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results for codimension one quasicrystals
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Laboratoire de Physique des Solides de Bellevue-CNRS, 1 place Aristide Briand, 92195 Meudon
Cedex, France

(Reçu le 23 janvier 1990, accepté sous forme définitive le 23 mars 1990)

Résumé. 2014 Dans cet article, nous étudions un hamiltonien de liaisons fortes pour les quasicristaux
de codimension un. Nous utilisons une nouvelle numérotation des sites, qui les ordonne selon leur
environnement géométrique. Ceci nous permet de trouver analytiquement des états étendus pour
la chaîne linéaire quasi périodique, et de leur associer un pseudo-vecteur de Bloch. Ces états qui
s’avèrent dégénérés, correspondent à des énergies pour lesquelles un gap du spectre se referme,
quand les paramètres du hamiltonien varient. De plus, nous exhibons une surface de l’espace des
paramètres qui coupe le spectre de toutes les chaînes linéaires construites à partir de 2D dans le
cadre de la méthode de coupe et projection. Les conséquences de ces résultats sur le

comportement de certaines quantités physiques sont brièvement abordées. Enfin, bien que
généraux, nous illustrons ces résultats sur la chaîne de Fibonacci.

Abstract. 2014 In this paper, we study a tight-binding Hamiltonian for codimension one

quasicrystals by means of a new numbering which orders the sites according to their environment.
This includes the general 1D quasiperiodic chain. We exhibit exact extended wave functions on
approximants for the general quasiperiodic chain, for which we define a « quasi-Bloch » vector.
These extended states can be shown to be degenerate. Moreoever, some of them correspond to
energies where gaps disappear, when the tight-binding parameters vary. We also exhibit a surface
of the three dimensional space of parameters, which intersects the spectrum of all 1D

quasiperiodic chains which can be generated by the standard cut and projection algorithm from
2D. The consequences of these properties on physical quantities such as the conductivity are
briefly discussed. These results, although being general, are illustrated on the Fibonacci chain.
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1. Introduction.

The properties of the Schrôdinger operator with a quasiperiodic potential are of considerable
interest since the discovery of quasicrystals. In 1 D, quasiperiodic tight binding models have
yery interesting properties [1]. For instance, the spectrum is known to be a Cantor set whose
Lebesgue measure is always zero independently of the involved irrational number [2]. There
is an infinite number of gaps and the wave functions are in general critical, that is, neither
extended nor localized by the disorder. Nevertheless, it has never been shown that extended
states cannot exist. In fact, we exhibit exact degenerate extended wave functions, which turn
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out to correspond to energies for which a gap disappears in the spectrum. In higher
dimensions, there are very few exact results. Numerical simulations on the Penrose lattice
seem to show that the spectrum is singular [3]. Moreover, it was found, for a non-trivial
subtiling of the standard octagonal tiling, that there can be any number of gaps (including zero
and infinity), and the Lebesgue measure of the spectrum can be zero or finite, depending on
the hopping parameters [4]. In the next section, we define a new numbering for codimension
one quasicrystals which turns out to be relevant in order to study a tight-binding Hamiltonian
on such structures.

2. Codimension one quasicrystal approximant.

Recently, a new set of coordinates has been introduced for vertices of approximants of
codimension one quasicrystals [5]. Codimension one quasicrystals (COQ), are quasiperiodic
tilings in a d-dimensional space (the « physical » space), which can be obtained from
Zd+ 1, by means of the standard cut and project method [6]. This includes 1 D quasiperiodic
chains as well as 2D or 3D quasicrystals. When the d-dimensional plane is not parallel to a
reticular plane of the (d + 1 )-dimensional hypercubic lattice (it is the generic case), a

structure is obtained which is not invariant under any translation. It represents the simplest
model for quasicrystalline structures. Whenever it is parallel to a reticular plane, a periodic
structure is obtained. Note that its unit cell can be very large with respect to the hypercubic
lattice edge, when the corresponding d-dimensional reticular plane has a low density. We
shall not consider the intermediate cases where the physical space is parallel to subspaces of
lower dimension ; the generated structure presents both periodic and quasiperiodic charac-
ters. Note finally that, from a mathematical point of view, a periodic function is a special case
of a quasiperiodic one. In the following, however, we shall make the distinction between the
two cases, denoted by COQA and COQ. The letter A stands for approximant. Indeed, as it is
possible to approach irrational numbers by rational approximants, the COQ can be

approximated by a series of COQA.
So, let d be a non-zero integer. In Rd + 1 with the canonical basis {e1, ..., e d + 1}’ we define

J’, the rational d-dimensional hyperplane spanned by the ai’s, 1  i  d :

where pi is at the i-th row. One can easily see that a = - p Iri is the slope of the intersection
of t and the plane (ei, ed+ 1 ), which is a line. Now, we define the strip 1B which is obtained by
translating the unit hypercube of Rd+1 l along f. Inside 3, there is a unique corrugated d-
dimensional surface which will give an approximant of a quasicrystal after projection on t. In
order to introduce the new numbering, we define another vector ad + 1. If ad(J)+1 1 is the j-th
component of ad+ 1, we have

With this definition, it is clear that ad+ 1 is orthogonal to T. Now, let p be the g.c.d. of the
ad(j)+1, ’s and q the vector with coordinates qj = 1 ay) 1 Ip I . Then, since the qi’s are mutually
prime, by using the Bézout theorem, there exists an integer vector h = (hl ), we shall call it
the generator, so that
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With all these definitions, we verify that the xj’s defined below are the coordinates of all
points of the approximant unit cell.

Here, [ ] denotes the modulo operation with respect to the Z-module spanned by the
ans. The above coordinates correspond to vertices selected in the strip defined by the sum of
the physical space and a unit hypercube in lLd+ 1. Usually (as in Fig. 1), the sites are

orthogonally mapped onto the physical space. Such a mapping amounts to inserting a
projection operator in the formula and does not change anything in the problem treated here
(the excitation spectrum). Thus, in any dimension, we have found a one dimensional
dynamics, which will turn out to be the relevant way to index the sites of a COQA. One can
show that there exists a unique h (modulo the above Z-module) so that this numbering
consists in ordering vertices with respect to their distance from S or, in an equivalent way,
according to their local environment. Moreover, in this numbering (which we shall call the
CO-numbering), using the property (h 1 q &#x3E; = 1, one can show that if j + eq i e [0, n - 1 ],
with e E {- 1, 1 }, then the site whose CO-number is j + eqi is one of the nearest neighbours
of site j. This is obtained from the identity

This shows that the connectivity matrix is a multidiagonal matrix when sites are indexed
according to the CO-numbering and if we apply periodic boundary conditions to the unit cell
itself. Moreover, we note that (5) implies that the qi’s are all different. In figure 1, we show an
example of such a 2D tiling. The two slopes are some approximants for the golden mean
(J5 - 1 )/2 and the silver mean B/2 - 1.

Fig. 1. - A 2D quasiperiodic tiling, defined from the golden and silver means. We have also shown
some site indices in the CO-numbering.

3. The Hamiltonian.

Now, we shall see the consequences of such a property on the study of tight-binding model for
a COQ, whose general form is

where i and j label the sites of the quasicrystal. We call {ni} the set of the qi’s reordered in the
increasing order, since they are all different (5). Then, one can naturally define a Hamiltonian
JC in the following way.
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when sites i and j are nearest neighbours, so that the vector joining the vertices i and j in the
strip defined in Zd +1 1 is ± ek. Thus, after projection on t, these sites will be considered as
nearest neighbours linked by the bond Pk. In addition, we define a set {Vi} of on-site

potentials, one for each local environment, this set being finite when n -+ + 00, since a site has
no more than 2 (d + 1 ) nearest neighbours. Thus, in the CO-numbering, as for the

connectivity matrix, X is a symmetric multidiagonal matrix, with Pk on the nk-th diagonal. On
the main diagonal, the Vl’s of each kind are gathered in a same region. It is clear that, if we
consider interactions up to second or third neighbours, the Hamiltonian will keep its property
of being a multidiagonal matrix.
Now, since our present paper is specially devoted to the 1 D case, we shall study it explicitly.

Thus, consider an irrational number po, and (p, q ) such that p/q is an approximant of
To. In the following, we use the notation n = p + q which will play the same role as in (4),
T = p /q and 8 = T / ( 1 + T ). We call Sn the linear chain obtained by associating a 1 with a

horizontal and a p with a vertical bond (so we have p 1 = 1 and p 2 = p in the above notation),
for each bond of the broken line drawn along the edges of a Z2 lattice selected in the strip

This is exactly the well known cut and project method. Soo is defined in the same way by
replacing 7 by T o in (8). We take 0T,Tol without any loss of generality since

Soo( 1/To) is obtained from Soo (TO) by inverting vertical and horizontal bonds. Sn is a periodic
chain whose elementary cell contains p + q = n atoms. We have shown that the coordinates
of points in a unit cell of Sn’ in the strip (before mapping), can be written as follows

where (h, a 1) is a unit basis of Z2, since we have the Bézout condition

a, defines the unit cell of the approximant periodic structure and h is the generator. In a
subsequence of n sites in Sn, we find one and only one xl, labelled with a fixed f. We give the
example of the Fibonacci chain approximant in figure 2. In this numbering, it can be shown
that the two nearest neighbours of xi are the two in the set

for which the first coordinate is between 0 and n - 1. These two coordinates are

f + p [n ] and f + q [n ] (where [ ] denotes the modulo operator). This result can be written in
the following way. Let 3 be [0, n - 1 ].

* if i - p E 3 and i + p e 3 the site f is surrounded by two 1.

* if f ± p e J and f + q e J, the site f is surrounded by a 1 and a p.

The case f - q e J and f + q E J is impossible since we took T, T 0  1. Thus, this

numbering orders the sites according to their local environment which is the relevant ordering
in this case. This is also the true case in higher dimension.
Now, the above tight-binding model on Sn reads



1573

Fig. 2. - (i) A Fibonacci chain of 13 sites in the CO-numbering. (ii) The Hamiltonian for a Fibonacci
chain in the classic (left) and new numbering (we took VI p = V P = À and V 11 = - A).

where fi, i + l E {l, p} following Sn’ and xi = VI P, V 11, V P 1 respectively when the site is
surrounded by a 1 and a p, by two 1, and by a p and a 1. In figure 2, we show a typical
Hamiltonian matrix on Sn with standard coordinates. Now, we use the preceding result to
write the Hamiltonian in the new coordinates. We first introduce a Bloch 1 D-vector k since
our system has period n. After some elementary manipulations, we obtain the following form
for JeT, the Hamiltonian matrix on Sn :

which is a multidiagonal matrix when k, the Bloch vector, is taken equal to zero, that is when
we apply periodic boundary conditions. Since JeT has, a priori, n eigenvalues for a fixed k, the
spectrum of Sn can be written

and consists in n bands which may overlap. The band edges are the energies in the set

{Ej (:t: 1), j E [1, n ] } , that is, for k = 0 and k = ’TT. Indeed, the secular equation
det (JeT - EJ) = 0, can be written Pn(E) = cos k. Thus, the bands are given by the condition
IPn{E)1  1 and their edges by IPn{E)1 [ = 1.

4. The extended states.

In this section, we exhibit exact extended wave functions for a 1 D approximant defined from
T = p /q. For a tight-binding model on a 1 D quasiperiodic chain, most of the states are known
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to be critical, wich is an intermediate state between localized and extended. More precisely, in
order to study the localization of the eigenstate (1/1’;), one can introduce (following [12]) a
kind of free energy function F(x), which is a commonly used quantity in the multifractal
formalism. F (x) is trivial when the wave vector is extended (F (x) = 0), but proves to be
useful for the characterization of critical states :

Since our numbering seems very efficient in reordering the Hamiltonian matrix, we expect the
wave functions to have a simpler expression in this ordering than in the geometric one. Thus,
we look for 1/1’¡ of the type 1/1’¡ = f (i In) where f (x) is a smooth continuous function. If such a
state exists, it must be extended since

is proportional to n for large n, and then, one finds easily that Fn (x) goes to zero like
ln n /n.
Now, we rewrite the system of equations (13) for k = 0.

and give two examples of such a kind of extended state, the second one being more
interesting.

* 1/I’f = afin: defining () = pin = T 1(1 + T), this ansatz gives immediately

We see that, in general, there is no solution, except if ( p, E - V 1 p, E - V 1 l, E - Vpl)
belongs to the curve % (a) defined by (18), in the four dimensional space of parameters. We
note that, except when a = 1, for which we recover the upper energy of the periodic chain
( 1/" = 1 ), we have V 1 p gÉ Vp 1. A typical state of this kind is shown in figure 3. One can see
that, by increasing a so that V 1 P/ VP 1 becomes large compared to 1, the wave function seems
to be more and more localized, although when n --&#x3E; oo, for a fixed a, the wave function

remains extended stricto sensu. We note that these states which are extended from the

analysis of (15) and (16), have a self-similar structure related to T. These states still exist even
in higher dimension for the general COQ. For instance, in 2D, one can obtain a similar system
of seven equations (or less for some a j’s) which correspond to two kinds of sites with 3, 4, 5
and one kind with 6 (the latter kind can disappear for some ai s). Although this first set of
extended states is interesting, we do not investigate it any longer.
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SITE NUMBER

Fig. 3. - An extended state of the first type as defined in section 3. 11P’ 12 is represented against the site
number of a Fibonacci chain.

one finds from (17)

and

Since a global shift of E, V 1 p, V P and Vll leaves the problem invariant, using (19), we take
from now on V1p = Vp, = À /2 and VI, = - zut /2. In this way, we have defined a three
dimensional space of parameters 9 = (A, p, E ). Then, we can rewrite (19) in a more efficient
way and define the curve C+ z) (the + recalls that this result holds for k = 0) of E by
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Since (A(-a),p(-a),E(-a))= (A(a),p(a),E(a)), the state of energy E(a ) is

degenerate. We will see the consequences of such a property on the electronic spectrum in the
next section. In figure 4 a typical wave function of this kind is shown. We note that for
au 0 (or au n7T), the tight-binding model reduces to a constant plus a Laplacian-like
operator, for which the diagonal term of site i is the sum of the two hopping parameters
surrounding the i-th site. Thus, we find that for p = ±/p/q, the edge state is degenerate. The
two wave functions are 1/1’1 = 1 or 1/1’1 = (-1 )Q (which is a classical result), and

1/1’ 1 = e or (- 1)1 e. The modulus of this last wave functions grows proportionally to f in our
numbering. In classical geometric ordering, this wave function has a more complicated
structure than a simple Bloch wave (Fig. 4). Now, we show that even for k # 0, 7T, there
exists a curve Ck(a) whose points are extended states inside a band. For the periodic chain
(p = 1, A = 0 ), forez 0, the eigenstate indexed by k in the j-th band has the following
energy and wave function at site f

where n’ = p’ + q’ (see Sect. 2 and (9)) and T’ = n’ /n - T o when n, n’ -+ + 00. This can be

verified directly by noting that n’ q - nq’ = 1. So, in the same way as for k = 0 we try the
ansatz

. n r

where k E ]0, 7r ]. After some manipulations which repeat the above calculations of ( 19) (20),
we find that this vector is indeed a wave function for the energy E, if and only if the point
(E, A, p ) is on the curve Ck (a) with

Of course, for k = 0, we recover C+ . In addition, we define e_ = e7T and C = C+ U e_.
Thus, in this section we have exhibited quasiperiodic solutions for a Hamiltonian on a COQA
[11].

5. Gap closing.

In the discussion of section 3, we have shown that the states corresponding to k = 0 and
k = 7T are the band edges. In section 4, we have shown that there is a curve

e( À (a), p (a), E ( a ) ), depending on 0, whose points are some degenerate band edge states.
This implies that for a fixed a, the gap which would normally exist at E ( a ) vanishes. This gap
appears again if A and p are shifted by an infinitesimal amount from A ( a ) and

p (a ). In order to test our result, we take p = Fi - 2 and q = Fe _ l, where Fi is the f-th
Fibonacci number defined by
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SITE NUMBER

-----

SITE NUMBER

Fig. 4. - (i) A typical « quasi-Bloch » state and (ii) the edge state for the Laplacian-like Hamiltonian
defined in section 3 (Fibonacci chain).
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It defines a periodic linear chain Se, whose elementary cell contains Fe atoms. Its spectrum
will be called Sp {Sl} . A trace mapping can be found which allows us to describe the spectrum
numerically in a very simple way (a similar mapping has been found in [1]). It reads

with

and

The band edges verify xe (E) = 1 for k = 0, and xp (E) _ -1 for k = 7r since one can easily
show that xe (E) = cos k, where k is the Bloch vector. For a fixed A, we show in figure 5 a part
of the diagram (E, p ). The gap closing can be easily seen.
Now, in order to understand the meaning of a, we try to evaluate it when p is close enough

to 1 and A to 0, that is, near the periodic linear chain. In addition, we set k = 0 since the case
k = 7T can be studied in the same way. Under these conditions, from the form of the
eigenvector, we see that a must go to a real of the type 2j TT in such a way that
a /n is a Bloch vector of the linear periodic chain. Now using the third equation of (20), we
find

Fig. 5. - For a fixed À = - 0.2, we show the energy spectrum for p E [0.6, 1.4 ]. The gap closings are
easily seen and are located on the intersection of the surface 8 and the 2D plane À = - 0.2.
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Then, using the other two equations (20) we find that a gap disappears at Ej if

which are exactly the two expressions one would obtain by applying the perturbative
approach described in [7]. Indeed, by means of a perturbative formalism, we have shown that
for the general 1 D quasiperiodic chain, a gap appears at 2 e cos (7rj (J) in the spectrum of the
1 D periodic chain, and the edges of this gap are given by

where E, E’ E {-1,1}. Indeed, we see that the condition for a gap closing in the perturbative
approach is exactly (27). Thus, we have shown that for any ( A , p, E ) which obey (20), one
can define a « quasi-Bloch » vector a In, which reduces to the Bloch vector of the linear chain
for p = 1 and A = 0, according to (26) and the expression of Ej in (27).

In the following, we study the curve C(A ( a ), p (a ), E ( a ) ) . First of all, from (23), it is
easy to show that for any k, Ck(a) lies on the 2D-surface 8 of 9 defined by

where 2l is the set limited by the four lines A = ± (p ± 1 ) excluding the internal square. In
figure 6, we show 4 and the projection of C (a ) on the plane ( A , p ). If 0 (or T) is an irrational
number, C, (a) is dense on 8, and its projection is dense on d (Fig. 6). In figure 6, we show
that 8 is made of four branches. Each of them can be deduced from the one in the space
p &#x3E;_ 0, k 0 by very simple symmetries. Thus, in figure 7, we have only shown this last
branch. The vertical segment, E E [- 2, 2 ], À = 0 and p = 1 corresponds to the gap closing
(of all gaps) near the linear chain. The point (A = 1, p = 0, E = 3/2), is a molecular state,
since for p = 0, the chain splits into an assembly of molecules (made of 2 or 3 atoms for the

golden number). For this value of Jt, the upper energies of both molecules (E3 = J2 + Je 2/4,
E2 = À /2 + 1) are the same. It is interesting to note that although Ck (a) depends explicitly
on T, this is not the case for S. Moreover, 8 is contained in the intersection of all r-spectra, T
being any real number, irrational or not. Indeed, although Ck is of zero measure on 8, for any
point P of 8, one can find k and a such that P E Ck with parameter a. We conjecture that 8 is
exactly the intersection of all energy spectra. More precisely, we define Sp ( T, A, p ), the

spectrum of the linear chain, built from T, rational or not, with tight-binding parameters Je and
p. Then, we have proved that

Our assumption is that both inclusions are in fact equalities. Moreover, we have shown that,
for a fixed T, on 8, the states are extended, with a dense set which corresponds to gap closings.
In the next section, we show the origin of these states in terms of a dynamical system. This will
provide a solid argument that we have found all the extended states of our model.
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Fig. 6. - The region d and the projection of the curez for 0 = 8/21 (upper) and 0 = 34/89 (lower).
For an irrational value of 0, C is dense on 8 and d.
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Fig. 7. - The branch of 8 in the region (À &#x3E; 0, p &#x3E; 0 ) in the variables (À + P - 1, À - p, E ).

6. Origin of the surface 8.

It has been shown that the spectrum of any 1 D quasiperiodic chain can be obtained from a
dynamical system [8]. More precisely, (13) can be studied in terms of transfer-matrices. The
important result is that, for any T, there is a mapping involving some traces of certain products
of transfer-matrices. For example, when 7 is the golden mean, this mapping 0 has already
been given in (25) and reads :

The initial conditions for this mapping depend on A, p and E. Then, E is in the spectrum, if the
iterations of the map 0 do not go to a fixed point including infinity. Moreover, there is an
invariant, which is the same for any 7, provided x, y and z are properly defined (in the
simplest case, for the golden mean x, y, z are the xf’s in (25) ; the general expression is more
complicated). So for any T, one can prove that e leaves the following surface invariant

When A = 0, p = 1 (periodic chain), t = 1. However, even for other values of the

parameter, 6 can be equal to 1. It occurs if, and only if, the square in (32) vanishes. It is clear
that this condition implies that (A, p, E ) E S. So, we have found that there are some initial
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values of the energy (and the parameters) for which the iterations of the mapping 0 remain on
the surface corresponding to the periodic chain. Thus, we are not surprized that these states
are extended ones. In higher dimension, it can be shown that, although the extended states of
first kind (18) still exist, this is not the case for the second ones (except of course for the
square and cubic lattices). In fact, since, in higher dimensions, there is no equivalent of the
1 D periodic chain (that is a topologically equivalent periodic structure), that could explain
why this type of « quasi-Bloch » extended states does not exist. We show now that such
degeneracies lead to the appearance of a Berry phase. For a general real Hamiltonian,
Wigner and Von Neumann [9] have shown that generically, one needs at least two parameters
to make degeneracies appear. We see that this is exactly the case for the Hamiltonian (13).
Moreover, following Berry [10], we define a closed path in the space of parameters
(A, p ). Then, if this path encloses a degeneracy (we recall that C on 8 is precisely the set of
degeneracies) for one specified state, the corresponding wavefunction will transform into its
opposite. This is the so-called Berry phase. In our problem, if the circuit intercepts the set 4
previously defined (see Fig. 6), then, it contains generically an infinite set of energy levels (or
only a large set for large approximants), since the projection of e on d is dense. Thus, instead
of only one wave function, such a circuit will cause the change of sign for an infinité (or large)
number of eigenfunctions.
To end this section, let us stress that the existence of the surface 8 may lead to some

interesting properties of some physical quantities such as conductivity. When A and

( 1 - p ) are very small, we expect the physical properties of the quasiperiodic chain to be very
close to those of the periodic chain. In the same way, when, for a given p and A (even far from
the periodic case), 8 intercepts the energy spectrum, there exists one extended state and the
wave functions of the states near this energy, though critical, behave like extended states,
with a fractal dimension very close to 1. Therefore, in this range of energies, the physical
properties (conductivity) should be very close to what is found in a crystal.

7. Conclusion.

In this paper, we have presented some exact results concerning codimension one quasicrystals.
We first introduced a new numbering of the sites which by reordering the rows and columns of
the Hamiltonian matrix, reveals an underlying simpler structure. This approach allows us to
find exact extended states, for a quasiperiodic Hamiltonian. This implies that, for well chosen
tight-binding constants, the vicinity of these states should consist in « almost extended »
states, that is, critical, but with fractal dimension very close to 1. This could lead to crystal-like
physical properties. The occurrence of some degeneracies has been exhibited and corresponds
to gap closing. We note that these results can be found in a similar way when studying a
vibrational problem instead of the excitation spectrum of a linear quasiperiodic chain.
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Note added :

Some related results concerning the existence of extended states have been recently published
in the Fibonacci chain case (V. Kumar, in Proc. of conference on Quasicrystals, ICTP, Trieste
(World Scientific, 1990) p. 391). Our results are more general since they apply to any rational
or irrational number governing the chain geometry and also because the eigenfunctions are
given explicitely here.
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