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Abstract. - Recent experiments of wetting immiscible displacement in porous media and bacteria
colony growth are considered as realizations of the Eden interfaces. I propose an explanation of
the discrepancy in the scaling behavior between the experiments and the theory. Due to an instability
inherent in the growth processes, the presence of unbounded non-Gaussian noise can violate the naive
scaling universality.
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In many physical situations an interface separates two distinct phases. When one phase ad-
vances into the other under a driving force a kinetic interface is created. Kinetic interfaces cannot
generally be studied in the fashion of equilibrium physics. One simple model is the Eden model
[1] which was originally motivated to describe biological growth.
On a strip geometry an Eden interface can be described by a stochastic differential equation [2].

The system is in a d + 1 dimensional space, with the direction of growth singled out. Denote by
h(x, t) the height of the interface at time t and position x which is a vector in the d-dimensional
base plane. We have the following evolution equation:

where the coefficient of the surface tension and the coupling constant are assumed to be 1, since
they can be absorbed by a rescaling of h, x and t. 7](x, t) is stochastic noise with a two-point
correlation:

where z &#x3E; denotes the ensemble average over realizations of noise, for many pratical purpose
it can be replaced by a temporal average.
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The key ingredients of equations (1) and (2) are the surface tension term Ah which tends to
locally smoothen out fluctuations; a non-linear term (Vh)2 from 1 + (-Vh)2 = 1+ (Oh)2/2+ ...,
which represents the uniformly lateral growth; and stochatic noise that is believed to be ubiquitous
in realistic systems.

There is considerable theoretical [3] (analytical and computational) research activity on prob-
lems related to equation (1). It is believed by many workers in the field that equation (1) pro-
vides a valid hydrodynamic description of a broad class of interface models involving the local
growth mechanism. The most interesting observable is the average width [2] w(L, t), which is ex-
pected to be a scaling function of the sample size L and the growth time t. w(L, t) ri LX f (t / L Z) ,
f (u -&#x3E; oo) -&#x3E; const, f ( u -+ 0) --&#x3E; ux/l. Surfaces with X  1 are called self-affine fractals, they are
anisotropic and globally flat (w/L -&#x3E; 0). Theoretical analysis gives the scaling exponents exactly
in 1+1 dimensions: X = 1/2 and z = 3/2. Higher dimensional exponents so far are only known
numerically [3] .

Very recently there are some experimental realizations of the interface growth, which should
inject new enthusiasm into the field. Rubio et aL [4] and Horvath et al. [5] have performed
experiments on wetting immiscible displacement in a porous medium. Another experiment by
Vicsek et al. [6] studies bacteria (Escherichia coli or Bacillus subtilis) colony development on a
nutrient (agar) plate. This is very close to the original spirit of Eden.

Despite of their apparantly dissimilar microscopic origins, the above growth mechanisms are
local and approximately homogeneous. 1 attempt to view that the above interfaces are effectively
described by the simple equations (1) and (2).

Rubio et al. reported that their self-affine interface has the roughening exponent X = 0.73 :f:
0.03. Horvàth et aL found that for their experiment x m 0.81, they also measured the time expo-
nent x/ z  0.65. For the bacteria expansion problem, Vicsek et al. estimated that the bacteria
colony has a self-affine border with the roughening exponent X = 0. 78 ± 0.06. While these findings
are very interesting, the values of the roughening and time exponents are certainly in contradic-
tion with the current theoretical prediction [2, 3] x = 1/2. Elsewhere 1 shall show that long range
correlated noise cannot account for the larger roughening exponent.

In this work 1 propose that the discrepancy between the experiments and theory is due to the
fact that in nature there is no Gaussian noise, as it is usually assumed in theoretical models. In
most of statistical physics microscopic details are not important on large scales, this goes under
the name of universality. For the present growth problem I shall show that microscopic details
can indeed influence large scale behavior in a substantial way, thus violating the naive universality
concept. 1 rely on the hypothesis that equations (1), (2) are still a valid hydrodynamic description
of the above experiments, but abondon the requirement thatq is a Gaussian or truncated noise.
To be precise 1 assume noise is independently distributed on each site (a lattice regularization is
understood) according to the following distribution density:

This distribution does not have an absolute cutoff, singularly large values of ri can appear. This
does not imply however, that infinitely large value will appear. In any finite sample of N degrees
of freedom there is a typical cutoff on the largest q value, ?7max- We have Nlq’+m - 0(1), which
implies

In this work 1 restrict myself to cases when oo &#x3E; M &#x3E; 2 so that the above distribution has a well-
defined mean and variance. In a continuum approximation, equation (2) can still be retained.
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1 simulate a discrete version of equation (1) on a square lattice

where i and t are integers, i runs over only even indices if t is even, odd if t odd. h (i, t ) and 7(i, t )
are continuous variables. The initial condition is h = 0, periodic boundary conditions are used in
the transverse direction i, the transverse size is L. Equation (5) implies a checkerboard updating
rule. It can be considered as a simultaneous ballistic deposition model [7] . Equation (5) can be
derived in the directed polymer representation [8] in the zero temperature limit. Elsewhere I
will show that the particular choice of parameters of equation (1) does not influence the scaling
behavior for the same M. 1 conjecture, on the basis of the following simulations, that there is a
(sub-) universality for each M. 1 have taken this liberty to choose the much simpler equation (5)
to carry out most of the simulations.
An interface is said to be in a stationary state when its average width reaches a constant. In

figure 1 snapshots of an interface at successive time steps are shown. The tranverse size is L =
1000. The interface has evolved for 50000 time steps after starting from a straight line geometry.
It is for y = 3 and the interface’s roughening exponent is X = 0.75 ± 1. The growth direction is
upwards. The longer time interval between the snapshopts is 30 time steps, the shorter interval at
the top is 5 time steps. One can notice that occasionally there are some abnormally large thrusts
on the growth front.

Fig. 1. - Successive snapshots of an interface evolved according to equation (5). The longer time intervals
are 30 time steps, the shorter ones are 5 time steps.

Figure 2 presents two examples of the scaling behavior of the interface’s width against system
size on a log-log scale. The data are for two different values of y (2.5 and 3). The statistics is
obtained by averaging the width over time. The initial relaxational data are abondoned.
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Fig. 2. - The interface width w(L) (vertical) against the size L for two values of li (2.5, 3). The data appear
to scale with the exponent w(L) - LX , x z 0.82, 0.75, respectively.

In figure 3 1 show the systematic assessment of the simulation results. The estimates of the
roughening exponent X is plotted against M. For M ---+ 2 it appears that the interface has the max-
imally attainable self affine roughening exponent X = 1. Elsewhere [9] 1 will address what can

happen to an interface if M :5 2 (Lévy distribution). In the inset 1 plot the sum of the two expo-
nents X + z, where the temporal scaling exponent z has been calculated independently [10] in
the directed polymer representation. We see that the sum is approximately 2, thus confirming the
exponent identity which can be derived on the basis of a Galilean invariance [11] .
We may conclude that the growth equation (1) combined with unbounded noise (3), can ac-

count for the observed larger roughening exponent. Even though the simulations are made on
rather small lattices, 1 expect that larger lattices would not change at least qualitatively the present
conclusion. It is worthy noting that the experiments are also performed on limited sizes. However,
there are many questions to be answered. 1 should emphasize that 1 do not have solid microscopic
justifications as to why in the experiments power-law noise distributions are preferred over Gaus-
sian or truncated ones. 1 want nevertheless to argue that it is equally hard to ascertain that they
are not there. After all, this has to do with microscopic details to which traditionally not much
attention has been paid. It is plausible that unbounded noise in real systems comes from rare
combinations of all contributing factors, the larger the system, the rarer a combination can be.

Is there a way to check if the present approach is applicable to the experiments, besides the fact
that roughening exponent X can be made to agree? 1 believe that the effective noise distribution
can be revealed: examine the snapshots on the top of figure 1, if the time interval is short enough
between successive shapshots the effective microscopic noise could be picked up and analyzed.
This should be possible for the experiments as well.

It may be surprising that microscopic details do influence the large scale behavior for the growth
processes described by (1) and (2). A clue to an intuitively understanding of this apparant puzzle
is the following: while an interface is growing, like that shown in figure 1, it encounters some rare
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Fig. 3. - Estimates of x (vertical) vs. various values of g. Error bars are from a subjective assessment. In
the inset the sum x + z is compared to the expected value 2.

thrusts with respect to average places. These rare thrusts have much more influence than their
small statistical weight would suggest to have. This is so by two kinds of mechanism : 1) Amplifi-
cation : during the lateral growth a rare large thrust will expand laterally to cover its neighboring
area as if there were many simultaneous thrusts; 2) Memory: a large thrust probably will result in
a hill on the interface, this geometry will be remembered for a long time. If during this long time
there appears another rare thurst they can have combined effect to roughen the interface.

Summary.

In this work 1 point out an instability inherent (or hidden) in the growth model (1) and (2). This
instability can be attributed to the above amplication and memery mechanisms of rare, abnormally
large noise values. 1 suggest that the experimentally observed larger roughening exponent is a
manifestation of this instability.
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