled small-angle neutron and X-ray spectra for the samples on dilution line a in the
system DDAB/tetradecane/water at 28 °C. Note the extreme similarity between the two sets of spectra.
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Fig. 5. - Plot of log (I ) against log (q ) for neutron scattering from the samples along dilution line a in
the system DDAB/tetradecane/water. Note the extremely clear Porod law behaviour at large angles.

but can also be calculated from the composition by the expression

Agreement of these two expressions can be checked, as can the agreement between the values
of X calculated from the scattering and from the composition. This ensures :

(i) that the two-media assumption - that the sample can be treated as made up of
homogeneous polar and nonpolar regions - is justified ;

(ii) that a negligible fraction of the surfactant molecules are molecularly dispersed instead
of participating in forming the surfactant film ;

(iii) that the calculated volume fractions and electronic densities are correct ; and
(iv) that the minimum and maximum values of q are correctly chosen.

4. Discussion.

The parameters resulting from fitting a Teubner-Strey expression to the spectra are given in
table III, along with values derived from the TPR and (random filling) CRC models. The fits
to the Teubner-Strey expression are very good indeed, but as usual one can infer little from
these results, in particular nothing about the microstructure. Here we note that e is of the
same order of magnitude as D *, which means that a Voronoï lattice is a reasonable, choice for
structural models. We have also calculated values of the « bicontinuity » parameter
C3 of Chen et al. [30] (see Sect. 2.2). While the values vary from over 20 down to 8 we know
from conductivity measurements and the fact that the surfactant is insoluble in tetradecane,
that the phase is bicontinuous throughout. As a result we are forced to conclude that this
criterion is not valid.
The predictions of the other models for the peak position D * are summarized in tables IV

and V. One observes in table II that the measured correlation length lc is smaller than
D*, the ratio being about 3 for all samples. This is incompatible with the Talmon-Prager,
CRC and TPR models, all of which predict lc = D *. This is a direct proof of the existence of
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Table II. - Quantities measured from X-ray and neutron scattering experiments for the system
DDAB/tetradecane/water. D * is the real-space peak position, fc is the correlation length,03A3 is

the internal surf47,ce and o, the calculated headgroup area per molecule.

Table III. - Results of fitting X-ray data for the system DDAB/tetradecane/water to the

parametric expression of Teubner and Strey and to the Talmon-Prager and cubic random cell
models. For the Teubner-Strey expression, d is the spatial periodicity and e the correlation
distance ; for the other models D * is the real-space peak position and v laf the effective
surfactant packing parameter.

local corrélations. Full scattering spectra predicted by the water-in-oil spheres and DOC
lamellar models are shown compared to the observed scattering in figures 6 and 7. Of these,
only the DOC lamellar model appears reasonable.
The peak positions and scattering spectra for the oil-in-water and water-in-oil spherical

droplet models were calculated using the Hayter-Penfold RMSA procedure [49], with the
droplet charge set to zero. It turns out that the peak positions obtained for a dispersion of
water spheres in oil are in reasonable agreement with those measured, even with the radii
imposed by the volume fractions and interfacial areas (R = 3 03A6/03A3). The shapes of the
scattering curves are not perfect, but are certainly acceptable. However, this model cannot
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Table IV. - Results of attempting to fit data for the system DDAB/tetradecane/water with a
model of interacting monodisperse spheres. R is the sphere radius, D * the real-space peak
position and v /al the effective surfactant packing parameter.

Table V. - Result of attempting to fit data for the system DDAB/tetradecane/water with the
DOC models. For the DOC cylinders model (water-filled cylinders in oil), Z is the co-

ordination number and r is the cylinder radius. For the DOC lamellar model, t is the oil or
water half-thickness (the total bilayer thickness is thus 2 t + 2 f) and fk is the pseudo-volume
fraction. D * is the real-space peak position and v laf the effective surfactant packing parameter.

explain the high conductivity of the Lx phase. It also requires an ad hoc variation of the
surfactant parameter vlaf from 1.13 to 1.5 with composition, which we regard as unlikely.
Oil-in-water droplets give systematically wrong peak positions in the scattering.

Dismissal of the DOC-cylinder model is more difficult. This structure would explain the
conductivity of the L,,phase, but not the nature of the phase transitions and equilibria. In the
adjacent cubic phase and in both the lamellar phases the surfactant forms a bilayer and not a
monolayer. Furthermore, the scattering can only be reconciled with a connected cylinder
structure if one assumes an unlikely variation of the surfactant parameter. The proposed
structure has a connectivity Z of about 5 throughout the stability range of the Lx phase. While
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Fig. 6. - Comparison between measured and calculated spectra for sample la. The full curve is the
normalised X-ray scattering data, the dashed-dotted curve is the prediction of water spheres in oil and
the dashed curve that of the DOC reversed lamellar model.

Fig. 7. - Comparison between measured and calculated spectra for sample 3a. Curves are labelled as
for figure 6.

this would certainly give the high conductivities observed, the packing constraint would have
to be relaxed and vlaf allowed to vary by over 20 % for this to work. The DOC-cylinder
structure must therefore be rejected, even though it is compatible with the peak position.
This leaves the DOC lamellar model. This structure has already been found in other

systems and is referred to as the L3 or « sponge » phase by other authors. Since the

Lx phase is in the middle of the temary phase diagram, the DOC-lamellar structure could be a
priori a reversed (water inside the bilayer) or a direct bilayer (oil inside). The calculations in
table V show that either structure is plausible. Both give reasonably good prediction of the
peak position along with vlaf close to 1 and fairly constant. This is to be expected from
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Babinet’s principle : an exchange of polar and nonpolar regions does not change the

scattering.
However, since the neighbouring cubic phase is a reversed bilayer structure, we conclude

that the L,, phase should also be, in order to explain the extremely temperature-sensitive
phase transition between them. This structure would also explain why the phase cannot be
diluted with water or oil, since unfolding or excessive swelling of this random lamellar
structure would induce forbidden variations of vlaf.
While it is always possible to calculate the full scattering curve using the cube method [8],

setting up the array of cubes is extremely cumbersome for Voronoï models like this. Instead
we obtain a fairly good approximation to the full scattering curve I (q ) by multiplying the
S(q) of the underlying lattice by the P (q ) of the average polygonal face. The excluded
volume is determined by assuming that if the distribution of centres is too random, then there
will be places at which the bilayer is forced to bend too sharply. Excluding such configurations

1 

is achieved by imposing a minimum distance of approach of the order of 1 n _1 3 . This gives an2
excluded volume of approximately 50 %. This causes the distribution of the centres to be
quite regular.
The form factor is obtained by approximating the polygonal faces by disks of thickness

2 t for the reversed bilayer (or 2(f + t ) for the normal bilayer) and radius one quarter the
nearest neighbour distance. (This gives roughly the correct surface area for the cells.) This
procedure neglects correlations between adjacent facets - in particular the fact that the facet-
facet correlation function will certainly be anisotropic - but is otherwise reasonably sound. It
has been checked against optical Fourier transforms of two-dimensional realisations of the
DOC-lamellar model [34] and found to give fair agreement.

It is possible to deduce the geometric limits on the random lamellar structure from the
positions of the phase boundaries (see Fig. 8). This is somewhat similar to the phase boundary

Fig. 8. - Measured boundaries of the Lx single-phase region compared with the limits imposed by
various geometric constraints on the proposed DOC-lamellar microstructure.



2620

calculation made for the DOC-cylinder model [7]. The left-hand phase boundary lies

essentially along a line of constant surfactant/water ratio. This is equivalent to an upper limit
on the water film thickness, which is never more than about 64 À. Beyond this limit it seems
that the structure is no longer stable and the dilute lamellar phase, with water thickness at
least 70 À is in excess.
The right edge is approximately an upper limit on the surfactant concentration. This is

directly linked to the cell size, and thus to the peak position D *. Once D * is less than about
80 Â (Fig. 8) the phase prefers to go into equilibrium with the concentrated lamellar phase,
which has hydrocarbon thickness about 27 Á, slightly less than two fully-extended chain
lengths. Larché [14] has noted that this equilibrium is extremely temperature-sensitive. This
could be one of the first examples of an unbinding transition between highly charged
concentrated bilayers [50].
The top and bottom boundaries of this -phase appear to be set by limits on the allowed

curvature of the reverse bilayer. Dilution with oil has the effect of trying to flatten out the
bilayer, which has negative Gaussian curvature. The limit appears to be roughly
(K&#x3E; t2 %:_ 10- 2 : in other words the principal curvature radii cannot be greater than about five
times the total water thickness. A first effect of this appears to be a breaking of the symmetry
between the two sides of the bilayer. While making cl different to 1 at constant cell size

2

changes the curvature in the wrong direction, at constant composition it has the compensatory
effect of reducing the cell size and in fact keeps (K) negative maintaining the desired degree
of « foldedness ». The limit is reached when cl approaches 0.18, at which point (K&#x3E; must
change sign and no amount of change in the cell size will keep the surface sufficiently folded
(see Fig. 3). Approximate phase boundaries deduced from geometric constraints on the DOC
lamellar structure are shown compared to the experimental phase boundaries in figure 8.
Our model calculations give values of the pseudo-volume fraction qi ranging between 0.25

and 0.5. This gives a bicontinuous structure, in agreement with the conductivity measure-
ments, with a mean curvature which is not too far from zero. The total bilayer thickness
(2 t + 2 f) is generally of the order of D * /2. The persistence length, the typical distance over
which the bilayer normal remains roughly parallel to itself is also about D * /2, as for all
Voronoï models.

This model also gives some understanding of the slow increase of conductivity with water
content. Along any water dilution line the bilayer thickness increases. The connectivity of the

bilayer also increases as aJi relaxes to its desired value of 1 .
2

5. Conclusion.

In the DDAB/tetradecane/water system all the standard models run into problems when
tested against the scattering data. The cubic random cell model and both variants of the
Talmon-Prager model predict the peak in the wrong position unless local correlations are
introduced. Droplets or DOC cylinder models require unlikely ad hoc variation of the
surfactant parameter vlaf with water content and cannot be reconciled with the phase
diagram. Of the quantitative models, only the DOC-lamellar model, describing a random
bilayer, is compatible with the observed scattering. We therefore conclude that the observed
microemulsion region is a DOC-lamellar (or L3) phase. This model is compatible not only
with the scattering data but also with the conductivity measurements and the experimental
phase diagram. It gives a simple explanation for the positions of the measured phase
boundaries in terms of such geometric constraints on the structure as the bilayer thickness, the
cell size and the film curvature.
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At high water contents it may appear strange to be proposing a « reversed » structure for
this phase. It should be noted however that in this structure the curvature is not towards the
water ; in fact v laf is slightly less than one, indicating curvature of the surfactant monolayers
towards the oil. Also, even for sample 5a, at the water-rich corner of the single-phase region,
the total water thickness proposed is only 60 Â out of a total cell size of 180 À. While this
certainly means we are not in the regime of validity of thin-plate theory, the reversed bilayer
description still makes sense.
For surfactant systems with lower bending constant kc, this structure is restricted to a very

narrow channel near the edge of the lamellar phase. In this system it extends over a much
broader range of composition, but still has in common with other L3 phases the ability to be in
equilibrium with excess oil and lamellar phase. This is not the first example of a more
concentrated L3 structure : such a phase was mapped out by Ekwall in the central region of
the ternary sodium octanoate/octanoic acid/water system [51]. In that system, as in this one,
the disordered lamellar structure exhibits a peak in scattering. In diluted L3 structures on the
other hand, where no spontaneous curvature restricts the swelling [20, 52], the scattering can
be divided into a low-q part where I(q) is approximately constant, followed at q &#x3E;
2 ir ID *, by a region in which 1 (q) ’" q - 2, and finally a Porod region where I(q) -
q - 4. In the case studied here, the scattering is dominated by the interaction peak which
merges into the Porod limit at high q.

Closely related to the DOC lamellar model is the molten cubic structure. This is also a
random bilayer, the main difference being that it always has zero mean curvature, even if the
pseudo-volume fractions on the two sides are different, but does not offer the continuous
transition to disconnected vesicles built into the DOC lamellar model. Without more

knowledge of such structures this remains spéculative ; perhaps the symmetry breaking
predicted here upon oil dilution means that the « molten cubic » model would have to include
similar features in order to work.
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Appendix 1.

Curvature of facetted surfaces.

Consider a surface made up of flat pieces joined along straight lines. The mean curvature H
and the Gaussian curvature K are both zero wherever they exist - that is everywhere except
at the edges and vertices, where they are undefined. Nonetheless, the integrated curvatures

and
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are not in general equal to zero, and neither are the area-averaged curvatures

and

All the curvature is concentrated at the edges and vertices. To proceed, we consider edges
and vertices as the zero-radius limits of suitable pieces of cylinders, spheres or other surfaces,
and thus calculate the correct contributions to JC and X [53].

First consider an edge of length L and dihedral angle a. This must always be measured on
the same side of the surface and will therefore be greater than or less than 7T according as the
bend is towards or away from the chosen side. We choose our normal vector to point in the
direction of this chosen side, so that if the curvature is towards this side it will be counted as
positive. Thus we expect that if a  7T then the contribution to JC will be positive and if
a &#x3E; 7T then it will be negative. Let us now remove narrow strips from along each side of this
edge and replace them by a piece of cylinder of radius r which joins smoothly to the remaining
flat pieces. In order for this to happen, this piece must subtend an angle of 17T - a 1 and have
length L (plus a small correction of order r which takes account of what happens at the ends).
At every point of this piece, the mean curvature is 1 /2 r if a « 7r and - 1 /2 r if

a &#x3E; 7T. As for any cylinder, the Gaussian curvature is zero. So the surface integral of the
Gaussian curvature is zero and that of the mean curvature is

Notice that the sign is always correct here : the absolute value and the change of sign in the
curvature have cancelled. Taking the limit as r - 0 gives the mean curvature contribution for
a single edge

The situation at a vertex is similar. Suppose that n faces meet at a point and that the face

angles are Pi. If E Pi : 2 7r then this vertex may be replaced by a spherical polygon with
radius r, n sides and vertex angles ir - Bi. As this has area

and the mean and Gaussian curvatures at every point are 1 /r and 11r2 respectively, the
integrated mean curvature is (2 ir - ESi ) r and the integrated Gaussian curvature is

. 

2 71’ - L {3 i. Letting r - 0 as before, we see that the vertex contributes nothing to Je, and
2 ir - 03A3Bi i to K.

If L {3 &#x3E; 2 7r then a piece of a sphere will not do ; something saddle-shaped is needed. But
clearly the mean curvature is always going to be zero : no matter what the details, the area
must be proportional to r2 while H goes like 1 /r. For the Gaussian curvature, the correct
approach is to use the Gauss map, which sends every point on the surface to that point on the
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unit sphere corresponding to the direction of the normal vector. The area of the image of a

region under this map is its integrated Gaussian curvature, with the proviso that the area
should be counted as negative if the vertex order is reversed by the mapping. Careful

application of this method gives the required result : regardless of whether the vertex angles
sum to less or more than 2 7r, the Gaussian curvature contribution of a vertex is

So for any surface built up in this way, the total curvatures je and X are simply obtained by
summing these contributions over all edges and vertices respectively. Dividing by the total
surface area then gives the area-averaged curvatures.

Appendix 2.

Packing on curved surfaces.

In order to relate the surfactant packing parameter vlaf for various models to the area-
averaged curvatures, we recall that for a small element of surface,

where A (0) = A is the area of the original surface and A (x) is the area of the parallel surface
displaced a distance x in the direction of the normal vector [54]. We now consider three
different decorations to our facetted surface :

(i) a surfactant monolayer with the tails of length f on the « negative » side of the surface
(see Fig. 9a) ;

(ii) a normal oil-swollen bilayer with oil half-thickness t and surfactant tails of length f, so
that the total bilayer thickness is 2 f + 2 t (see Fig. 9b) ; and

(iii) a reverse bilayer with water half-thickness t and again tails of length f (see Fig. 9c).

Fig. 9. - The three ways to decorate a surface with a surfactant film : (a) a monolayer, (b) a normal
(oil-swollen) bilayer, and (c) a reversed bilayer. The original surface is labelled 0, parallel surfaces are
labelled by the distance they are displaced in the direction of the normal vector.

For the monolayer the total volume occupied by the tails is

and as the total headgroup area is just A (0), the average value of the surfactant parameter is
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For the normal oil-swollen bilayer, the tail volume is

and the total headgroup area is

so that

In the limit of no swelling this reduces to

For a reversed bilayer the total tail volume is the same as for the normal bilayer, but the
headgroup area is

and so

Appendix 3.

Voronoï statistics.

We consider models in which the facetted surface is constructed as described in the text by
random filling of a Voronoï tesselation of density n with A and B in the fractions tb and
1 - 03C8, and the selection of those faces which separate differently filled cells. This general
framework, combined with decoration (i) above is the Talmon-Prager model ; combined with
(ii) or (iii) it gives a direct or reverse disordered infinite folded bilayer phase : the DOC
lamellar models (see Fig. 2).
For this analysis, we are forced to avoid any condition of closest approach - this is « true »

not « hard sphere » Voronoï - even though that is what really interests us. So the results of
this section are only strictly valid for the original Talmon-Prager model, which uses the true
Voronoï lattice. For the « repulsive » version of the Talmon-Prager model and for the DOC
lamellar model, the results are only correct in the limit of small n. For moderate cell densities
we assume that this approximation is no worse than any of the others made in these models.

Statistics for the full Voronoï lattice have been calculated by Meijering [55]. The average
number of vertices per cell is approximately 27.07, so as each vertex is at the common point of
four cells, the total number of vertices per unit volume is 27.07 n /4. The average total edge
length per unit volume is 5.83 n 2/3 and the total surface area per unit volume is
2.91 n 1/3
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To calculate the average curvatures, we first have to know the total surface by which to
divide. Now a face is « real » if it separates cells of different type, that is, with probability
2 qi ( 1 - ep ) - So the « real » surface area per unit volume is

From Appendix 1,

and so as a and L are independent random variables

where L,., is the total edge length per unit volume. There are four possible edge
configurations : AAA, AAB, ABB and BBB. The first and last contribute nothing : there is
no « real » edge. If we adopt the convention that dihedral angles are measured on the A side
of the surface (so that H &#x3E; 0 corresponds to curvature towards medium A), then as the
dihedral angles are 27r/3 on average, AAB has  a) = 4 ’TT’ /3, and ABB has (a&#x3E; =
2 ir /3. So

whence

Note that this is zero only when e = 1
2 

.

We proceed similarly for vertices. According to Winterfield [56], the expected angle
between two adjacent edges in the Voronoï tesselation is approximately

which is slightly larger than the tetrahedral coordination angle of approximately 109° 28’.
There are five possible vertex configurations, of which again the all-A and all-B contribute
nothing. For the configurations AAAB and ABBB, which occur with probabilities
4 f/13( 1 - f/1) and 4 f/1 (1 - f/1)3 respectively, we expect 2 7r - E Si = 2 7r - 3 f3, while for

AABB, which occurs with probability 6 «/12(1 - f/1)2 it is 2 7r - 4 /3. So

and therefore

This is negative for 0.18 - «/J - 0. 82. The packing parameter v laf can be derived immediately
from this result and those of Appendix 2.
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Appendix 4.

Parameter values.

The relations derived in Appendices 2 and 3 can be used to determine values for the model
parameters from the composition of a sample. For the Talmon-Prager model (repulsive or
not, although the values derived from Voronoï statistics will not be exact for the repulsive
version) we have the following simple relations :

and from Appendices 2 and 3,

and finally

That is, the values of 0 and 03A3 determine the parameters 03C8 and n. This model does not have
enough parameters to allow fitting to the surfactant parameter vlaf as well.
For the reverse bilayer, that is, a water film of thickness 2 t separating bulk oil regions, we

require simultaneous solution of

where the Gaussian curvature is given by

and e is chosen to give the correct value for the surfactant packing parameter

So these three relations for the known quantities 03A603A3 and v laf determine the values of the
model parameters «/1, n and t.

Finally, for the oil-swollen normal bilayer we need solutions of

with curvature as for the reversed bilayer, but with v/al given by

Again these three constraints determine the values of the three model parameters.
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Appendix 5.

Approximate phase boundaries.

For any composition whatsoever, the equations of Appendix 4 can be solved to give values for
the cell density n, film thickness t and pseudo-volume fraction cl for either of the DOC
lamellar models. At some points these values will be totally unrealistic and the structure
obtained could not be adopted by a real surfactant film. By performing this calculation at
regularly spaced points throughout the phase diagram and marking those at which various
physically reasonable constraints on the structure are satisfied, we can gain some insight into
the behaviour of this model.

Figure 8 is the result of such calculations on the model of reverse lamellae. The first

observation was that the surfactant parameter vlaf is a very slowly varying function of the
other variables, so that fitting to it would be numerically unstable. Simply setting
1 and fitting n and t to the calculated 0 and 1 at each point in the phase diagram leads to

2
values of vlat which vary between about 0.95 and 0.99, not beyond the bounds of possibility.
The structures produced with this simplification fit the scattering at high water content but not
towards the top of the single-phase region : there they have values of D * which are too high.

It is this observation which leads to the counterintuitive behaviour of the curvature with

respect to 03C8 which is mentioned in the text. In order to obtain the peak position found in the
experiment, one has to change e. This reduces the cell size very rapidly, resulting in the film
becoming more rather than less folded overall (more precisely, its Gaussian curvature gets
more negative) : it has less « folds » per cell, but many more cells per unit volume. Such a
pattern continues only so long as the « number of folds per unit volume » remains positive,
that is while cl is larger than about 0.18. After this, the Gaussian curvature changes sign.

Postulating that a minimum or maximum water thickness might be one of the determining
constraints leads to the observation that lines of constant thickness are approximately lines of
constant water to surfactant ratio. This is easily seen in the equations, at least to first order.
Similarly, the cell size is a function of surfactant content only, and the curvature of the film,
when normalized by the thickness, depends very roughly on the oil to water ratio.
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