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Abstract. 2014 In this note we study directed polymers in a two dimensional random medium with
short range noise using the replica approach. We find the predictions of the replica symmetric
theory and we compare them with exact results. We consider the possibility of spontaneous
symmetry breaking and we suggest that replica symmetry is weakly broken also in this two
dimensional model.
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1. Introduction.

The study of directed polymers in a random medium is very interesting [1]. In a nutshell the
problem of directed random polymers consists in finding the probability distribution of

where d W[ w J xt is the usual Wiener measure for going from 0 to x in time t and ’0 is the noise.
We notice that equation ( 1.1 ) can be also read as the probability distribution of an

heteropolymer (without self excluding effects) on a substrate, where the interaction among
the substrate and each component of the heteropolymer is random.

Typical quantities we would like to compute are

where the brackets denote the average over the noise q and P n (x, t) is the normalized

probability for finding a directed polymer at point x at time t, which is given by :
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We are also interested in quantities like the probability distribution of the self overlap q,
which is defined as :

Different models are obtained by choosing different probability distributions for the noise
[2, 3]. In two dimensions (one space, one time) a very interesting case is for the white noise
limit, i.e. the noise is Gaussian, with zero average and with variance

The replica approach is based on the following observation : the expectation value of the
products of G’s, e.g.

satisfies a Schroedinger type equation at imaginary time (i.e. aglat = - HG) with an n-body
Hamiltonian given by

The most likely behaviour of Gn (x1, t) can be related to the properties of G (n) near
n=0.

This model is particularly interesting as far as the Hamiltonian (1.7) is soluble. The ground
state wave function and energy are given by

where we have added to the Hamiltonian a constant proportional to nA 5 (0) in order to
remove the divergent terms which appear when i = k in equation (1.7).
These observations where used by Kardar in his original study of the model [4]. In this note

we discuss more carefully the properties of the model. After this introduction, we will analyze
the results that we obtain neglecting the possibility of breaking of the replica symmetry. In the
third section we compare these predictions with the known results coming from the mapping
onto the random stirred Burger equation. In the fourth section we will show that replica
symmetry is (in some sense) broken and finally, in the last section, we present our
conclusions.
There are also two appendices in which some technical problems are discussed. In the first

appendix we study some properties of random walks, while in the second appendix we present
some exact computations of the Green function for the Hamiltonian Hn for n = 0.

2. The replica symmetric approach.

In the replica approach the behaviour of the energy as function of n is related to the cumulants
of
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Indeed we have that

The absence of a term proportional to n 2 in the energy lead Kardar [4] to the conclusions
that the fluctuations in F’TI (t) are of order t" with w = 1/3. Using scaling arguments this result
implies that

with

These results agree with the analysis done using the mapping onto the random stirred
Burger equation [5] (see next section) : one proves that the stationary probability distribution
for

constant

is proportional to

i.e. to the Wiener measure where now x plays the role of the time. It is crucial that

cp (x) is defined apart from an overall constant ; indeed, if we use the measure (2.6), we get
 cp 2(x) = 00, but  (cp (x) - cp (y) )2) - 00.
The consequences of this form of the ground state wave function have never been

investigated ; they will be the subject of the rest of this section.
Let us assume that for large time and fixed x

This assumption is obviously valid for integer n, but it is less clear if it is correct also in the
limit n - 0.

It is evident that

where G (x) is a short hand notation for G, (x, t).
Using previous equations we finally obtain for n = 0 :

The apparent decrease of the wave function at infinity has transformed itself in an

exponentially increase !
We can easily compute
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where we assume that

Only if equation (2.11) is satisfied (or n = 0 in Eq. (2.8)) the result is independent from the
absolute normalization of G, otherwise we should always write proportional to instead of
equal.
By now the educated reader should have recognized the equivalence of equation (2.6) and

equation (2.8). The form of the ground state wave function equation (1.8) implies the
stationarity of the probability distribution (2.6). In particular the exponential decay of the
ground state wave function implies that

At this stage one may be inclined to argue that the exponential decay of the wave function is
generic for bound states independently from the dimensions, and therefore the value

y = 1 should be superuniversal, i.e. valid in any dimensions, of course in the region where a
bound state is present in the limit n --&#x3E; 0. This argument is strongly suggestive, but it is not
clear to me if hidden loopholes are present.

If we want to compute the functions P (x, t ) something must be said about the Green
functions. We know that for large times the Green functions must be proportional to the
ground state wave functions, while for short time they should be given by the free one.
The simplest hypothesis is that for large times

where D (x, t) is the free propagator given by

Equation (2.13) is the simplest interpolation between the behaviour at t = 0, where the free
term dominates, and the asymptotic behaviour for large times. An other simple approxi-
mation, i.e. the ground state function multiplied by the effect of diffusion of the center of
mass, has the serious disadvantage of not reproducing the correct behaviour of the Green
functions at small time.
Now we have

If we use equation (2.13) in equation (2.15) the result for P is reduced to quadratures ;
unfortunately 1 have been unable to find a nice representation for the results of the integral
and to extract the result in the limit n - 0. A way out is to use the following representation for
the wave function

where we have absorbed the infinities (arising from the divergence in  Q 2) ) in the constant of
proportionality. It is evident that these infinities worry us only when n # 0.
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Putting everything together we finally find

It is not strange that equation (2.17) can also be derived starting from the stirred Burgers
equation (see next section). The evaluation of this formula is non trivial. Some results may be
obtained by dimensional analysis using the fact that 1 cp (x) - q (y) 1 = 0 (  x - y ll2).
The integrand will be concentrated for large t near the maximum which is located for

i.e. for xM oc t2/3 in agreement with equation (1.5).
It would be interesting to evaluate the width of the region where the difference of the

argument of the exponential with its maximum remains of order 1. In principle we can use the
formula

and compute

It has been shown [6, 7] that

for large t. A probabilistic argument which leads to (2.21) is presented in the appendix.
More precisely, if we define

the probability distribution of L117 has a tail proportional to

in the region d « (4/3. The linear increase of d in equation (2.21) is due to rare events in the
tail of the probability distribution, where d = 0 (t4/3) ; these events small probability
proportional to t- 1/3.
This replica symmetric analysis gives a precise picture of the model and it is amazing how

much information is coded in the form of the wavefunction. We will discuss in the next section

some of the difficulties which arise from the assumption that replica symmetry is exact and we
will explore the possibility of its breaking.
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3. The random stirred Burger equations.

It is evident that Gn (x, t) is also a solution of the stochastic differential equation :

where we have omitted the obvious dependence of G on q.

We can now use the mapping (2.5) for writing an equation of evolution for cp (x, t ). We
readily get

which is the random stirred Burger equation, which has been well studied in the past [5].
Equation (3.2) induces a functional differential equation for the probability distribution of

ç as function of the time. Using usual techniques for stochastic differential equations one
finds the formal equation :

If the term (aç laX)2 were absent from equations (3.2), (3.3), an equilibrium, i.e. a time

independent, solution of (3.3) would be given by equation (2.6). This result is not surprising
as far as equation (3.2) reduces in this case the well studied Langevin equation.
The surprise comes when we reinstall the term (aç /ôx)2; if we use the form (2.6) for

p [ Q, t ) and we compute ôP [ Q, t )/at, we find the extra pieces :

and they both vanishes by integration by part.
If the long time behaviour of P [ cp, t ) is unique, as it happens in a finite size box, it is given

by equation (2.6).
However we have already remarked that the problem we need to solve is to find the

solution of equation (3.1) with the following boundary conditions at time 0

The exact computation of the probability distribution of G is not easy (we shall see some of
the difficulties in the appendix II). In absence of exact results we could try to guess an
approximate solution. The simplest possibility consists in writing

where D is given by (2.14).
In this case we find that cp satisfies the following differential equation

and it is not clear if the stationary solution of equation (3.7) is still given by equation (2.6).
In any case the extra term in equation (3.7) (x/t a ç /ax) is apparently much smaller that

the others at large time (we recall that at time 0 we can impose the boundary condition
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Q (x, 0) = 0). A perturbative expansion in this extra term seems possible ; a careful analysis
may be necessary to understand if the Ansaltz (3.6) is correct at large times. However no
major inconsistencies are apparent in equation (3.6) and we can assume tentatively to be
essentially correct.
We have seen that the direct analysis of the problem, by mapping it on the random stirred

Burger equation, seems to reproduce the results of the replica method, with unbroken replica
symmetry, however we shall see that replica symmetry is in some sense weakly broken.

4. VVeakly breaking of the replica symmetry.

The analysis of the previous section seems to confirm the correctness of the unbroken replica
symmetry approach, however we shall see in this section that the replica symmetry is weakly
broken.

Let us consider the wave function for the n particle problem in which n /m groups of m
particles are bound together with the wave function (1.8) (where here m plays the role of n)
for each group of particles. In the infinite volume limit, this wave function becomes an

eigenvalue of the Hamiltonian (1.7), if we neglect the region of phase space where particles of
the two groups are near each other. In other words we consider the case where the n particles
form n /m bound states of m particles.
The energy for such wave function can be readily computed and one finds that the energy

per particle is given (neglecting proportionality factors) by

If we assume that a sensible value of m must satisfy the inequalities

the function En (m ) has a minimum for m = n.
In the strange situation where n is less than 1, inequalities (4.2) are usually substituted in

the replica approach by

When n is equal to 0 the maximum of En (m ) is located at m = 0 and according to the
standard folklore in the region n  1 we must maximize the energy (not minimize !) in order
to find the ground state.
The ground state seems at m = 0 and the replica symmetry is apparently not broken ; if the

minimum of Èn (m ) is located at m # 0, as happens on the Caley tree or in the large
dimensions limit [8-11] the replica symmetry would be definitely broken.
However the difference in energy vanishes quadratically with m and therefore the solution

with replica broken symmetry is nearly degenerate with the symmetric one. This fact has
serious consequences on the overlap distribution.
The average value of the probability distribution of overlaps Pr(q ) is given by
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If the overlap distribution Pr ( q ) is a single delta function, the replica symmetry is usually
considered not to be broken ; however it was remarked in reference [12] that, if we want to
study the breaking of the replica symmetry in a thermodynamic sense, we must consider the
behaviour of the function Z(e) for positive and negative s. If the function

has a discontinuity in the derivative at t = 0, i.e. if

the replica symmetry is broken.
Here the term proportional to E in equation (4.4) corresponds in the replica formalism to

adding a new term in the potential between replicas belonging to groups of n /2 elements
each ; the Hamiltonian becomes

where Hn is given by equation (1.7).
The new term is an attractive potential for positive e and it is repulsive for négative e. We

can now compare, using E as perturbation, the energy of the fully symmetric solution
(ES ) and the energy we have starting from the situation in which we have two bound states of
n/2 particles each (EB), i.d. m = n/2.
We readily find

For small values of n, at fixed negative e, EB is smaller than ES and the second solution
should be preferred. In the limit where n is going to zero first, we obtain that

and replica symmetry is broken. The breaking is extremely weak because it disappears for
finite values of n when E goes to zero first.
The reader may be puzzled by the fact that the smallest of the two energies

(EB and EM) is taken, while 1 have stated before that for n  1 we should maximize, not
minimize the energy. In the same way the choice of taking m  n was supposed not to be
allowed in the region n  1. In the replica formalism the difference between minimization and
maximization is rather subtle : usually [11] ] the correct approach consists in verifying the
stability of the solution, a task whose meaning is not perfectly clear to me in this context and
that 1 have not yet started to analyze. However the choices 1 have made seem to me to be the
most reasonable ones.
The final predictions are related to the behaviour of the solutions of the Schroedinger

equation : 

If E is positive G should be concentrated in the region where the difference xl - x2 is not large,
while for e negative we should find xl - x2 to be of order t2/3,
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In the same way, if the fluctuations in thé total free energy

are proportional to C t2/3 for e &#x3E; 0, they sould be reduced to C (t/4 )2/1 for e  0. This change
in the behaviour of the fluctuations is related to the presence of n2/4 in the formula for
EB.
The result seems rather reasonable. In the replica symmetric phase configurations with two

well separated nearly equal peaks in G (x) are possible with a probability which vanishes
slowly (as 1 It1/3); these configurations become dominant as soon as e is negative. They
dominate the large time behaviour of G n (x1, x2, t ) and the simultaneous presence of two
peaks reduces the fluctuation.
The behaviour at E strictly zero is not easily found. Simple minded arguments may suggest

that in this case the function Pr(q) is asymptotically a single delta function ( d (q - q M) ),
while extra contributions vanishes (as 8(q)lt1/3), however one should be very careful in
drawing conclusions in this delicate region.
A numerical check of the prediction of this weakly broken replica symmetry would be

welcome, especially if we consider that some of the steps done in the derivation are not crystal
clear.

5. Conclusions and outlook.

We have seen that in the one-dimensional case replica symmetry is nearly broken, because the
replica symmetric solution is degenerate with the solution with broken replica symmetry. The
behaviour is quite similar to the one found for the directed polymer on a Caley tree [8, 11 ],
with the difference that m becomes zero on the Caley tree only at zero temperature, while m
is always zero in this two dimensional case.
The most interesting result is the decoding of the information contained in the replica

approach in the wave function, in particular the relation between the form of the wave
function, its exponential decrease at large distance and the asymptotic increase (with the
distance x-y) of the expectation value of the ratio Gn(X, O)/Gn (y, 0). We have already
remarked that this result may be the starting point for understanding the superuniversality of
some of the critical exponents. The extension of the techniques used in this paper to the
higher dimensional case will be hopefully done in the near future.

Acknowledgements.

It is a pleasure for me to thank M. Mézard and Zhang Yicheng for interesting discussions and
suggestions ; in particular 1 am grateful to M. Mézard for pointing to me references [6, 7]. 1
am also grateful to B. Derrida for an illuminating discussion.

Appendix 1.

In this appendix we present an heuristic derivation of equations (2.22), (2.23), which
supplement the more rigorous study of references [6, 7].

It is clear that sizable contributions to the integral (2.21) will come from those

configurations of ç (x) in which the function
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has two distant local maxima which do no differ too much as far as the value of

F(x) is concerned.
In order to simplify the argument it is useful to consider at first the following simpler

function

where the function ç is defined in the interval 0-X.
1 will argue that the probability of having cp (xM + y) = Q (xM) - 8 is given for large y and

small 8 by

The crucial point is the presence of d 2 in the prefactor of the exponential (the power
y3/2 follows from the normalization condition) ; it can be justified as follows.
The starting point to derive equation (AI.3) consists in estimating the probability

Pr( ç , x, ê) for having a path ço (x), which satisfies the initial conditions lp (0) = - e and
ço (x) = ç, such that :

Using the method of images one readily finds

In the large x limit Pr simplifies to

The total probability for having equation (AI.4) satisfied (independently of the value of
’P ( x» is given (in the large x limit) by

Pr(x, e) factorizes in the product of two terms : a term is proportional to E, which is the

probability of not crossing the boundary (’P = 0) for small x, the other term is proportional to
x1/2 and it is the probability for not crossing the boundary in the region x &#x3E; e 2

If we have a configuration which has a maximum of ç near x = 0 with ’PM = 0, the

probability of having ’P (xo) = 8, with 5 = 0 ( 1 ) and xo large, will be proportional to the
normalized probability for the trajectory to satisfy the condition (AI.4) (i.e. d /xo1/2 Go( d, xo)
multiplied by the probability that ç remains negative in the region x just greater than
Xo (i.e. 5). Putting everything together and adjusting the factor x in order to normalize
correctly the total probability we find equation (AI.3).
Equation (AI.3) implies that the expectation value of

is proportional to 1 /y 3/2.
We thus find the probability law (2.23), which in this case implies that
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In the original case the arguments would run quite similarly and the results would be
multiplied by smooth functions of (X _ Y)3/t2 . The probability law (2.23) should be modified
only in the end of the tail where (x - y) oc t 2/3 . Therefore t2/3 play a role of a cutoff in the same
way as W ; equation (AI.9) is thus replaced by

The reader who correctly doubts the soundness of this derivation may be comforted by the
fact that 1 have tried to check numerically if the equations derived in the appendix are
reasonable. To this end 1 have extracted 105 random path (cp) of 104 steps and these
simulations are in very good agreement with equations (AI.9, AI.10).
The behaviour of the most likely value of i, if it is defined as exp ( (log A&#x3E; ), is more

complex and 1 have not been able to reach definite conclusions ; it seems to increase like

t03B2(t), where f3 ( t ) is a decreasing function of the time in the range 0.5-1.0. The extrapolation of
the numerical data at infinite time is ambiguous and preasymptotic terms must be présent ; if
we include corrections to scaling no conclusion can be reached ; the data are also consistent
with the behaviour : d = constant - t - ", with a = 0.15.
We could also introduce Am, i.e. the value of 2l at which the probability distribution

P ( 4 ) has a maximum ; strickly speaking 4M, not d, is the most likely value. It turns out that
the probability distribution of à is quite flat, also in logarithmic scale, and i is definitely
larger than 4M. Although it is likely that dM and J asymptotically coincide, they may behave
in different way for not too large time : indeed in the simulations àm behaves as

ty, with y weakly dependent on the time (’Y = 0.2-0.3 ).
In principle we could analytically compute the probability distribution of (0394) , in the

simpler case where cp is defined in the interval 0-X, by evaluating the integrals

For any given n it is possible to find a closed form for these integrals. However the number
of terms in the computation increases with n and 1 have not been able to find enough compact
formulae to allow the analytic continuation in n up to n equal to 0. It may be possible that
using an approach similar to that of reference [14], an exact computation may be done.

Appendix II.

In this appendix we will compute the Green function G (n) (x1, x2, ..., x n ; t ).
We start by looking to a simpler problem, i.e. the computation of the Green function

G (x ; t ) which is the solution of the equation

with the usual boundary condition at time 0 :
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The function G (x ; t) can be found for positive x to be equal to

where the integral over p is done in the complex plane from - oo + iA to + oo + iA where A
is large enough in order that the pole of the integrand remains below the integration path,
(i.e. A &#x3E; A). For negative x, G can be found by using the relation G (x ; t ) = G (- x ; t ).
G is obviously a solution of equation (AII.1) at x = 0, because it is a linear combination of

D (x, p ; t ) ; it satisfies the boundary condition at t = 0, because for x # 0 the integral may be
shifted up to ioo. We check by an explicit computation that equation (AII.1) is satisfied also at
x=0.

In the limit where the time goes to infinity the integral may be deformed on the real axis by
peaking the contribution of the pole, which coincide with the bound state contribution.

Similar formulae holds for the G (n)(X1 X2, ..., x n ; t ). For example in the case n = 3 we can
write in the region x,  x2  x3 :

where the integral over the p’s is done along an appropriate path in the complex plane similar
to the previous case.
Although it is possible with some work to write down the generalization of (AII.4) to

generic n, the formulae are quite complex (they involve multiple integrations over the
p’s) and 1 am not able to compute the analytic continuation up to n = 0.
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