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Résumé. 2014 La phase smectique A lyotrope diluée a été étudiée par une expérience de diffusion
de neutrons aux petits angles réalisée sur des échantillons orientés. Le facteur de structure d’un
smectique A binaire est établi théoriquement en considérant explicitement le couplage anisotrope
entre les fluctuations de concentration et celles de déplacement des couches. La diffusion aux
petits angles ainsi que d’autres caractéristiques remarquables des spectres, de même que leur
devenir au cours de la dilution, sont prévus. L’accent est mis sur les différences entre phases
lamellaires diluées suivant que leur stabilité a pour cause l’interaction électrostatique non
amoindrie ou l’interaction stérique d’ondulation. La théorie fournit un cadre cohérent pour
l’interprétation de l’éxperience.

Abstract. 2014 Small-angle neutron scattering experiments on dilute lyotropic smectics A have been
performed on oriented samples. The structure factor of a two-component smectic A is derived
theoretically, taking explicitly into account the anisotropic coupling between concentration and
layer displacement fluctuations. The anisotropic small-angle signal and other characteristic
features of the spectra, and their evolutions with dilution, are predicted. The differences between
electrostatically and sterically stabilized dilute lamellar phases are emphasized. Experiments are
consistently described by the theory.
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Introduction.

The smectic A phase of multicomponent surfactant/solvent systems sometimes displays a
remarkable feature : it exists over a wide range of surfactant concentration (surfactant volume
fractions from a few ten % down to less than one %), the smectic repeat distance
d varying continuously upon addition of a solvent from molecular sizes up to very large values
(repeat distances about 1 ktm have been reported [1-5]). In the dilute range, a colloidal
smectic phase is obtained. This dilute phase is interesting because its macroscopic 
thermodynamic and hydrodynamic - properties can presumably be described in universal
terms, without any explicit reference to detailed molecular characteristics. It is pictured as a
stack of membranes - the surfactant bilayers, with typical thicknesses b about 30 Â

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:0199000510200233300

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:0199000510200233300


2334

interacting by means of short range (hydration [6], screened electrostatic) or long range (Van
der Waals, electrostatic) forces. The membranes themselves are characterized, in terms of the
Helfrich elastic energy density [7], by their bending modulus K. The particular case when
K becomes comparable to the thermal energy kB T deserves special interest, since thermally
excited undulation fluctuations of each membrane are now striving for large amplitudes, but
are hindered by the presence of neighbouring membranes. The resulting loss of con-
formational entropy leads to an effective long range repulsion [8], which overwhelms the Van
der Waals attraction at large intermembrane distances and which accounts for the stability at
high _dilution of the smectic phase in non-electrostatic systems. The relevance of such a
theoretical scheme to describing macroscopic properties of colloidal smectics [8-10] is

provided, for example, by static [11-13] or dynamic [14-15] scattering measurements of
smectic elastic constants or by direct measurements of intermembrane forces [16].

Static X-ray or neutron scattering experiments on colloidal smectics were at first [11, 17]
mainly concerned with the study of the precise shape of the quasi-Bragg peak associated with
the quasi-long range one-dimensional translational order characteristic of any smectic A
phase. It is indeed well-known that this shape is controlled by the elastic constants of the
smectic phase [18-20]. However, in addition to a quasi-Bragg peak, the recorded spectra
display an « unexpected » small-angle scattering that many become so strong as to thoroughly
overwhelm the quasi-Bragg singularity [11]. The small-angle signal was first specifically
studied by Porte and coworkers : working on cylindrically oriented samples, they showed that
it was anisotropic [21]. They ascribed its origin to surfactant concentration fluctuations linked
to membrane undulations, and, by means of a numerical evaluation of correlation functions,
predicted an universal line shape for sterically stabilized dilute lyotropic smectics [22]. It is our
aim in this paper to deepen their study : in the first part, we present our results of a small-
angle neutron scattering study of various sterically or electrostatically stabilized lamellar
phases, performed on planar oriented samples ; the second part is devoted to the analytic
computation of the correlation functions of interest, based upon a very general harmonic
description of a two-component smectic A phase. Our model rests on the concentration
fluctuation mechanism originally proposed by Porte and coworkers [22] but in contrast with
them we find a non-universal line shape. In the third part, we interpret our data with the
model and extract estimates of various elastic parameters.

Part 1.

In order to observe conveniently the small-angle spectrum of oriented samples, neutron
scattering is the most suitable technique : oriented samples can be got in large volume cells ;
the use of deuterated water enhances the contrast ; 2D detectors are routinely available for
quantitative analyses ; there is no need of high resolution to record the small-angle signal. The
small-angle neutron scattering experiments have been performed on the neutron line PAXY
equipped with a two-dimensional detector at Laboratoire Léon-Brillouin, CEN-Saclay,
France. For most of our experiments, the neutron wavelength was À = 8 A with a sample-to-
counter distance L = 6.786 m. The sample cells are analogous to the ones described by
Charvolin and Hendrikx [23] : about 20 rectangular (30 x 5 mm 2, thickness 180 jim) quartz
plates are held parallel, roughly 200 um apart, by two glass-charged Teflon combs within
10 x 10 x 50 mm3 quartz cells. The cells are filled by capillarity, then mildly centrifugated to
get rid of remaining air bubbles, plugged with a Teflon cap and sealed with glue. The
orientation of the surfactant layers parallel to the quartz plates is achieved by means of a
thermal cycle : the samples are heated up to the isotropic phase, let to stand at that

temperature (60-80 °C) for a few hours, then slowly cooled down to room temperature (at
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about - 0.5 °C /min). In order to improve tightness, the cells are enclosed in small bottles
during the thermal cycle. The scattering experiments are performed with the long sides of the
rectangular quartz plates perpendicular, and the small sides either parallel (planar orientation)
or perpendicular (homeotropic orientation) to the neutron beam. In the planar configuration,
the spanned reciprocal space is :

where the z-direction is along the normal to the smectic layers.
The studied samples belong to three series : « oil dilution », when the sodium dodecylsul-

phate (SDS)-pentanol-water bilayer is diluted by addition of a dodecane-pentanol solvent ;
« brine dilution » (SDS-pentanol membrane, water-NaCI solvent) ; « water dilution » (two
groups : SDS-hexanol membrane, water ; or didodecyldimethylammonium bromide (DDAB)
membrane, water). The only deuterated species is water.

Perspective views of the 2D scattering profiles obtained in the planar configuration for the
SDS series are displayed in figures 1-3. The intensity is mainly scattered along the

qZ-axis, with noticeable Bragg peaks for the less dilute samples. The anisotropy of the figures
implies that the samples are, at least partially, oriented : a powder would have given isotropic
rings instead of Bragg peaks, for instance. The quality of the orientation can be checked more
stringently on homeotropic spectra : perfectly oriented samples should then display an
isotropic scattering without Bragg peak, whereas we still get spectra qualitatively similar to
the ones observed with the planar orientation, though at much lower intensities. This means
that the remaining disoriented parts of our samples are not powder-like but still appear as

Fig. 1. - Two-dimensional scattering profiles of four oil-diluted SDS samples. The smectic repeat
distances are, respectively : i) d = 10.3 nm ; ii) d = 15.0 nm ; iii) d = 23.3 nm ; iv) d = 34.9 nm. The
well in the profile is the shadow of the beam-trap.
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Fig. 2. - Two-dimensional scattering profiles of three brine-diluted SDS samples. The smectic repeat
distances are, respectively : i) d = 13.4 nm ; ii) d = 24.2 nm ; iii) (extrapolated value) d = 105 nm.
Compare graphs i) and ii) here with the corresponding dilutions in figure 1, i.e. with graphs ii) and iii).

oriented domains. They have a low volume fraction : the Bragg peak intensity is at least 10
times smaller for the homeotropic orientation as compared to the planar one. On the other
hand, it was not possible to get oriented DDAB samples : the 2D profiles for both planar and
homeotropic orientations of the cell display isotropic Bragg rings. The 1 D spectra (resulting
from the isotropic averaging over the 2D multidetector) are displayed in figure 4.
The scattering profiles for the oil or brine dilutions differ qualitatively in two respects from

those yielded by the water-diluted samples : i) the former only display a first order Bragg peak
(in the low surfactant content limit), whereas two or three peaks are observed with the latter,
even at high dilution ; ii) an anisotropic small-angle scattering, rapidly increasing, as swelling
proceeds, at the expense of the Bragg peak, is observed on planar spectra for the oil and brine
dilutions, whereas no significant small-angle signal is seen for the water dilution. Note also
that at comparable swelling, the small-angle signal is more intense for the oil dilution than it is
for the brine dilution.

Part 2.

In order to describe the scattering properties of lyotropic smectics, we start from the following
assumptions : i) the scattering originates in the spatial modulation of the surfactant density
ps(x) (the scattering from the (low contrast) solvent is negligible) ; ii) pS (x) is described, at
the one-wave level [24], with a wavenumber qo = 2 irld (d : smectic repeat distance), by :
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Fig. 3. - Two-dimensional scattering profiles of three water-diluted SDS samples. The smectic repeat
distances are, respectively : i) d = 7.85 nm ; ii) d = 9.96 nm ; iii) d = 12.2 nm. The vertical intensity
scale has been blown up by a factor ten for graphs ii) and iii) : the third order Bragg peaks are clearly
apparent. The low intensity isotropic rings lying on foot of the Bragg peaks arise from unoriented
domains.

i.e. we have assumed a perfectly oriented (no defects) and incompressible (non-fluctuating
total mass density p ) sample, with thermally excited fluctuations in surfactant mass fraction
(ô c (x)) and in layer position (u (x)). The amplitude of the modulation, inversely proportional
to the smectic repeat distance d, is às ; it does not fluctuate.
The intensity scattered at a wavevector q by an irradiated volume V of such a lyotropic

smectic is proportional to :

where the correlation function g is defined as :

The surfactant scattering length is bs, its molecular mass ms and dp means : p 2013 (p ).
The (Gaussian) fluctuations of concentration 5c and layer displacement u are controlled by

the harmonic elastic free energy density of a two-component smectic A. We have included
gradient terms for the concentration fluctuations, as well as gradient terms for the layer
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Fig. 4. - One-dimensional scattering profiles of three water-diluted DDAB samples. The smectic
repeat distances are, respectively : i) d = 28.6 nm ; ii) d = 57.1 nm ; iii) d = 72.4 nm. For open circles,
the vertical intensity scale has been blown up by a factor six. The third order Bragg peak remains at the
highest dilutions. There is no significant small-angle scattering.

displacement which are higher order than usual for smectics [25, 26]. These extra terms are
required to represent the q-dependence of the (anisotropic) small-angle scattering which
appears in the most dilute samples :

The elastic constants entering this expression are the usual compression (at constant
surfactant concentration) and bending moduli, respectively B and K ; the osmotic compress-
ibility X ; the lowest order coupling constant C (the compression modulus at constant
chemical potential is expressed as : B = B - C 2 X) ; and the required higher order (in a wave-
vector expansion) terms (the K’s) to cope with the concentration gradient terms (03BE Z and

e, are the correlation lengths for concentration fluctuations respectively along and
perpendicular to the layer normal).
The three basic correlation functions derive from the above expression for the free energy

density, with the help of the equipartition theorem :
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In these expressions, the q-dependent elastic constants are defined as :

The correlation function g (x), related to the intensity of scattered neutrons, can now be
evaluated :

In order to obtain this expression, we use the following properties of random Gaussian
variables :

and the fundamental Landau-Peierls instability [27, 28] of the one-dimensionaly ordered
smectic A phase ( (u2) diverges as the logarithm of the size of the system).
The Fourier transform of g (x) gives the intensity scattered by a two-component smectic A.

It contains two terms : a low angle part, related to concentration fluctuations, proportional to
the function ( d c (q ) d c (- q )) given above ; a quasi-Bragg part, related to the smectic

ordering, proportional to the Fourier transform of cos (qo z) exp (- q 0 2 (u (x) - u (0))2) /2).
This last term is essentially the classical [18-20] structure factor of the one-component smectic
A, since our expression for the correlation function (u(q) u(- q) has the classical long
wavelength behaviour. It therefore anisotropically diverges in the vicinity of the Bragg
position as :

with the exponent q defined in terms of the elastic constants by :
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Note that the intensity is scattered anisotropically, not only around the Bragg positions, but
at small angles too, owing to the anisotropic coupling between layer displacement and
concentration fluctuations. This is easily seen in the following zero angle limits :

The scattering is more intense by a factor B/B along qZ, than it is along q| (note that by
definition B is always smaller than B). The spatial extent of the small-angle scattering is also
different along z and | axes : in both directions, the functional form is that of an Ornstein-
Zernike behaviour, with different compressibilities as already mentioned, and with different
effective correlation lengths ezeff and e,eff. An expansion of the denominator of the
concentration correlation function, respectively in powers of qZ at q1 - 0 or in powers of
q1 at qz = 0, yields :

Some of the numerous elastic constants that enter the free energy density formula, namely
the lowest order ones B, C, y and K, can be calculated with the help of simple microscopic
models of colloidal smectics. We shall here consider the two paradigms of many dilute
lamellar phases : rigid surfactant membranes with unscreened electrostatic repulsions
between lamellae (electrostatically stabilized lamellar phases) [12, 15, 25] ; flexible surfactant
membranes and Helfrich’s steric repulsions (sterically stabilized lamellar phases) [8-11, 29]. In
the first case, where the membranes are not expected to be significantly crumpled, the main
mechanism for surfactant concentration fluctuations at constant smectic repeat distance
d is the local variation in the thickness d of the surfactant membrane (Fig. 5a) ; indeed, on
geometrical grounds, the link between concentration (mass fraction) c, thickness d and

spacing d is given by :

(vs is the surfactant molecular volume).
On the other hand, for sterically stabilized colloidal smectics the surfactant membranes are

expected to be crumpled [30-32]. Changes in the crumpling ratio AB/A (A is the total area of
a surfactant membrane, A B its « base » area, see Fig. 5b) at constant layer spacing become the
dominant mechanism for surfactant concentration fluctuations [29]. The swelling law here
becomes :

where the crumpling ratio involves (experimentally relevant [5]) logarithmic [10, 29, 31] ]
corrections to the simple 1 /d swelling law.
At a given concentration c, the equilibrium values for d and 8 (electrostatically stabilized

systems) or for d and A /AB (sterically stabilized ones) result from two competing effects :
repulsive interactions, direct or steric, which favour large repeat distances d ; and the
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Fig. 5. - Schematic représentation of concentration fluctuations at constant layer spacing occurring in
lyotropic smectics : a) membrane thickness fluctuations, relevant for flat (rigid) membranes ; b) crumpl-
ing ratio fluctuations, relevant for crumpled (flexible) membranes.

selection of an optimum thickness, or crumpling ratio, which prefers a particular value of
d for a given concentration. A model for the free energy per unit volume of the stack structure
which features this competition is the following sum of two terms :

The interaction potential per unit area is V (d) ; the second term describes in the harmonic
approximation, with a characteristic energy per unit volume U, the departure of

X (ratio of the membrane thickness to its preferred value, 5150, or crumpling ratio,
A/AB) from its optimum value Xo (1 or close to one, up to logarithmic corrections [29]).
For unscreened electrostatic interactions, the interaction potential is [33] :

(Lb is the Bjerrum length of the solvent) and the characteristic energy U can be taken as the
product of E, a characteristic molecular energy presumably of the order of kB T, by the
surfactant number density )5»clms.
For sterically stabilized systems, the interaction potential becomes :

(the numerical constant entering this expression is the one given by Helfrich [8]) and the
energy U is given by [29] :
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The elastic constants B, X -1 and C are then obtained by an expansion, up to second order
in 8 d and 8 c, of the free energy density around an equilibrium state {c, deq(c)}; we get :

i) electrostatically stabilized colloidal smectics [15] :

ii) sterically stabilized colloidal smectics [29] :

For both kinds of systems, the smectic splay constant K is related to the membrane bending
modulus K by : K = K Id.

The values of the elastic constants can then be used in order to predict some characteristic
features of both the Bragg singularities and the small-angle scattering.

i) STERICALLY STABILIZED COLLOIDAL SMECTICS. In this case, the exponent 71 is an

universal constant [11], n = 4/3, at large dilution. Since the exponents q m associated to the
m-th order quasi-Bragg peak scale as m 2 . n [18, 19], all the qm for m greater or equal to 2 are

larger than 2. Therefore, the Bragg singularities of order two or higher consist in the vanishing
of the structure factor (as 1 q Z - m . q o |- 2 + TI m along q_,, for instance) instead of its divergence :
no Bragg peak apart from the first order one is expected for such dilute lamellar phases. The
height of the first order Bragg peak (taking into account the finite size of the irradiated sample
and the resolution of the experimental set-up), properly normalized, can be shown [19] to
scale as À 1 - n / d2, , where À is the smectic penetration length : A = (K/ B)1/2. Hence, since a
sterically stabilized colloidal smectic has A = 8 K d, the first order Bragg peak vanishes

37T BT
as d -7/3 when the repeat distance d increases. 

ir KBB T

The osmotic compressibility X is an increasing function of the repeat distance,

X oc d, and the ratio BIÈ is large, independent of dilution, proportional to the square of the
membrane bending modulus [29] :

It results that the small-angle signal is more intense for more dilute samples, therefore
overwhelming the Bragg signal : the relative Bragg over small-angle intensity scales as

d- 10/3 ; the small-angle signal is also very asymmetric and all the more asymmetric as the
membranes are less flexible.
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ii) ELECTROSTATICALLY STABILIZED COLLOIDAL SMECTICS. - The exponent 7y is given in
this case by :

It is asymptotically zero for large repeat distances d : the quasi-Bragg singularities remain
power law divergences and more than the first order Bragg peak can be observed. With

A = 2 K Lb d , the height of the Bragg peaks scales as d- 3/27rkB T ’
Since the osmotic compressibility X now decreases when the surfactant concentration is

decreased (X oc c ), the small-angle signal I (0, q.1. ) has a vanishing intensity at high dilution
along the | direction ; on the other hand, the product XB/B is a constant, of the order the
osmotic compressibility of any ordinary binary fluid. This means that the small-angle signal
l(qz, 0) is weak and does not vary with dilution. Ultimately, the small-angle signal along
qZ nevertheless dominates over the Bragg signal since the relative Bragg to small-angle
intensity goes as d- 3/2 Nevertheless, that effect is much weaker than in sterically stabilized
systems and, except perhaps at very high dilutions, the small-angle scattering will not be a
conspicuous feature in the spectrum of dilute, electrostatically stabilized colloidal smectics.

Part 3.

We wish now to compare the model described in the preceding section to our experimental
spectra. As already noted in Part 1, our samples are not perfectly oriented : the comparison
can be at best semi-quantitative. In particular, we shall not attempt to fit the theoretical

intensity I (q z, q , ) to the experimental data. In what follows, we restrict ourselves to one-
dimensional fits along the particular direction qz. Moreover, since the detailed description of
the Bragg singularity requires high-resolution spectroscopy [11, 20] which is not attainable
with neutrons as probing radiations, we simplify the theoretical description of its shape, using
a Lorentzian form (Bragg peaks in smectics are not resolution-limited, Eq. (9)). The fitting
function along the qz direction is therefore chosen as :

The fitting parameters are the amplitudes of the small-angle and Bragg scattering,
respectively Az and A B, the effective correlation length for concentration fluctuations along
the z axis, eff, and parameters related to the resolution of the spectrometer, R, and to the
background isotropic incoherent scattering, B. The position of the Bragg peak, qo, is fixed to
its measured value, or to its extrapolated value for the most diluted samples. In figure 6 are
displayed some representative fits, for the oil-diluted samples. With the fitted parameters
from the 1-D spectra, supplemented by reasonable guesses for the other elastic parameters
[15, 29], it is possible to reconstruct theoretically the two-dimensional spectrum I (qZ, q 1 ).
Figure 7 illustrates qualitatively the validity of such a procedure.
The relevant parameters extracted from the one-dimensional fits, the effective correlation

length along z, 03BEzeff and the relative Bragg to small-angle intensity, AB/RAz, are plotted as
functions of the smectic repeat distance d in figure 8. The relative intensity can unfortunately
not be extracted from the data at both ends of the dilution line, where either the Bragg or the
small-angle intensities are too strong to allow a meaningful fit. The strong decrease of the
relative intensity is somewhat slower than the theoretically expected - 10/3 power law. On
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Fig. 6. - Fits of the theoretical lineshape to experimental data (oil-diluted SDS samples), along the
qz axis : i) no significant small-angle scattering ; d = 10.3 nm ; ii) and iii) comparable Bragg and small-
angle scattering ; d = 15.0 nm and d = 23.3 nm ; iv) no significant Bragg scattering ; d = 34.9 nm.

Fig. 7. - Two-dimensional scattering profiles of lyotropic smectics A : i) theoretical profile ;
ii) experimental profile. The elastic parameters correspond to an oil-diluted SDS sample with a smectic
repeat distance d = 15.0 nm (Fig. Iii).

the other hand, there is as yet no firm theoretical expectations for the behaviour of

03BEZ eff : it involves the higher order elastic constant KI. If we tentatively assume that

2K1 is close to z then Z e ff is enhanced with respect to e, by the large factor
B

B/B. The observed behaviour is then simply the plausible ez oc d.
For the brine and water-diluted samples, the data are not good enough to allow a sensible
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Fig. 8. - Bragg to small-angle relative intensity (open circles, left scale) and effective correlation length
ç z efT (filled triangles, right scale), from fits to experimental data on oil-diluted SDS samples. The dotted
line is a guide to the eye.

fitting procedure. We simply note qualitative agreement on the following points : the

magnitude and asymmetry of the small-angle scattering are less for the brine-diluted samples
than for oil-diluted ones, at comparable dilutions, as expected for more flexible [14]
membranes ; the small-angle scattering is very weak for water-diluted samples, as expected
for electrostatically interacting membranes.

Conclusion.

The small-angle scattering observed in colloidal smectics is described as arising from the
anisotropic coupling between concentration and layer displacement fluctuations. The
structure factor is calculated from the most general harmonic form for the elastic free energy
of a two-component smectic A phase, taking into account the lowest order gradient terms in
concentration fluctuations. Elastic constants can in principle be obtained from a quantitative
measurement of the shape of the anisotropic diffusion spectrum. This would presumably
require high-resolution X-ray or light scattering, on perfectly oriented samples. Our small-
angle neutron scattering experiment is in qualitative agreement with the proposed model : for
the case of colloidal smectics stabilized by the Helfrich’s steric repulsion, the small-angle
signal is both more intense and more anisotropic for less flexible membranes ; for

electrostatically stabilized systems, there is essentially no small-angle scattering, because of
the much smaller values of the relevant compressibilities.
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