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Résumé. 2014 Nous présentons ici les résultats d’une étude expérimentale du processus d’électrodé-
position de zinc en milieu aqueux bidimensionnel. Pendant le processus de croissance (à courant
constant), l’impédance de la cellule électrochimique est mesurée, ce qui permet une analyse
simultanée de la complexité géométrique des agrégats et de la dynamique qui gouverne la
formation de ces dépôts métalliques. Les régimes étudiés sont intermédiaires entre des
croissances métalliques de nature dendritique et des croissances plus désordonnées similaires aux
agrégats fractals engendrés par simulation numérique de modèle d’agrégation limitée par la
diffusion de Witten et Sander (DLA model). Les enregistrements correspondants mettent en
évidence un comportement oscillatoire de l’impédance du milieu électrolytique : ces oscillations
peuvent être périodiques comme non périodiques. L’étude de ces dynamiques complexes à l’aide
des techniques issues de la théorie des systèmes dynamiques apporte une première évidence
expérimentale du caractère chaotique déterministe de ces phénomènes de structuration d’inter-
face. L’observation de bifurcations de doublement de période, de portraits de phase aux allures
d’attracteurs étranges, de coupes de Poincaré bien définies et d’applications de l’intervalle en
forme de cloche est la signature d’une dynamique à faible nombre de degrés de liberté. L’étude
dynamique de régimes encore plus complexes observés dans la limite DLA s’avère être un
challenge expérimental des plus prometteurs.

Abstract. 2014 We report an experimental study of the statics and dynamics of electrodeposition of
zinc in an aqueous medium, in the intermediate regime between dendritic and DLA-like metallic
clusters. During the growth process, periodic and nonperiodic oscillations of the voltage are
recorded under constant applied current intensity. Period-doubling bifurcations are identified.
Analysis of the data in terms of phase portraits, Poincaré maps and 1-D maps shows that the
fractal geometry of these electrochemical deposits is the signature of a low-dimensional
deterministic chaotic dynamics which displays sensitivity to initial conditions. The study of the
apparently more complex dynamics recorded in the DLA limit is a very promising experimental
challenge.
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1. Introduction.

In recent years, diffusion-limited growth phenomena have been the subject of increasing
theoretical and experimental interest [1]. In particular, much effort has been devoted to
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establishing the relationship between the cluster geometry and growth mechanisms. In

Laplacian pattern forming systems, the motion of interfaces can lead to very complex, highly
ramified patterns [1]. In the early eighties, Witten and Sander [2] proposed the diffusion-
limited aggregation (DLA) model to account for the nonlocal properties of the diffusion field.
Extensive computer investigations [1-3] of this model have produced apparently randomly
branched fractal clusters that show a strong resemblance to the arborescent patterns observed
in a broad class of experimental situations [1], including electrochemical deposition, viscous
fingering, colloïdal aggregation, fracture propagation and dielectric breakdown. Since the
pioneering simulations of the DLA model, numerous extensions of the model were
considered for various purposes [3], e.g., to incorporate non-zero surface tension [lc, 3-7] or
to mimic anisotropic growth [3, 8-16]. The fractal geometry of these aggregates has been
analyzed by computational [2, 3, 11, 17-24] and analytical methods [15, 25-28]. But thus far,
there has been no dynamical study of diffusion limited growth phenomena in numerical
simulations as well as in bench experiments. As a consequence, despite the apparent
simplicity of the DLA model, there is still no rigourous theory for diffusion-controlled
growth. Many important questions remain unanswered ; in particular, it is still an open
question whether the fractal geometry of DLA clusters is a product of the randomness in the
growth process [3] or the result of a proliferation of deterministic tip-splitting instabilities [29].
The specific property that distinguishes growth processes from other non-equilibrium

spatio-temporal organization phenomena, e.g. pure reaction-diffusion processes or hydrodyn-
amic turbulence, is that their spatial structure (the fossilized aggregate) retains the full

memory of their temporal evolution [30]. Thus one can reasonably suspect that the screening
effects induced by the fractal geometry irreversibly influence the dynamics of the growth.
Because the complexity of the geometry is intricately connected with the dynamical evolution,
most attention has been initially focused on the fractal structure of Laplacian aggregates [1-3,
17-22]. But only very recently [23, 24], DLA clusters were shown to be statistically self-similar
as generally believed. Moreover, it has been realized that this geometrical self-similarity is
intimately related to the nonhomogeneous distribution of the velocity field along the cluster
boundary. Thus, the multifractal properties [31] of the growth probability distribution were
investigated through the measurement of the generalized fractal dimensions Dq and the
f ( a )-spectrum of singularities [30, 32-38]. But the Dq and f ( a )-spectra are, in effect,
statistical averages [24, 39, 40] that do not provide all the information we need to understand
the growth of fractal aggregates. What is essentially missing is the local information

concerning the spatial distribution of the scaling exponents along the cluster boundary.
As we have pointed out in our previous study of Laplacian growth processes [23, 24, 30],

the application of the wavelet transform [39, 41, 42] may eventually result in a more complete
understanding of the local scaling properties of fractal aggregates. In fact, as seen through the
« wavelet microscope », the self-similarity of the branched geometry of DLA clusters and
electrochemical deposits is likely to be the expression of a nonlinear chaotic recursive
construction process which accounts for the proliferation of tip-splitting and side-branching
instabilities observed during the growth [24]. But thus far, no computer simulation of the
DLA model (image processing of electrodeposition clusters) has achieved the necessary size
(resolution) to make definite conclusions about the deterministic character of the fractal
patterns observed in diffusion-controlled growth.

In this paper, we take advantage of the fact that electrochemical systems can be used to
perform a simultaneous analysis of the statics and the dynamics of fractal growing patterns, to
provide unambiguous evidence for the existence of spatio-temporal chaos in fractal growth
phenomena. Among the various experimental illustrations of fractal pattern formation,
electrochemical deposition is currently considered as the paradigm for theoretical studies of
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interfacial growth processes [29]. In fact, by varying the concentration of metal ions, the
conductivity of the electrolyte and the applied constant current (or voltage), one can explore
different morphologies like dense radial [43], dendritic [44, 45] and DLA-like fractal [23, 24,
45-48] patterns. The competition between the complex reaction kinetics at the interface and
the migration process induced by the electric field is likely to be at the origin of these drastic
changes in the morphology of the deposits. Here we will limit our analysis to morphologies
obtained at small ionic concentration and low current where the diffusion length becomes
much larger than the characteristic size of the pattern [29a]. These morphologies are in fact
intermediate regimes [49] between well ordered (anisotropic) dendritic patterns and more
randomly ramified (isotropic) DLA like fractal aggregates.

2. Expérimental apparatus.

The experimental configuration consists of two parallel zinc electrodes (0.25 mm diam.)
separated by a distance of 120 mm and contained between two rectangular glass plates (width
30 mm). The space between the electrodes is filled by capillarity with an aqueous solution of
ZnS04 (0.05 M  [ZnSO4]  0.30 M). The electrodeposition is initiated by applying a

constant current between the electrodes. The system is illuminated with white light from
below and photographed from above with a 35 mm camera (magnification from 1 x to 10 x).
During the growth we record the voltage signal with a high resolution (16 bits) and high speed
A/D board coupled with an external offset and amplifier (low-pass filter, fc ~ 10 Hz). This
signal provides a measurement of the conductivity of the medium (global impedance of the
electrochemical cell including electrodes and electrolyte). Since the conductivity is expected
to fluctuate as the structures grow on the surface of the cathode [50], the temporal evolution
of the voltage across the cell is likely to provide interesting information about the screening
effects and selection processes that govern electrochemical deposition [30]. Our experimental
set-up is sketched in figure 1.

Fig. 1. - Schematic of the linear electrochemical cell.
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3. Expérimental results.

Our previous analysis [23, 24] of fractal electrodeposits strongly suggests that they have a self-
similar structure (Dq = 1.63 ± 0.03, dq) that mimics DLA patterns. In a close neighborhood
in the parameter space, conditions can be found where the growth is more directional and
where the observed metallic deposits look very much like dendritic patterns [49]. Figure 2
shows several photographs of the early stages of the growth in a regime intermediate between
dendritic and DLA growth. After some induction regime observed immediately after turning
on the applied current, many zinc trees emerge from the cathode. The initial number of trees
is found to depend essentially upon the zinc sulfate concentration, the current intensity I and
the cell aspect ratio. The significant feature is that very quickly these trees start competing.
Successively, most of them stop growing as they enter in the shade of the surviving trees. At
the beginning of the growth, the trees look like spikes. When the selection process is on the
way, the surviving trees start to ramify and their width is constantly increasing. Because the
diffusion length is larger than the width of the cell, the zinc trees are not only influenced by
their immediate neighbourhood, but also by distant trees. Thus, depending on the

Fig. 2. - Hybrid dendritic-DLA zinc-metal trees (about 15 mm long after 15 min of growth)
photographed during the early stages of the chemical electrodeposition process. These zinc trees are
grown from 0.1 M ZnS04 (aq) with an applied current of 0.5 mA (the current density j is equal to
0.21 A/dm2).
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experimental conditions, cooperative phenomena like the simultaneous extinction of several
trees, can be observed. This screening-induced selection process [51] is clearly illustrated in
figure 2 where only a few trees survive this « struggle for life », 15 min after the beginning of
the growth. It is noticeable on this figure that the internal structure of these trees is an hybrid
disordered dendritic morphology. Let us note at this point that the characteristic size of the
surviving trees in the final state in figure 2 remains negligible as compared to the distance
between the two electrodes.

In the voltage recording, the induction regime corresponds to an initial sharp decrease,
followed by a relatively slow increase of the cell impedance. This rather regular behavior of
the voltage is likely to correspond to (i) the formation of the electrochemical double layer [52,
53] at the cathode and anode interfaces (polarization of the electrodes) and (ii) the initial
transient regime from a three to a two-dimensional growth process (a rather flat interface
starts moving very slowly from the cathode). Apparently, when the voltage exceeds some
critical value, oscillations [50] emerge from this quiescent regime as shown in figure 3a. These
oscillations can be either periodic (Figs. 3b and 3c) or nonperiodic (Fig. 6a). They are
observed simultaneously to the selection process illustrated in the different panels of figure 2.
They actually appear when the instability of the cathode develops into a forest of zinc trees. A

Fig. 3. - Time-series recorded from cell voltage measurements at fixed current intensity. (a) The full
time evolution for the parameter values [ZnSO4] = 0.25 M, I = 1.5 mA (j = 0.64 A/dm2).
(b) « Quasi » sinusoidal periodic oscillations : [ZnSO4] = 0.15 M, I = 0.9 mA (j = 0.382 A/dm2).
(c) Relaxation oscillations : [ZnS04] = 0.25 M, I = 1.5 mA (j = 0.64 A/dM2). In (b) and (c), the drift
in the signal has been removed by Fourier filtering the low frequencies ( f ~ 0 ).
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strong correlation exists between the coherence time of the oscillations and the recursive
character of the selection process. Since the interface of the cathode is moving, the amplitude
of the oscillating signal displays a slow drift while a shift is detected in its fundamental

frequency. These observations indicate that the internal control parameters evolve during the
growth. Indeed, this oscillatory regime is a transient phenomenon which turns off as soon as
the selection process between the zinc trees is over.
When adjusting the control parameters, in such a way that the electrodeposits display a

rather ordered dendritic structure (Fig. 4), the recorded oscillations appear to be coherent
over many cycles (Fig. 3). Once the drift inherent to growth processes with moving interface
is removed by Fourier filtering the low frequencies (f -- 0), these oscillations turn out to be
periodic. We have observed both « quasi » harmonic oscillations (Fig. 3b) which resemble the
oscillations of small amplitude that emerge from a Hopf bifurcation [54], and relaxation
oscillations (Fig. 3c) which are current phenomena in non-equilibrium chemical systems [55].
Both these oscillations have approximately the same characteristic frequency f - 25 mHz, but
the relaxation oscillations provide evidence for enhanced nonlinear interactions between the
zinc trees that lead to an abrupt extinction of the growth of the screened trees (sudden death
induced by screening). Let us note that the characteristic frequency of the recorded

oscillations is at least two orders of magnitude smaller than the characteristic frequency of
convective motions that are observed at the growing tips of the zinc trees. This observation

Fig. 4. - Dendritic zinc metal trees photographed during the early stages of the chemical

electrodeposition process for the parameter values : [ZnSO4] = 0.2 M, I = 2.1 mA (j = 0.89 A/dm2).
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discards any interpretation of the macroscopic nonlinear selection process in terms of

hydrodynamic instabilities.
When moving the system away from the dendritic morphology, toward more disordered

highly ramified fractal patterns, period-doubling bifurcations (Fig. 5) are observed as the
precursor to chaotic dynamics. In figure 6, we describe a chaotic regime observed simul-
taneously to the growth of the hybrid dendrite-DLA morphology shown in figure 2. The
nonperiodicity of the recorded time-series is analyzed using well-known techniques such as
phase portraits, Poincaré maps and one-dimensional maps [54]. Figure 6b shows a three-
dimensional phase portrait reconstructed from the time-series of figure 6a using the time
delay method [56, 57]. It looks strikingly similar to the phase portraits of strange attractors
displayed by low-dimensional dynamical systems [54] (e.g. Rossler’s strange attractors).
Rather than analyze the phase portrait directly, it is easier to look at the Poincaré section
formed by the intersections of the trajectories with a plane approximately normal to the
orbits. As shown in figure 6c, the points on the Poincaré plane lie to a good approximation
along a smooth curve. The fact that the Poincaré section is not a scatter of points rules out any
stochastic interpretation of these complex oscillations ; moreover it demonstrates the low-
dimensional nature of this chaotic state : the orbits lie approximately on a (multifolded) two-

Fig. 5. - Experimental evidence for a period-doubling bifurcation in the electrochemical deposition
process for the parameter values corresponding to the dentritic regime shown in figure 4. (a), (b) and (c)
represent different stages of the electrochemical deposition process.
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Fig. 6. - A chaotic regime extracted from potential measurement during the screening induced
selection process shown in figure 2. (a) The filtered signal V(t) vs. time (the drift has been removed by
Fourier filtering the low frequencies (/-0)); (b) A three-dimensional phase portrait ( V o =
V(t), V1 = V (t + T ), V2 = V (t + 2 T )) reconstructed from the time-series in (a) using the time-delay
method with T = 2.5 s. (c) A Poincaré section constructed by the intersections (xn, Yn) of negatively
directed trajectories with the plane passing through the line sketched in (b). (d) A one-dimensional map
obtained by plotting as ordered pairs (Xn, Xn + 1), where Xn = Xn cos e + yn sin 0 and 0 = 85°; the
hand-drawn curve suggests the existence of a unimodal 1-D map.

dimensional sheet in the phase-space. Further insight into the dynamics can be achieved by
constructing a one-dimensional map ; a plot of Xn + 1 vs. Xn is shown in figure 6d, where X is
some coordinate in the Poincaré plane. Within the experimental resolution, the data appear
to fall on a smooth curve, indicating that the dynamics is governed by a deterministic law ; for
any Xn, the map gives the value Xn + 1 at the next intersection. The hand-drawn curve suggests
the existence of a unimodal 1-D map, the hallmark of deterministic chaos [54, 58]. The
dispersion of points around this curve is the consequence of the transitory character of this
selection process. The experimental points plotted in figure 6d correspond to the initial part
of the time series in figure 6a. Further recording displays an overall shift of the 1-D map with
a slight decrease of its height, as the consequence of the internal control parameter evolution
during the growth. This observation sets a fundamental physical limitation to any noise
reducing procedure for decreasing the dispersion of points around the hand-drawn curve in
figure 6d. Let us note that the existence of an underlying unimodal 1-D map is indirectly
confirmed by the identification of the first steps of the period-doubling cascade [58-60]
illustrated in figure 5. A systematic investigation of the routes to chaos in electrochemical
deposition will be reported elsewhere.
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4. Discussion.

In conclusion, these experimental results supply the first inescapable evidence for the

existence of deterministic chaos in electrochemical deposition process. In the present work,
we have mainly focused on the nonlinear electrostatic interactions between metallic trees
lying in a complex dielectric medium in the early stages of an hybrid disordered dendritic
growth. These observations indicate that the selection process between metallic trees is likely
to result from the nonlinear interaction of a small number of elementary instabilities.
However, it is clear that considerable further work is needed to understand the intimate

relationship between the cluster geometry and the growth mechanism which governs pattern
formation. In particular, preliminary experimental results strongly suggest that the dynamics
becomes more complex when moving further the electrochemical system towards the
disordered highly ramified DLA morphology. Because DLA trees ramify as soon as they
emerge from the cathode, it is reasonable to suppose that the screening process between the
internal branches of each individual tree will lead to superposed oscillations of higher
frequency and smaller amplitude than the low-frequency chaotic oscillations. One may thus
suspect a transition to a higher-dimensional turbulent dynamics. Unfortunately, the large
impedance of our electrochemical cell results in a high level of noise that requires the use of a
low-pass filter (fc ~ 10 Hz). Therefore, the high frequency sensitivity of our experimental set-
up needs to be significantly improved in order to address the fundamental issue of the actual
degree of complexity of the DLA dynamics.
An alternative to this experimental study is the simulation of DLA in linear geometry

solving the Laplace equation with the Green’s function method [25, 61, 62]. This method
allows us to compute directly the impedance of the cell at each time step. It can thus be used
to mimic our voltage recording in the electrochemical system. Experiments and simulations
along these lines are currently in progress [63].

Acknowledgments.

The authors are very grateful to the Centre National des Etudes Spatiales for financial
support under contract (N° 90/CNES/215).

References

[1] For reviews see:
(a) LANGER J. S., Rev. Mod. Phys. 52 (1980) 1;
(b) HUANG S. C. and GLICKSMAN M. E., Acta Metall. 29 (1981) 701 ;
(c) BENSIMON D., KADANOFF L. P., LIANG S., SHRAIMAN B. I. and TANG C., Rev. Mod. Phys. 58

(1986) 977 ;
(d) LANGER J. S., Chance and Matter, Eds. J. Souletie, J. Vanimenus and R. Stora (North-

Holland, Amsterdam) 1987;
(e) KESSLER D. A., KOPLIK J. and LEVINE H., Adv. Phys. 37 (1988) 255 ;
(f) On Growth and Form: Fractal and Nonfractal Patterns in Physics, Eds. H. E. Stanley and

N. Ostrowsky (Martinus Nijhof, Dordrecht) 1986;
(g) Fractal in Physics, Eds. L. Pietronero and E. Tosati (North-Holland, Amsterdam) 1986 ;
(h) The Physics of Structure Formation, Eds. W. Guttinger and D. Dangelmayr (Springer-Verlag,

Berlin) 1987 ;
(i) Random Fluctuations and Pattern Growth, Eds. H. E. Stanley and N. Ostrowsky (Kluwer,

Dordrecht) 1988 ;
(j) VICSEK T., Fractal Growth Phenomena (World Scientific, Singapore) 1989.



2486

[2] WITTEN T. and SANDER L. M., Phys. Rev. Lett. 47 (1981) 1400 ; Phys. Rev. B 27 (1983) 5686.
[3] (a) MEAKIN P., Phase Transitions and Critical Phenomena, Eds. C. Domb and J.-L. Lebowitz

(Academic, Orlando) 1988, vol. 12;
(b) NITTMANN J. and STANLEY H. E., Nature (London) 321 (1986) 663 ; J. Phys. A 20 (1987)

L1185 ;
(c) STANLEY H. E., in Ref. [1h], p. 210.

[4] VICSEK T., Phys. Rev. Lett. 53 (1984) 2281; Phys. Rev. A 32 (1985) 3084.
[5] BANAVAR J. R., KOHMOTO M. and ROBERTS J., Phys. Rev. A 33 (1986) 2065.
[6] MEAKIN P., FAMILY F. and VICSEK T., J. Coll. Int. Sci. 117 (1987) 394.
[7] TAO R., NovoTNY M. A. and KASKI K., Phys. Rev. A 38 (1988) 1019.
[8] BALL R. C., BRADY R. M., ROSSI G. and THOMPSON B. R., Phys. Rev. Lett. 55 (1985) 1406.
[9] MATSUSHITA M. and KONDO H., J. Phys. Soc. Jpn 55 (1986) 2483.

[10] KERTÉSZ J. and VICSEK T., J. Phys. A 19 (1986) L257.
[11] MEAKIN P., Phys. Rev. A 33 (1986) 1984 and 3371 ; Phys. Rev. A 36 (1987) 332.
[12] FAMILY F., PLATT D. E. and VICSEK T., J. Phys. A 20 (1987) L1177.
[13] KOLB M., Europhys. Lett. 4 (1987) 85.
[14] MEAKIN P., KERTÉSZ J. and VICSEK T., J. Phys. A 21 (1988) 1271.
[15] ECKMANN J. P., MEAKIN P., PROCACCIA I. and ZEITAK R., Phys. Rev. A 39 (1989) 3185.
[16] COUDER Y., ARGOUL F., ARNEODO A., MAURER J. and RABAUD M., Phys. Rev. Lett. A 42

(1990) to appear.
[17] MEAKIN P., Phys. Rev. A 27 (1983) 1495.
[18] MEAKIN P. and WASSERMAN Z. R., Chem. Phys. 91 (1984) 391.
[19] MEAKIN P. and SANDER L. M., Phys. Rev. Lett. 54 (1985) 2053.
[20] BALL R. C. and BRADY R. M., J. Phys. A 18 (1985) L809.
[21] MEAKIN P., BALL R. C., RAMANLAL P. and SANDER L. M., Phys. Rev. A 35 (1987) 5233.
[22] MEAKIN P. and HAVLIN S., Phys. Rev. A 36 (1987) 4428.
[23] ARGOUL F., ARNEODO A., GRASSEAU G. and SWINNEY H. L., Phys. Rev. Lett. 61 (1988) 2558.
[24] ARGOUL F., ARNEODO A., ELEZGARAY J., GRASSEAU G. and MURENZI R., Phys. Lett. A 135

(1989) 327 and Phys. Rev. A 41 (1990) 5537.
[25] TURKEVICH L. A. and SCHER H., Phys. Rev. Lett. 55 (1985) 1026.
[26] BALL R. C., Physica A 140 (1986) 62.
[27] HALSEY T. C., MEAKIN P. and PROCACCIA I., Phys. Rev. Lett. 56 (1986) 854.
[28] MATSUSHITA M., HONDA K., TOYOKI H., HAYAKAWA Y. and KONDO H., J. Phys. Soc. Jpn 55

(1986) 2618.
[29] (a) SANDER L. M., in Refs. [1g] p. 241 and [1h] p. 257 ;

(b) SANDER L. M., RAMANLAL P. and BEN JACOB E., Phys. Rev. A 32 (1985) 3160.
[30] ARGOUL F., ARNEODO A., ELEZGARAY J. and GRASSEAU G., Quantitative Measures of Complex

Dynamical Systems, Eds. N. B. Abraham, A. M. Albano, A. Passamante and P. E. Rapp
(Plenum) 1990, p. 433.

[31] HALSEY T. C., JENSEN M. H., KADANOFF L. P., PROCACCIA I. and SHRAIMAN B. I., Phys. Rev.
A 33 (1986) 1141.

[32] MEAKIN P., Phys. Rev. A 34 (1986) 710; 35 (1987) 2234.
[33] AMITRANO C., CONIGLIO A. and DILIBERTO F., Phys. Rev. Lett. 57 (1986) 1016.
[34] HAYAKAWA Y., SATO S. and MATSUSHITA M., Phys. Rev. A 36 (1987) 1963.
[35] LEE J. and STANLEY H. E., Phys. Rev. Lett. 61 (1988) 2945.
[36] RAMANLAL P. and SANDER L. M., J. Phys. A 21 (1988) L995.
[37] BALL R. and BLUNT M., Phys. Rev. A 39 (1989) 3591.
[38] LEE J., ALSTROM P. and STANLEY H. E., Phys. Rev. A 39 (1989) 6545.
[39] ARNEODO A., ARGOUL F., ELEZGARAY J. and GRASSEAU G., Nonlinear Dynamics, Ed.

G. Turchetti (World Scientific, Singapore) 1989, p. 130.
[40] CHHABRA A. B., JENSEN R. V. and SREENIVASAN K. R., Phys. Rev. A 40 (1989) 4593.
[41] HOLSCHNEIDER M., J. Stat. Phys. 50 (1988) 963.
[42] ARNEODO A., GRASSEAU G. and HOSCHNEIDER M., Phys. Rev. Lett. 61 (1988) 2281.
[43] GRIER D. G., KESSLER D. A. and SANDER L. M., Phys. Rev. Lett. 59 (1987) 2315.



2487

[44] SAWADA Y., DOUGHERTY A. and GOLLUB J. P., Phys. Rev. Lett. 56 (1986) 1260.
[45] GRIER D., BEN-JACOB E., CLARKE R. and SANDER L. M., Phys. Rev. Lett. 56 (1986) 1264.
[46] BRADY R. M. and BALL R. C., Nature 309 (1984) 225.
[47] MATSUSHITA M., SANO M., HAYAKAWA Y., HONJO H. and SAWADA Y., Phys. Rev. Lett. 53

(1984) 286.
[48] MATSUSHITA M., HAYAKAWA Y. and SAWADA Y., Phys. Rev. A 32 (1985) 3814.
[49] GRIER D. G., ALLEN K., GOLDMAN R. S., SANDER L. M. and CLARKE R., Phys. Rev. Lett. 64

(1990) 2152.
[50] SUTER R. M. and WONG P., Phys. Rev. B 39 (1989) 4536.
[51] CURTIS S. A. and MAHER J. V., Phys. Rev. Lett. 63 (1989) 2729.
[52] GOODISMAN J., Electrochemistry : Theoretical Foundations (Wiley, New York) 1987.
[53] HALSEY T. C. and LEIBIG M., Electrodeposition and diffusion-limited aggregation, preprint

(1989).
[54] (a) GUCKENHEIMER J. and HOLMES P., Nonlinear Oscillations, Dynamical Systems and Bifur-

cations of Vector Fields (Springer-Verlag, Berlin) 1984 ;
(b) Universality in Chaos, Ed. P. Cvitanovic (Hilger, Bristol) 1984;
(c) Chaos, Ed. Hao Bai-Lin (World Scientific, Singapore) 1984;
(d) SCHUSTER H. G., Deterministic Chaos (Physik-Verlag, Weinheim) 1984;
(e) BERGÉ P., POMEAU Y. and VIDAL C., Order within Chaos (Wiley, New York) 1986.

[55] (a) Nonlinear Phenomena in Chemical Dynamics, Eds. C. Vidal and A. Pacault (Springer-Verlag,
Berlin) 1981 ;

(b) Nonequilibrium Dynamics in Chemical Systems, Eds. C. Vidal and A. Pacault (Springer-
Verlag, Berlin) 1984.

[56] PACKARD N. H., CRUTCHFIELD J. P., FARMER J. D. and SHAW R. S., Phys. Rev. Lett. 45 (1980)
712.

[57] TAKENS F., Lect. Notes Math. 898 (1981) 366.
[58] COLLET P. and ECKMANN J. P., Iterated Maps of an Interval as Dynamical Systems (Birkhauser,

Boston) 1980.
[59] FEIGENBAUM M. J., J. Stat. Phys. 19 (1978) 25 ; 21 (1979) 669.
[60] COULLET P. and TRESSER C., J. Phys. Colloq. France 39 (1978) C5 ;

TRESSER C. and COULLET P., C. R. Acad. Sci. 287 (1978) 577.
[61] MORITA T., J. Math. Phys. 12 (1971) 1744.
[62] NIEMEYER L., PIETRONERO L. and WIESMAN H., Phys. Rev. Lett. 52 (1984) 1033.
[63] ARGOUL F., ARNEODO A., ELEZGARAY J. and SWINNEY H. L., Proc. of the NATO Summer

School, Growth and Forms : Nonlinear Aspects, Eds. M. Ben Amar, P. Pelce and P. Tabeling
(Cargèse) 1990, to appear.


