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Résumé. 2014 La mesure des intercepts engendrés dans des empilements granulaires par des coupes
linéaires aléatoires peut fournir plus simplement que des sections planes certaines informations
concernant la géométrie de ces milieux. La méthode, déjà testée sur des empilements de grains
sphériques durs est ici utilisée pour déterminer le nombre moyen de « cous » par grain dans un
modèle classique de matériau légèrement fritté.

Abstract. 2014 Intercepts generated through granular packings by random 1D (line) sections may
provide information on the geometry of the medium in a simpler way than metallographic cuts.
The method, already tested on hard monosize spherical grain stackings, is used here to determine
the average number of necks per grain of a classical model for slightly sintered materials.
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1. Introduction.

Sintered materials play a more and more important role in everyday life (ceramics, glasses,
optical fibers, powders...) and are now being extensively studied. Part of their physical
properties depend on their geometry, a good tool for investigation seems to be stereology [1] ]
combined with image analysis [2] : some metric parameters such as porosity are directly
derived from the quantitative analysis of planar sections. With complementary assumptions
about the structure, we can obtain other 3D parameters such as the mean size of the cavities
or coordination number. They are related to physical properties [3, 4] in a semi

phenomenological way. For example, conductivity in the pore space is proportional to the
area of the throats [5]. Along the same line of thought, if we pack compressible or deformable
grains we need to know the variation of the coordination number to understand the variation
ôf the mechanical properties of the packing. Jernot [3] gave an empirical relation between the
compacity of sintered packings of copper spheres and the mean coordination number of these
spheres obtained from stereological studies of 2D cuts but his relation does not have a
physical basis.

In real packing of grains it is very difficult to consider the grains as undeformable and their
position is not defined with enough accuracy to assume point-like contacts. Some historical
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examples [6, 7] using packings of identical spheres can give a large spread of results depending
on the method of measurements. The lower values between 6 and 7 correspond to the number
of actual contacts, the upper limit 13.4 established by Dodds [8] represents the maximal
number of possible neighbours around one sphere. The value needed for a particular
property, such as acoustic or thermal measurements, can be between these two limits or
below it in some specific case (In mechanical transport properties Travers et al. [9] have
shown that only 2 or 3 contacts around one disk really transmit the constraint for a low
pressure at 2D instead of 4 the mean coordination number in a disordered 2D packing of
disks). For the understanding of this article, we can say that the case of the geometrical
arrangement around one sphere is the only one we can estimate by our calculations. We can
demonstrate later that we do not need to determine precisely the quality of the contact to
estimate the mean coordination number of the packing. If we use soft grains and apply a weak
constraint between them, the contact zone or the « overlapping » one is small enough to apply
our treatment.

Several theoretical studies based on morphological concepts have been devoted to the
problem of relating the number of contacts per unit volume to 2D stereological measure-
ments : Pomeau and Serra [10] have shown that this parameter can be obtained through
measurements performed on a random plane section of a large enough packing. Their method
relies on making a random 2D section through the packing and studying the distribution of the
smallest distances between two neighboring disks which is correlated to the number of

contacts per unit volume. The computation is based on the fact that the probability that two
spheres are in contact goes to 1 when the distance between the two corresponding disks tends
to zero.

Chermant et al. [11] ] checked experimentally the Pomeau and Serra approach on the
coordination number of an ordered FCC packing made out of millimeter size plastic spheres.
By means of an image processing system, they obtained the distribution of the shortest
distances between disks on a random plane section of the FCC packing and found a mean
coordination number equal to 12.0 ± 0.3 which coincides with the true value (Z = 12). 
Gardner [12] has suggested a new theoretical approach to obtain the coordination number

from the information given by the intercepts of a random line drawn through the packing. Her
theory is based on the hypothesis that two consecutive intercepts (i.e. parts of the line lying
each inside a sphere) separated by a close distance w (called « separator ») belong to two
spheres in contact.
The procedure suggested in Gardner’s work has two main advantages. First, it makes use of

a random line and does not require any determination of shortest distances as in the

procedure of Pomeau and Serra [10]. Second, the inversion problem to link 1 D and 3D
statistics paradoxically turns out to be much simpler than the 2D-3D process which involves a
non-algebraic relation between the number of contacts per unit volume and the slope of the
cumulative distribution of w at the origin.

In our previous article [13], we have extended and given a first application of the
stereological study of E. Gardner [12] to the number of actual contacts between spheres.
Using computer-generated ordered and disordered packings of monodisperse spheres we
have compared the theoretical results with those obtained by our method. This approach
makes use of the distribution of separators of random lines drawn through the packing. The
agreement with known results is good even for a relatively small number of lines, this can be
useful for experimental studies on unconsolidated monosize sphere packings. This led us to be
optimistic about direct extensions of the study to real and sintered packings.
The purpose of this paper is to extend the study of reference [13] to a modelized sintered

grain packing. We consider only weak sintering, which is a good starting point for describing
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both non-perfectly punctual contacts and very close neighbors, as explained at the beginning
of the introduction. In this limit, calculations are extensions of those of reference [13], very
sintered grains need a more detailed knowledge of the pair correlation function and will not
be considered here. We use an assembly of monosize slightly overlapping spheres (sintering
ratio -- 11 %) and derive both analytically and numerically the distribution function for true
separators (i.e. separators belonging to intersecting spheres), then deduce the number of
necks per grain - the analogous of coordination number (Sect. 2). The results are checked on
numerical packings (Sect. 3). To minimize the calculation time needed to study monosize 3D
packings we have made the studies both on ordered 3D packings and on disordered ones. The
difference between these two kinds of packings does not appear in the studies of real contacts
but only in the relative position of the nearest neighbours [13]. Complementary results for the
packing fraction and average intercept length are given.

2. Theoretical studies.

Let us begin with some generalities on 1 D sections : a line cuts a granular medium along an
interval called « intercept » and the interval between two consecutive intercepts is a

« separator ». Provided the line is long enough and chosen at random, statistical properties
for the intercepts may be related to geometrical features of the grain or pore space (e.g. the
packing fraction is deduced from the ratio of the total length inside the grain space to the total
length of the line). Further information may be obtained when the shape of the grains is
known, especially when they are spherical. For example, the coordination number in a
monosize packing of hard, touching spheres can be determined from the slope at the origin of
the distribution function N L ((ù) of the separators co [13] :

where nc, n, are the number of contacts and the number of spheres per unit volume and
z is the coordination number.

This result is the starting point for the study of models for sintered grains, which we
consider from now on. This section is divided in 2 parts : we first present the model (§ 2.1),
then we derive the distribution function from a biparticle approach (§ 2.2). Finally these
studies will be compared to results on numerical packings (§ 3).

2.1 THE MODEL. - The model is that usually described in the literature [2, 5]. We start from
an assembly of monosize spheres and contract the intercentre distance by a factor

(1 - 11), the radius R being kept constant. Spheres which were initially at a distance

r, are now at a distance r ( 1 - q ) apart, and, if r ( 1 - q ) «-- 2 R, they overlap (Fig. la). Grains
are now truncated spheres, and the limit area between two overlapping spheres is called the
neck. Several necks may interfere if the sintering ratio q is large enough. In the present
paper, we shall avoid this possibility by restricting to -q - 11max = 1 - -J3/2 = 0.134. The limit
configuration for this to happen is represented in Fig. 1 b. In this case, z(,q), nc(,q) and
n, (,q ) denote the number of necks per grain, the number of necks per unit volume and the
number of grains per unit volume respectively. All three parameters increase with

11, but relation (2) still holds.
We come now to the 1 D cuts. There are some differences with packings of touching

spheres, as intercepts may be of several types. In figure 2, the 4 kinds of intercepts in a system



1900

Fig. 1. - a) Model for sintered spherical grains, n = &#x26;IR is the normalized ratio of the sintering
« process ». b) Limit configuration allowed q 0. 134. In this case the three spheres have a common
overlapping zone.

of two grains (secant or not) are represented. More complicated intercepts mays arise when
other grains are involved (Fig. 2e). Besides, two or more necks may intersect (Fig. 1 b) but
this will not appear here because of the above restriction on 7y.

The difficulty as to the analysis of the nature of the intercept is overcome by considering
separators as they arise only from configurations 2a-2b. The function of interest is the number
of separators smaller than w per unit line, say N L (CI)). As in (Ref. [13]), it will be convenient
to introduce again the distribution function N l (CI) ) of the separators for overlapping spheres
(the so-called « true » separators). Of course, N L * (co N L (CI) ). As we are interested in the
small £o behavior only, most of the separators we consider arise from overlapping spheres,
thus the two functions are equivalent [13]. We shall see that, more precisely, both start
linearly with the same slope at small co and

where À is related to the number of necks and depends on q.
The introduction of N*(w) may seem irrelevant: image analysis deals mostly with
NL as there is no way to decide from a linear cut (or for a planar section) whether we have
a true separator or not. On the other hand, N L * (£ù ) is easier to handle theoretically, at least
for ordered packings as the intercentre distance is exactly 2 R ( 1 - It remains, however, to
see how it may be useful in the case of a disordered packing. In both cases, the theoretical
determination of the number of necks is directly related to the initial coordination number
and to q and it is examined in the following subsection.

2.2 THEORETICAL RESULTS. - The complete calculation of N L * (,w ) is similar to that for the
identical hard spheres in contact but is not given explicitly here (see the Appendix for the
main points of the derivation for small w). However, some differences appear in the analysis
for ordered and disordered assemblies of sintered grains. We consider them here separately.
Ordered packings : They are constructed from the four usual ordered arrays of identical
touching spheres (SC, BCC, HCP and FCC). Provided that q : 7J max’ only spheres initially in
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Fig. 2. - Types of intercepts that may occur between 2 (a-b-c-d) and 3 grains (e).

contact can overlap when compressed (q  1) ; their intercentre distance is constant and

equal to 2 R(l - 17). The number of necks z(77) when 17 is non zero remains equal to the
coordination number z at 71 = 0 (i.e. z = 6, 8, 12, 12), and n,,, ( 77 ) and nv( 71 ) are simply related
to their value nc and n, at 71 = 0 : nc(7J) = nl ( 1_ q)3 , n,(n) = nv/(I- q )3. Moreover,
small separators always arise from overlapping spheres only and their number is proportional
to the number of initial contacts, i.e. to n,. Said differently, functions NL ( cv ) and

N L ( CI) are identical up to the nearest neighbours distance and are proportional to

nc. thus,

Hère, E = -.,f2 l_ n 2and F (e) are given explicitly in the Appendix. When q e. 0, we
recover the result for spherical grains NL (CO) Ir n, Rto. The number of lines which go
through the neck and thus must not be taken into account because of the sintering is simply :

Disordered packings : In this case, even if ’n  ’Tl max the number of necks per grain in no
longer a constant ; z (,q ) increases with n and the initial intercentre distance r for overlapping
grains is in the interval from 2 R to 2 RI (1 - q ) ; we still have nv (n ) = n v/ (1 _ n )3 but the
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similar formula for nc ( TJ ) no longer holds. If Nt (lA) ) is again the distribution of separators for
overlapping grains (true separators), NL(cv ) and Nt (lA) ) are no longer equal nor is

Nt (lA) ) proportional to nc, even for small lA) and, in both functions, an extra term must be
added which accounts for the pair correlation function near 2 R let us say Rv(r), using the
notation of reference [14]. It is easy to see that N L (lA)) = Nt (lA) ) + 0 (lA) 2) as the

r-integration for the 2 functions differs only on an interval of length lA). In the case of slight
sintering, an expansion in q is possible and only the knowledge of the pair correlation
fntir’tmn nrar ? R iq WP 

and the number of lines crossing the neck is :

where RV S( 2 R ) is the non singular part of R v (r) at r = 2 R ; up to the first order in
ry, relations (3a)-(3b) remain valid.
One must point out immediately that a function such as N*(co) and N(o) cannot be

determined experimentally with high precision. The main problem occurs in the determination
of the total length by which numbers of separators will be divided in order to obtain significant
numbers per unit length. In image analysis process, we have to eliminate the « mask border »
in which the cut of the spheres is not completely defined. In other respects, we have to decide
if the total length of a line can be measured with the two spheres at the extremities of it or just
half part of them. The answer has been given in reference [13] in which we define a new series
of measurements, Nl(w)/NL and N(O)/NL where NL is the ID-connexity number i.e. the
number of intercepts (or of separators) per unit line and is related to the surface per unit
volume

by the stereological relation

Eqs. (3a-3b) are replaced by

and

where the geometry of the packing arises only through the average number of necks
z(7y). These equations (5a) and (5b) are the simplest way to estimate the mean coordination
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number z(7y). By the study of the distribution of the intercepts we can determine also the
initial radius R of the grain, and the study of the compacity can give the number of grains per
unit volume. So we can use four equations to solve the four initially unknown parameters of a
sintered packing : radius R, mean coordination number z, sintering ratio 17 and the number of
grains per unit volume nv.

3. Numerical studies.

As explained in 2.1, a straightforward method for getting sintered packings consists first in a
construction of a non-sintered packing of monosize spheres, then in a contraction of the
distances between the centers by a factor (1 - q ), the radius R being kept constant. Ordered
sintered assemblies are constructed from the four usual ordered 3D arrays of identical

touching spheres (SC, BCC, HCP and FCC).
For the disordered packings, we used numerical 3D packings constructed with a simple

algorithm [15]. The spheres are packed, one by one, starting up from the bottom of a given
cube. The new sphere is packed with three contacts chosen randomly on the previously
deposited spheres. In order to minimize the computation time and the size of the packing
required in order to be able to neglect the wall effects, a periodic boundary condition is
introduced : all the centers of the spheres must be inside the cube but some of them may
overlap so that we decided, for continuity’s sake, to make this part reappear on the

corresponding opposite border. In our simulation, we could verify that the initial coordination
number of the packing was always 6. Each new sphere brings three new contacts and each
contact comes from two spheres thus the mean value of the number of contacts around one
sphere is Z = 6.
We have realized several different packings (from 1 000 up to 3 000 spheres) within cubes

varying from 10 to 15 times the sphere diameter. In these packings we could calculate
precisely the density from the radii of the spheres and coordinates of their centers. This initial
value fluctuates between 0.590 and 0.605 as compared to the real density of a monosize sphere
packing made with glass beads (around 0.62). The « sintering » process for these packings is
obtained by a reduction by a factor related to q of all the coordinates of the spheres, while the
radius is kept constant.
As everything can be known and calculated directly in numerical packings of spheres, these

simulations are used mainly to test the validity of the above formulas in order to apply then
later on in actual disordered packings obtained by different compaction procedures.
As said above, we restrict our study to q  0.134 (actually we have used q -- 0. 11). In spite

of this restriction, the compacity may be very important ; for example in the HCP case, at
q = 0. 11, the porosity is less than 10 % and we may expect already a good estimate of what
may happen in very sintered disordered systems. In all cases, several packings were realized,
their size going from 15 x 15 x 15 to 60 x 60 x 60. Random lines were thrown throughout the
packings (up to 300 for small packings, 150 for larger ones) to compensate for the small size of
the samples and improve the statistics.
The reduced slope at the origin Nt ((J) ) / N L and the reduced number of « negative »

separators N (0)/ N Lare plotted in figures 3 and 4 respectively for the ordered packings. They
agree fairly well with their theoretical predictions.
These results can permit us to study the disordered packings with the same assumption : the

value of W equal to zero is always related to a contact between two spheres and the number of
nearest neighbours is small for W near zero.

In figure 5, we have plotted NL(W)INL and N*(w)IN for ri = 0.05, for a disordered
packing ; we see that the 2 curves behave in the same way at small w confirming the previous
approach. In figure 6, we have plotted z(7y) as a function of q which is no longer a constant
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Fig. 3. Plot of the slope at the origin as a function of the sintering ratio 7y for several types of ordered
packings (SC, BCC, FCC, HCP).

Fig. 4. - Plot of the number N (0) of negative separators as a function of 7y for several types of ordered
packings (SC, BCC,FCC, HCP).

and grows from 6 to approximately 9. This is in agreement with the value 8 for the
coordination number found by Bernal and Mason [6] when using painting at the contact
points and which includes near contacts within a relative distance of 5 %.
As all parameters of such packings are known, it is possible to have estimates of other

quantities. The simplest is the average length (i &#x3E; of one intercept. From the geometrical and
stereological expressions for the packing fraction (or compacity) c

and



1905

Fig. 5. - Plot of NL (w )INL and NL (w ) / N L versus u = w /2 R for 7y = 0.05 and a disordered packing.
They have the same slope at the origin, but N*(w)INL saturates more rapidly.

disordered packing

Fig. 6. - Plot of z(n ) versus n for a disordered packing. The packing fraction for n = 0.11 is

approximately 77 %. The value starts around 6 which is the common value for a disordered 3 D packings
of spheres and increase to 9 which corresponds to the nearest neighbours coordination number.
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where V = 4 7T R3[ 1 - z(n) 772(3 - î ) is the average volume of one grain, once the3 1 4 1
respective part common to two spheres is taken out and NL is given by (4a-4b), we have
simply

which reduces to (i &#x3E; = 4R when q = 0. Again, the knowledge of z (,q ) only is sufficient andi
a more detailed geometrical analysis is not necessary. In the same way, knowing
q and measuring (i &#x3E; can give z. Both theoretical (Eq. (6)) and experimental (i &#x3E; are plotted
in figure 7. The agreement is very good. As a by-product, we have compared the two
estimates of the packing fraction ; here again, the agreement is good.

Fig. 7. - Plot of  i &#x3E; as a function of n for the same packings.

Conclusion.

In this article, we have extended and given an application of a stereological study by Elisabeth
Gardner [12] of the number of actual contacts between spheres. Using computer-generated
ordered and disordered packings of monodisperse spheres we have compared the theoretical
results with those obtained with our method. This approach makes use of the distribution of
separators of random lines drawn through the packing. The agreement with known results is
good even for a relatively small number of lines, this can be useful for experimental studies
either on unconsolidated monosize spheres packings or real and sintered ones.
We can think of several ways to obtain the distribution of « separators ». A first one uses

random cuts of packings which have been filled with epoxy resin before cutting in order to
keep the spheres in a fixed position. For large enough isotropic materials, random lines
thrown in plane should provide the same results as in space. The first numerical experiments
made in Caen using this approach seem to confirm this assumption. In some cases one can use



1907

directly lines crossing a material. We may think of using an ensemble of transparent spheres
into a fluid of the same index and pass a laser beam through it. If the grains or the solvent are
fluorescent, one can determine directly the distribution of separators. Another different
system would be the use of an ion beam which progressively etches away a composite material
[16]. From the temporal distribution of ions emitted, one can reconstruct the concentration
profile along one line.

In numerical packings, it is easy to know which separators correspond to a real contact or
not. This is not possible any more in experimental sphere packings, even when the grains are
identical. A new step then, which corresponds to the practical situation, consists in

considering all separators ; we then have to take into account the distribution of the distance
between any two spheres. We have shown that the slope at the origin can give the same
information.
Other extensions may be thought of, namely to assemblies of non-uniform spheres ; these

may be investigated, initially numerically, provided the information on the length of all
intercepts is stored and not only that of the separators. Following the same procedure as in the
present work, we are presently studying numerical arrays of two size spheres.
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Appendix.

Dérivation of the formulas (3a)-(3b).

1. NOTATIONS. - Let FI and r2 be two overlapping spheres with centres CI and

C2 at a contracted distance CI C2 = r (1 - ) (. 2 R ), 0 is the middle ofCi C2, D is a random
line. Contact 0 is the origin, CI C2 the X-axis and in the plane perpendicular to

CI C2 at 0 the other two axes are chosen so that the equations for D are

where, as in (Ref. [13]), (J is the angle between CI C2 and D, f their smallest distance and
d the distance of 0 to the projection of D onto the ZOX plane. The 2 spheres
T Z ( i = 1, 2) have parametric equations in terms of two angles t and a :

The line D intersects both spheres outside the sintered region provided the 3 following
conditions are fulfilled



1908

(existence of intersections)

(for each sphere, both intersections are on the same side of the plane X = 0).

(the intersections for the 2 spheres are on different sides of X = 0) ; we have set

. 

In the (d, i ) plane, conditions (A3)-(A5) determine successively (see Fig. 8)
- the part common to 2 intersecting circles (the « eye ») 
- the outside of an ellipse with half axes Do = R cos 0 1 - x2, Lo = R J 1 - x2. When

1 
sin 0 «-- x the ellipse is inside the eye ; when sin 0 &#x3E; x, it is tangent to the eye in the four

points - Rx cos2 0 -4- R sin2 8 - x2points ::t ,::t p - 

sin 0 
’ 

sin 0
- two lines parallel to the f -axis.

Fig. 8. - Zones of the (d, f ) plane which are to be taken into account in the estimation of

N* (w ) at small w (black zone) : a) when sin 0 -- x ; b) when sin 0 :::» x.
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2. SINTERED REGION. - The excluded area S(r, 0 ) (= ellipse when sin 0 « x, ellipse plus
the zone inside the tangency points, when sin 0 &#x3E; x) measures the number of lines

PL(r) per unit line inside the sintered zone when the intercentre distance is r

where Rv (r) is the pair correlation function of the initial (i.e. non sintered) packing which is
defined in the bulk of the text. Notice that, in the case of ordered arrays, tL(r) is proportional
to q for r ,- 2 R h.

3. SMALL SEPARATORS. - We come now to small separators. They imply that the abscisse of
the intersection points with the spheres are small i.e. the angles t and a in (Eqs. (A2)) are
close respectively to to = sin- x and a o (with : cos 0 tan a 0 = d / f), and that d2 + f 2 cos2 0 is
close to R2 cos2 8 (1 - x2). Up to the first order, the coordinates of the intersections with the 2
spheres are given by ( i = 1, 2 ) 

whence the separator

with D( ± ) = cos 8 cos t o + sin B sin to sin a o, the upper sign in all the above formulas

corresponding to rI. The condition e -- w gives the part within an ellipse close to the initial
one (see Fig. 8), with half axes 

-

In the case sin 0 « x, the new ellipse is larger than the initial one, but is still inside the eye and
the contribution is proportional to the area

In the case sin 0 :::» x, conditions (A3)-(A5) limit the area in the (d, i ) plane to the domain
between the two ellipses where (A5) is satisfied (see Fig. 8) ; we find
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whence the final result for the number Nt(w, r ) of intercepts smaller than w when the initial
intercentre distance is r

where

The final distribution behaviour at small and the total number of lines within the sintered

region are obtained by a last integration. We have

where Rv(r) = ne 5 ( r - 2 R ) + Ri{S(r). For ordered arrays, Ryes(r) = 0 when r - 2 R J2 and
we recover the expressions (3a) and (3b). For 17 small and disordered arrays, they still hold up
to the second order.
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