
HAL Id: jpa-00212502
https://hal.science/jpa-00212502v1

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Electromagnetic interaction of vortices in layered
superconducting structures
Alexandre I. Buzdin, Denis Feinberg

To cite this version:
Alexandre I. Buzdin, Denis Feinberg. Electromagnetic interaction of vortices in lay-
ered superconducting structures. Journal de Physique, 1990, 51 (17), pp.1971-1978.
�10.1051/jphys:0199000510170197100�. �jpa-00212502�

https://hal.science/jpa-00212502v1
https://hal.archives-ouvertes.fr


1971

Electromagnetic interaction of vortices in layered
superconducting structures

A. Buzdin (1) and D. Feinberg (2)

(1) Physics Department, Moscow State University, Moscow 117234, U.S.S.R.
(2) Laboratoire d’Etudes des Propriétés Electroniques des Solides (*), Centre National de la
Recherche Scientifique, BP 166X, 38042 Grenoble, France

(Received on March 23, 1990, accepted in final form on May 7, 1990)

Résumé. 2014 On considère un système multicouches supraconducteur, avec un couplage entre
couches d’origine strictement électromagnétique. On dérive une formule générale pour l’énergie
d’une configuration arbitraire de vortex localisés dans les couches. On montre que l’énergie d’une
paire vortex-antivortex sur la même couche possède une dépendance logarithmique avec la
distance entre vortex pour une large séparation. La structure d’une ligne de vortex est d’autre part
considérée pour un champ pcrpcndiculaire. Deux régimes existent en fonction du rapport entre la
distance intercouches d et la longueur d’écran effective dans une seule couche 03BBeff. Du fait de la
dépendance en température de 03BBL, on s’attend à un crossover dans le comportement de

Hc1.

Abstract. 2014 A multilayered superconducting system with a purely electromagnetic coupling
between layers is considered. A general formula is derived for the energy of an arbitrary
configuration of point vortices localized in the layers. It is shown that the interaction energy of a
vortex and an antivortex located on the same layer depends logarithmically on their distance for
large distances. The structure of a vortex line in perpendicular fields is also considered. Two
different regimes appear, depending on the ratio of the interlayer distance d to the effective one-
layer screening length 03BB eff = 03BB 2L/d0 where 03BBL is the London screening length in the layers and
do the layer thickness. Due to the temperature dependence of 03BBL, the behaviour of the first critical
field Hc1 is expected to show a crossover below Tc.
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1. Introduction.

The peculiarity of vortices in superconducting films is connected with the fact that the

superconducting current is flowing in the film whereas the magnetic field generated by the
vortices exists in the whole space. As has been demonstrated by Pearl [1], the poor screening
in the film leads to a specific dependence of the vortex energy with the film thickness
do and to a logarithmic interaction between vortices at distances R « À eff = .l L/do, where
À L is the London penetration depth in the film. Only at distances larger than k,,ff the
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interaction behaves like 1 /R. As a result, for sufficiently thin superconducting films the
Kosterlitz-Thouless phase may exist in the region near T, [2]. There is also some evidence of a
Kosterlitz-Thouless phase transition in layered high-temperature superconductors (see for
example Refs. [3-5]).

In the case of layered superconductors there always exists an interaction between layers,
through the magnetic field associated with the vortices. Thus the energy of vortices located in
some given layer, as well as the interaction of vortices, will be modified as compared to the
single layer case. The aim of this article is to calculate the energy of various vortex

configurations in a layered superconducting system, the only coupling between layers being of
electromagnetic origin. Notice that this model is quite suitable for describing the elec-

trodynamics of artificially prepared superconducting superlattices [5] where the interlayer
distance can be varied in a wide range. The electrodynamic coupling can indeed dominate the
electronic coupling provided by Josephson tunneling when the layer separation is much larger
than the transverse coherence length.

In section 2 we develop the general formalism within the frame work of the London
approach. In section 3 we discuss the vortex-antivortex interaction, emphasizing the
differences with the single layer case. In section 4 we consider the first critical field for

multilayer superconductors and point out the possibility of a peculiar temperature depen-
dence. In section 5 we discuss some aspects of thermal fluctuations of vortex lines.

2. General formalism.

We study here the case of type-II superconductors with a London penetration depth
A L much larger than the coherence length e. We thus treat this situation within the framework
of the London equations. In the case of non-interacting superconducting layers separated by
d, one can generalize the London equation valid for a single layer [1, 6] (case of a thin film of
thickness do smaller than e) and write for any configuration of vortices

where A(r, z ) is the vector potential, n is the layer index, 0,, (r ) = E Ba 4&#x3E; (r - Rna) is the
a

total London vector in layer n and À eff = À 2Ido is the effective penetration depth in a single
layer. The vector Rna denotes the position of the vortex « in layer n and E,,, = ± 1 depending
on its direction. The London vector 0 (r) for a single vortex is given in cylindrical coordinates
(r, 0, z ) by

and its Fourier transform in the xy plane by

where 0 0 = hc /2 e, z is the unit vector along the direction perpendicular to the layers and
[a, b ] stands from the vector product. Equation (1) corresponds to the situation where the
density of current j is localized in the layers and homogeneous in each of them, defining the
bidimensional current density Jn by
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It is important to underline that equation (1) gives the field distribution in full space. This
distribution is itself determined by the current density Jn, expressed by the London equation
[7]

1

Due to the linearity of equation (1), one only needs to solve it for a single vortex, setting for
instance n = 0, Rna = 0. Performing the three-dimensional Fourier transform we have

where

Expression (9) is easily transformed into

which obviously verifies Á(k, q) = À (k, q - n 2 -ff /d) for any integer n. Using this property
and the identity

Equation (6) is easily solved, leading to the self-consistent equation

thus

rhe 2d Fourier component of the vector potential in the n-th layer is

We finally obtain
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where the function G k is defined by

The total free energy in the London approximation is given by

The current being localized in the layers, a Fourier transform leads to

where Jn (k ) is the 2d Fourier transform of Jn (r ). Using (5) in Fourier transform, one finally
obtains

Equation (19) combined with equation (15) provides the basis for the calculation of the free
energy for various vortex configurations. In particular, the electromagnetic interaction energy
between layers n and m, due to the presence of vortices, is

3. Vortex-antivortex interaction.

In contrast to the case of one single layer (thin film configuration), the energy of a single
vortex in the presence of other layers is infinite. Expression (19) actually gives in this case

The upper cutoff is given by km -= e - l. For finite d, this integral diverges logarithmically for
small K, while for d infinité (one layer case) one recovers the result of Pearl [1] ]

On the other hand, the energy F v - v of a vortex-antivortex pair on the same layer is given by
(19) with 0,,(k) = cPk(1 - eikR), R denoting the vector linking the two vortices
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where Jo(z) is the first kind Bessel function. When d «,A ff we obtain from this expression

On the other hand, in the case d » À efT we have practically the situation of independent layers.
We obtain the result of Pearl, that is to say, for R « À efT the interaction is logarithmic (see Eq.
(24)) and for R &#x3E; ÀefT, the interaction is of the order 0 02/4 1T2 R [1]. But within the limit of
very large distance R between vortices (R &#x3E; d) the free energy depends again logarithmically
on the distance, although with a different prelogarithmic factor

In the case of layered high-T,, superconductors one has d « À,,ff and our calculation shows that
the purely electromagnetic v-v interaction is always logarithmic at large distances. The
situation is quite identical to that addressed by Kosterlitz and Thouless in their original work
[8], contrarily to the thin film situation where for large distances it varies like 1 /R. This
conclusion is nevertheless correct only in the case of negligible electronic (Josephson)
interaction between layers. For a full theory one needs to take this essential aspect into
account. The previous discussion rather applies to the case of artificially synthetized layered
superconducting structures where the Josephson coupling can be vanishingly small with
respect to electromagnetic coupling. Let us make one more comment about v-v pairs where
the two vortices do not lie in the same layer : in this case the integral giving the total energy
diverges logarithmically as k --+ 0, just as for a single vortex. This comes from the contribution
of the two fields generated between the two layers containing the vortices, which do not
cancel each other at large distances. One should not be worried with this result. Actually one
vérifies from (19) that a sufficient condition for the total energy of a system of vortices to
remain finite is that the topological charge LEna is zero in each layer. This is consistent since,

a

in the absence of any electronic coupling between layers, these configurations are the only
ones which can be reached from a vortex-free state, by thermal fluctuations.

4. First critical field for multilayered superconducting structures.

Let us calculate the energy of a line of vortices perpendicular to the layers. This corresponds
to the London vector l/J n (k) = l/J (k), i.e. the same in all the layers (Fig. 1). Equations (14)
and (18) give after some transformations the energy per unit length

This expression can be written more conveniently in the following form, subtracting and
adding the asymptotic (kd &#x3E; 1 ) form of the integrand

where p = 4,k,ff/d and we hereafter assume
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Fig. 1. - Line of vortices in a perpendicular field : a) strong coupling case (d « k,,ff ) ; b) weak
coupling case (d » À efT). The effect of a displacement 8R is calculated in section 5.

In the limit p » 1 (d « k efT) expression (27) reduces to

where we define A = k L V d/do as an average London penetration depth. This result is quite
natural since in this limit the magnetic field is practically uniform along the vortex axis
(Fig. la).

In the other limit p « 1 (d » k eff) a similar analysis shows that one can neglect the first
integral in equation (27), which yields

which corresponds to the energy of a vortex in a single layer. One verifies that the situation
p .-,c 1 corresponds to k,,ff « . This means physically that screening occurs in each layer
independently of the others (Fig. 1 b).
Comparing expressions (28) and (29) one notices the different forms of the logarithmic

factors. Whereas ile is temperature independent near Tc, the ratio À efTl = À il do 
diverges at T - Tc. This implies the existence of two different regimes for the temperature
dependence of HCI (T) for superlattices such as d:&#x3E; À efT( T = 0). Above a characteristic
temperature T* such as d = À efT(T*), expression (28) holds and leads to the usual

dependence of H,,, (T), but a lower temperatures the slope of HCI (T) must be decreased. This
crossover occurs in the region where one would expect the usual linear temperature
dependence for H,,,. More precisely if À L (T) is given by the G. L. expression close to
Tc one obtains T* ITc = 1 - (À;(O)/2 ddo) (large d case).

5. Influence of thermal fluctuations on a vortex line.

In order to check to what extent straight vortex lines may really exist, especially in the
presence of thermal fluctuations, it is interesting to evaluate the rigidity of such a line. In the
weak coupling case (d &#x3E; À efT), one can in a first step consider a very short scale deformation
where one of the vortices forming the line is displaced in its layer from its equilibrium position
by a distance &#x26; R (Fig. 1 b).
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Using the general formula (14) and (18), we obtain the energy of such a deformation

For &#x26; R small compared to d, this leads to the following estimate

For thermal fluctuations R 2&#x3E; -- T d3/,02 . Thus, for temperatures T;:&#x3E; T’ = c/JÕ/d, the

fluctuation SR is larger than d and thermal fluctuations destroy short range ordering in the
vortex lines.

Nevertheless, close enough to T,, (for T &#x3E; T *) one has necessarily d -- À efT and
SF goes to zero. A more careful analysis considering long range deformations is needed in
this case, but one also expects a melting of flux lines. This question deserves further
developments, in particular as regarding long range deformations.

6. Conclusion.

We have shown that even in the case where no electronic coupling exists between the
superconducting layers, vortices which can be present due to external field or thermal
fluctuations induce an electromagnetic coupling between layers. It results that the interaction
between vortices in the same layer is influenced by the other layers, and the results notably
differ from the single layer case (thin film). It is also different from the two-layer case treated
in references [ 11 and [12]. A logarithmic dependence at large distances persists in this case.
Nevertheless, for layered high-Te superconductors the main task for an adequate description
of the Kosterlitz-Thouless transition remains to take into account the Josephson coupling
between layers. Reference [9] gives a negative answer to the question of the possibility of
K. T. transition. As far as purely electromagnetically coupled layers are concerned, the
situation is still not clear. One has like in quasi two-dimensional systems the possibility of
coupling vortex-antivortex pairs in adjacent layers, forming small vortex loops [10]. These
loops unfavor standard K. T. scaling. Here the electromagnetic interaction extends beyond
adjacent layers and can have long range, rendering even more questionable the two-
dimensional behaviour. A careful discussion of screening in the multilayer situation is thus
required. To this respect more information can be extracted from equations (19) and (20).
Work is in progress in this direction.
We have calculated the first critical field in a superconducting superlattice. As far as its

temperature dependence is concerned, two different regimes exist, depending on whether the
layer spacing is small or large compared to the effective « single layer » London depth
eff-
The long period superconducting superlattices can be considered as a good model system

for testing our analysis. They are also very suitable for investigating the vortex melting
phenomena in perpendicular fields.
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