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Résumé. 2014 Nous analysons par des techniques de théorie des champs le comportement à grande
échelle d’un empilement de membranes réticulées ou polymérisées. Nous montrons que, dans la
phase découplée où il n’y a pas de résistance au cisaillement entre membranes successives, la
symétrie de rotation dans l’espace ambiant oblige à tenir compte de certains termes anharmoni-
ques. Ces termes additionnels renormalisent les coefficients élastiques et conduisent à une
élasticité anormale à grandes distances, de la même manière que pour une membrane réticulée
isolée.

Abstract. 2014 We analyse by field theoretical methods the large scale behavior of a stack of
tethered or polymerized membranes. We show that, in the decoupled phase where there is no
resistance to the shear between successive membranes, anharmonic terms dictated by rotational
symmetry in the bulk have to be taken into account. They renormalize the elastic coefficients and
lead to a large distance anomalous elasticity, as in the case of a single tethered membrane.
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Recent theoretical studies have shown that tethered, or polymerized membranes exhibit
rich thermodynamical behavior [1-6]. In contrast to linear polymers, they can at finite

temperature remain 2-dimensional and asymptotically flat. Indeed, as a consequence of the
coupling of out of plane fluctuations and internal phonon modes, the effective rigidity
modulus of the membrane, which measures its effective bending free energy, increases as a
power law of the scale of observation. At the same time, the internal elastic properties of the
membrane are modified, and governed at large distances by a universal anomalous elasticity
theory [1, 4, 5]. According to this theory, the effective Lamé coefficients vanish as power laws
of the scale of observation and strong phonon fluctuations occur within the plane of the
membrane. As a consequence, Hooke’s law is no longer valid for the stretching of the
membrane. These properties have been the subject of both recent analytical [4, 5] and
numerical [6] investigations. Experimental tests are however not yet available. In fact,
lamellar phases where the tethered membranes build a periodic stack appear as possible
candidates for experiments. One may then ask how properties of the single membrane
problem extend to the lamellar case, and in particular, whether membrane stacks also obey
some anomalous elasticity law. An important step in answering this question is found in
reference [7]. There it is shown that all elastic coefficients of the stack can be obtained from
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the single membrane theory. These elastic coefficients depend essentially on the distance
d between successive membranes, in a way which directly reflects the single membrane
anomalous behavior. Moreover, a transition was found for a critical value de of

d, which separates a coupled phase (d  de) where the stack behaves like a standard uniaxial
elastic 3-D solid from a decoupled phase (d &#x3E; de) where successive membranes can translate
freely on each other at no shear cost. This decoupled phase exhibits some 2-D elastic
properties. However, for fixed d and in both phases, elastic coefficients where found

independent of the scale of observation (i.e. not renormalized). In other words, no anomalous
elasticity was found for the stack itself. This result was actually obtained on the basis of an
harmonic theory for the stack. In this paper, we show that, in the decoupled phase,
anharmonic terms have to be included an renormalize the elastic coefficients of the stack. We
find that the process which leads to anomalous properties of a single tethered membrane
extends to the stack in its decoupled phase. Although very attenuated, some large scale
anomalous elasticity thus persists in the stack.

In section 1, we introduce the model for a stack of tethered membranes and show the
relevance of anharmonic terms in the decoupled phase. In section 2, we discuss the
renormalization of this model in a particular case and obtain the corresponding Renormali-
zation Group Equation. This equation is solved in section 3 where the resulting anomalous
elasticity is discussed.

1. The model.

We first introduce the continuous description of a stack of polymerized membranes in the
general case of D + 1 dimensions. In this description, each D-dimensional membrane

(D = 2 for the physical case) is labelled by its rest position in the (D + 1 )-dimensional stack :
z = n. d, with n integer and where d is the interlamellar distance. Each molecule is then
labelled by its cartesian coordinates at rest c- = (ui)i = 1, ..., D within the membrane. A

deformed configuration is then characterized by the position X(u, z) of each molecule
u of each membrane z :

where we introduce here the displacement fields ui and u,, corresponding respectively to
internal phonon modes within the membranes and out of plane fluctuations of the membranes
(i.e. phonons in the z direction). From these fields, we define the strain tensor invariant in
(D + 1 )-dimensional space :

with d namely :
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One can then build in the standard way the corresponding elastic energy. Assuming isotropy
within each membrane, one obtains the elastic Hamiltonian of an unixial (D + 1 )-dimension-
al solid [7] :

where al ao-, ao, i is the Laplacian operator orthogonal to the z axis. The last term in
au’ au’

equation (1.4) is the curvature (or bending) energy for the membranes. We have replaced the
discrete sum over successive membranes by a continuous integral over z. The interlamellar
distance d serves then as a short distance cut-off in the z direction.
The outstanding features that distinguish these stack from the general case of uniaxial solids

are in the structure of their elastic constants, which have their origin in the fluctuations of a
single membrane. Ko, Bo, /-L t .l, À t.l and À 6- Z behave as power laws of the interlamellar
distance d. This dependence is discussed for D = 2 in reference [7] and is based on the

anomalous elasticity theory for polymerized membranes [4, 5]. The main idea is that the

interlamellar distance d fixes a maximal in plane wave length for the fluctuations of each
membrane by controling the maximal amplitude for out of plane deformations. The elastic
coefficients of the stack are obtained from the renormalized elastic coefficients of the single
membrane problem at the corresponding scale. The results of reference [7] extend to any
dimension D between the lower critical dimension Dlc(1) for this single membrane anomalous
theory (with Dlc(1) strictly smaller than 2) and the upper critical dimensions D (’) = 4. For
/-L6-z, reference [7] predicts the existence of a critical interlamellar distance dc such that :

For d  dc, the stack behaves as a (D + 1 )-dimensional solid while for d &#x3E; dc, membranes can
freely translate with no shear cost. This phase transition is actually peculiar to the
D = 2 case where in plane fluctuations can be made arbitrarily small or large by varying
d and thus strengthen or weaken shear cost. One can show that IL tZ is strictly positive for any
d (i.e. dc --&#x3E; oo) for D &#x3E; 2 where in plane fluctuations are always small and IL t z = 0 for any
d (i.e. d,, = 0) for D  2 where in plane fluctuations are always large. In the following, we will
be mostly interested in the shearless phase, also called the decoupled phase in reference [7], at
D = 2 and will consider this phase at D  2 for mathematical convenience only.
We now turn to the relevance of anharmonic terms in the Hamiltonian H0, i.e. non-linear

terms in uij, Uiz and Uzz as defined by equation (1.3) :
- For IL6-z:&#x3E; 0 (d  dc), [ai] = [z] = 1 (where brackets indicate dimension in units of

length, as defined by power counting), leading to [uil = [uz] = 1 - D - 0 for any2

D &#x3E; Duc(1) (D (1) is strictly larger than 1). As a consequence, all anharmonic terms in

Ho are easily seen to be irrelevant and the strain tensor can be replaced by its linear formua(3 = 1 (3au(3 + 3(3ua). The curvature energy term is also irrelevant in this case and one ends2

up with the standard harmonic theory for (D + 1 )-dimensional unixial solid. We will not
discuss this case further.
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2013 For J.L6-z = 0 (d 2!; de) however, the absence of Uiz term in the Hamiltonian allows
ui and z to scale independently, making the result of power counting totally différent. Their
dimension is then fixed by comparing the compressibility term {ozuz)2 and the curvature
energy term ( a 1 uZ ) 2. This leads to [z] = 2[ui] ] = 2. The dimension of displacement fields is
now [ui] - - D and [uz] ] = 2 - D . Anharmonic terms involving aiuz become relevant for2 2
D  2. One is then led to the following anharmonic theory for the decoupled phase :

The anharmonicity in equation (1.6) is similar to that of the anomalous theory for a single
polymerized membrane. For a single membrane, the upper critical dimension is D (’) = 4 and
for D strictly smaller than this critical dimension, including D = 2, the renormalized Lamé
coefficients (respectively the rigidity modulus) vanish (respectively diverges) at large scales as
power laws. This dependence can be obtained for instance in the framework of an
e = 4 - D expansion. For the Hamiltonian of equation (1.6), the upper critical dimension is
shifted to Duc = 2 and the same results hold below this dimension. This will be shown in
details in the following chapters in an E = 2 - D expansion formalism. The change of the
upper critical dimension from 4 to 2 is just due to the added dimension of the extra z
component. For D  2, g -L -L and À J.. J.. (respectively K) are renormalized to zero (respectively
to infinity) as power laws of the scale of observation. For D = 2, the theory is asymptotically
free at large distances and power laws are replaced by a logarithmic dependence. In reference
[7] it was emphasized that elastic coefficients renormalize to finite values because of the
suppression of large wave length fluctuations of one membrane by the presence of other
membranes in the stack. However, collective long wave length fluctuations of several
successive membranes (undulation modes) are still possible in the stack, with no upper bound
on their amplitude. Such fluctuations which are suppressed in the coupled phase because they
also imply a shear between the membranes, persist in the decoupled phase. In other words,
one goes from a small wave length regime, where the amplitude of out of plane fluctuations is
small, governed by the single membrane behavior, to a large wave length regime, where large
out of plane amplitudes require fluctuations of several membranes. In the decoupled phase,
these fluctuations then continue to renormalize the elastic Lamé coefficients (respectively Ri
to zero (respectively to infinity) at large distances. This effect in the stack is of course very
attenuated in comparison with the single membrane problem, as indicated by the shift in the
upper critical dimension. The study of these renormalizations is the purpose of the following
chapters.

In conclusion, it should be noted that the situation described above is very similar to the
non-linear elastic theory of smectic liquid crystals [8], which can be obtained from

H0dec in equation (1.6) by ignoring ui and by setting 2 IL t J.. + À t J.. = À t z = Bo ; non-linear
terms dictated by rotational symmetry in bulk space lead to logarithmic renormalizations of
elastic constants in the model for D = 2. As noticed in reference [7], the harmonic theory of a
shearless stack of polymerized membranes is equivalent to the harmonic theory for smectics
by simple integration over ui. This equivalence breaks down at the anharmonic level which we
consider here. We are thus in the presence of a new critical theory with new critical exponents
which we will now investigate.
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2. Renormalization group analysis.

2.1 RENORMALIZABILITY. We now turn to the renormalization of Hamiltonian

H0 dec of the decoupled phase. H0 dec is invariant under Euclidean transformation within the
membranes, translation in the z direction and under the following symmetries :

for arbitrary Ai and Bi, corresponding respectively to reversing the z direction, rotating the
stack in bulk space, and performing a shear transformation between successive membranes.
Renormalizability requires the consideration of the most general local Hamiltonian satisfying
these symmetries and involving relevant terms for D  2, namely (1) :

As discussed in reference [5] for a single membrane, the first additional term corresponds to
application of a lateral stress in the plane of the membranes. Such a term must be considered
in general since the shrinking of the membrane due to thermal fluctuations generates an
effective lateral tension when fixed boundary conditions are imposed on the stack. The
second additional term has the same origin for compression in the z direction. A complete
renormalization treatment thus involves a priori seven independent renormalizations (2) and
is rather difficult. Here we decide for simplicity to consider only the special case of membrane
stacks with À6-z - T ô = 0. This choice strongly reduces the number of diagrams since the
propagator is made diagonal and one vertex is suppressed. This property is moreover

preserved by renormalization as a consequence of the new symmetry in this case

. 

u,, u z (or, according to Eq. (2.1), the equivalent symmetry z -&#x3E; - z). The Ta = 0
condition means that the membrane is free to relax to its equilibrium position in the z
direction. The physical relevance of the À 6- z = 0 assumption is more difficult to motivate.
However, one should keep in mind that JL6-z = 0 (not À6-z = 0) is the necessary condition for
relevance of anharmonic terms in the Hamiltonian. In other words, the presence or the
absence of À 6- z does not modify qualitatively the large distance behavior of the stack, namely
the vanishing or divergence of elastic coefficients as power laws or logarithmically. Whether it
modifies quantitatively this behavior, i.e. changes the corresponding critical exponents,
depends on the stability of the fixed manifold k = 0. We will return to this question at the
end .of this article.

(1) In principle, one should also add a term proportional to 82 azUz but we will ignore it since

f dDu dz(3 Õ.uz) = 0.
(2) One can actually get rid of the fs renormalizations in a dimensional regularization formalism by

considering orily stacks without external applied stress.
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2.2 RENORMALIZATION GROUP EQUATION FOR À.Lz = 0. - It is convenient to redefine the
variables according to :

and to omit the ~ in what follows. With this implicit rescaling, the Hamiltonian reduces to :

and involves, as in the single membrane case, a mass parameter with

dimension - 1 and two coupling constants :

with dimension D - 2. The combination which appears in the

definition of Ho is the compression modulus within a single membrane. Renormalization of
Hamiltonian (2.5) is discussed in Appendix A in the framework of an £ = 2 - D expansion. It

requires a priori five independent renormalizations :
- one common multiplicative wave function renormalization Z for both ui and

Uz,
- a multiplicative renormalization Zz of the z coordinate,
- two multiplicative renormalizations Z, and ZH for ¡1 and H,
- a « mass » renormalization Z, of T, multiplicative in the e expansion formalism.

It can be shown however (see Appendix B) that Z, = 1 at all order in perturbation theory,
as an additional consequence of the absence of a Uii Uzz term (i.e. of the À.LZ = 0

simplification) and one is left with only four renormalizations. The scaling behavior of the
stack is then encoded in the Renormalization Group Equation for the renormalized 1-particle
irreducible function rR(N, M) with N external uz legs and M external ui legs. In momentum
space, it reads (see Appendix A) :

involving only four Wilson functions f3 IL’ 8 H, y and ’Y T’ functions of the renormalized

coupling constants â R and HR only, corresponding to the remaining four independent
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renormalizations. The Wilson functions are calculated at one loop order in Appendix B, with
the following result :

3. Anomalous elasticity.

3.1 THE D  2 CASE. - We will briefly discuss the anomalous elasticity in the case

D  2. However this case is academic since the lower critical dimension for anomalous

elasticity is strictly larger than 1 and thus no integer dimension lies in the corresponding
interval. Moreover, it is completely similar to the single membrane case for D  4 which is
extensively discussed in reference [5]. We will thus give its main properties, namely :

(i) TR = 0 is a critical surface, corresponding to a stack with no applied lateral stress.

(ii) In this surface, the Ji R = 0 and HR = 0 lines are renormalized onto themselves as a
consequence of new symmetries in these cases (see Ref. [5]).

(iii) The renormalization flow in the TR = 0 surface has four fixed points. One purely
repulsive fixed point (in the infrared) at the origin, one partially attractive fixed point on each
of the Ji R = 0 and BR = 0 lines, and one purely attractive fixed point with both

Ji R and BR non zero.
At first order, the three non trivial fixed points, and the corresponding anomalous

dimensions are listed in table I.

Table 1.

It can be shown (see Ref. [5] for the derivation of an analogous result) that as a

consequence of an equation of motion, the relation 1’: + 1 y * = e holds àt all order in the E2

expansion at the fixed points with ÀR # 0, reducing to one the number of independent critical
exponents. This exponent appears for instance in the scaling forms for r2, O)(P.l’ P zR) or
TRO, (P,, PzR) in the absence of lateral stress (fR = 0) :
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Notice that from the first equation, one obtains the property rk2, 0)(0, P zR) oc p R which
means that the stack compression modulus Bo is not renormalized. This property, which is
actually equivalent to the Zz = 1 property, is however a consequence of the À6-z = 0
assumption, i.e. the absence of coupling between compression modes in the z direction and
the orthogonal direction (within the membranes). Finally, we obtain the modification of

Hooke’s law for the relation between the lateral elongation e = 1 (aiui&#x3E; and the appliedD

lateral stretching force f from the corresponding Renormalization Group Equation :

which at the fixed point gives :

3.2 THE D = 2 CASE. - The properties (i) and (ii) described in the preceeding paragraph
extend to the D = 2 case. The four fixed points described in (iii) now merge into one single
attractive fixed point at the origin. The theory is thus asymptotically free. The general
solution of the Renormalization Group equation involves the Renormalization group flow

(p, (f), Îl(f)) defined by :

with the initial conditions Ji (1) = Ji R, lÎ( 1) = HR, and the corresponding scaling functions
g (f) and g,(l) being solutions of :

with initial conditions g (1) = g T (1) = 1. The general solution for r R(N, M) satisfies :

The solution of equation (3.4) for the one-loop values of the Beta functions (2.7) is given in
Appendix C. To obtain the large distance properties of the stack, one needs only its behavior
at small f. This behavior depends only on whether or not one of the initial values

il R and ÊR vanishes (see Appendix C). For the general case where both are not zero, one
has :
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The corresponding solutions of (3.5) behave as :

From these equations, we can get the small p, (or small Pz) behavior of the r(N, M,S. For
r (2, 0) (p , P -,R) at T R = 0 for instance, by choosing f = 1 p , 1 --&#x3E; 0, the coupling constants

fi ( 1 p , 1 ) and fi( 1 p , 1 ) go to 0 and one can replace the right hand side of equation (3.6) by its
classical value, namely :

From this expression, we see that the compression modulus Bo is not renormalized. As

mentioned previously, this is a consequence of the À .L Z = 0 assumption. The effective rigidity
modulus K ( 1 P.L 1 ) diverges at small Ip, 1 like :

An analogous argument for r1o,2) leads to the vanishing of the Lamé coefficients at small
Ip1. 1 :

The same relations hold at small PzR with 1 P 1. 1 replaced by P zR. Finally from equation (3.2),
we obtain :

From this and the classical relation e oc f we obtain the modified Hooke’s law :H

4. Conclusion and discussion.

We have shown that, in its decoupled phase (JL6-z = 0), a stack of tethered membranes obeys
an anomalous elasticity law. As for a single tethered membrane in its flat phase, the Lamé
coefficients vanish at large distances, while the rigidity modulus diverges. Power laws are,



2416

however, replaced by logarithmic dependences (Eqs. (3.10), (3.11)). This is illustrated for
instance by a modification of Hooke’s law (Eq. (3.13)) for the relation between lateral

stretching force and the corresponding lateral elongation. We have made these corrections
explicit in the special case where no coupling is introduced between stack compression (in the
z direction) and in plane compression, namely when Atz = 0. These logarithmic corrections
could also in principle be seen in the structure factors (see Ref. [8] for an analogous result).

Let us finally discuss the effect of a non vanishing A 1- z in the theory. This first of all does not
modify the existence of logarithmic corrections, which are a consequence of the vanishing of
J.L6-z only. Whether or not the critical exponents obtained above for K, /1 and H are modified
depends on the stability of the A 1- z = 0 manifold. The relevance of the corresponding

operator f dD u dz uii Uzz for c &#x3E; 0 is given by its dimension at the non trivial attractive fixed

point, which is found to be 1 E - 3 y * in units of length. Since we want the exponent in2 2
Hooke’s law (3.3) to be smaller than 1 [5], this dimension is easily seen to be positive (this can
be verified with the one loop value obtained for y *) ; we thus have a relevant perturbation.
As far as K and B are concerned, one can integrate over the phonons ui and get an effective

theory for uZ. The results of this integration are :

(i) a shift of B :

(ii) a long distance interaction within each membrane between Gaussian curvatures at
different points of the membrane. This intra-membrane long range interaction is exactly the
same as the one found in the single membrane theory [5]. It is in particular independent of
Al..z.À 0LZ; ,

(iii) a long distance interaction within each membrane between the Gaussian curvature at
one point and the local compression at some other point, namely :

with

Besides introducing the simple shift (i), a non vanishing À.lZ has thus the non-trivial effect of
introducing a new long distance coupling (iii) between compression and curvature. Since (4.1)
involves compression in the z direction, it seems unlikely that B remains unrenormalized. In
any case, these issues, which require a full renormalization treatment, go beyond the scope of
this paper. Further investigations of the À t z =F 0 case are in progress. To end this discussion,
we would like to mention that the actual importance of À .1 Z in the bare theory is measured by

( J-zB2
thé dimensionless (for any D) quantity a 0 = ( À 6- z)2 which, to satisfy athe dimensionless (for any D) quantity a0 = 

«2/D) JL6--L + Àt-L) Bo 
which, to satisfy a

stability requirement, lies in the range 0 , a 0 -«--- 1. According to the results of reference [7], it
behaves as a0(d) ~ d-4 at D = 2 and can thus be made arbitrarily small by increasing the
distance d between successive membranes.
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Appendix A.

Renormalization requires to rewrite the Hamiltonian (2.4) in its renormalized form :

m is the renormalization mass scale. As discussed in Appendix B, one can actually choose
Z, = 1 at all orders in the expansion. Equation (Al) is then equivalent to define the
renormalized quantities as :

Using the equality of:

for the renormalized theory with I = R and the bare one with I = 0, we get the relation :

Expressing first the fact that the left-hand side of equation (A4) is independent of the
renormalization mass scale m, and using then the homogeneity equation for rR(N, m) (which
has dimension D + 2 + N ( 1 + D /2 ) + M(1 + D ) in units of mass), we obtain in the standard
way the Renormalization Group Equation (2.6) with the définitions :

where the index 0 means that the derivatives are made at constant bare values.
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Appendix B.

We compute here the renormalization factors Z, Z,, Zm, ZH and Z, at one loop in

e = 2 - D in a minimal subtraction scheme. Decomposing the renormalized form (Al) of JC
into its classical part and counterterms, one can read the following diagrammatic rules :
- The uzR uzR&#x3E; propagator is :

- The (ufUjR) propagator is :

A first vertex involves four uzR external legs :

- A second vertex involves two uzR and one ut extemal legs :

The one loop diagrams divergent at D = 2 are topologically identical to the one loop
diagrams, divergent at D = 4, of the single membrane theory. They are listed in reference [5]
and will not be reproduced here.
The one-loop renormalizations of fi and fI are obtained from the pole at - = 0 of the one-

loop contribution to r (0, 2), namely :

This pole is removed by the corresponding counterterms with :
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The renormalization factors Z, Zz and Z, are obtained in the same way from the pole in e of
the one loop contribution to r (2, 0):

This pole is removed by choosing :

Since to all external legs of the vertices is attached a p £ , it is easy to see from the

diagrammatic rules that the « self energy» .I (p -L , P zR) = r 2, 0 )(p -L , P zR) - (Z 1 p -L 14 +
ZT f RI p -L 2 + Zz P2zR) is proportional to )pj 2. It is thus impossible to build a diagram with a
divergence proportional to P2zR only and the result Zz = 1 thus holds at all orders in

perturbation theory.
From (B6) and (B8), and their définition (A5), we get the Wilson functions (2.7).

Appendix C.

We discuss here the Renormalization Group flow (fi (f), Îl(f)) in the T R = 0 plane at
D = 2, as defined by equation (3.4) and calculated from the one-loop Beta functions (2.7)
with E = 0. One must distinguish three cases :

(i) Starting from arbitrary initial non vanishing values ( û R, Îl R) at f = 1 we get the general
solution for the flow with decreasing f :

This flow is represented in figure 1. The line fi = 2 fi is a fixed line at first order of
perturbation, with the corresponding flow :
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Fig. 1. - Renormalization Group flow of H and i at D = 2 on the critical surface f R = 0. This flow is
obtained from the one loop beta functions.

The small f behavior is actually governed by this line for any initial value in regime (i) and is
1-o

given by equation (3.7). It satisfies -+&#x3E; 2.

H(f)
(ii) Starting with Ji R = 0, one stays on the il = 0 line, which is a fixed line qt any order in

perturbation (as explained in Ref. [5]). The corresponding flow at first order for

H is :

(iii) Similarly, starting from BR = 0 leads to the following flow for fi on the fixed (at all
orders) line 77 = 0 :
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