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Variational approach for uniformly frustrated 2D XY spin
systems. I. Phase transitions in modulated arrays

D. Ariosa, A. Vallat and H. Beck

Institut de physique, Université de Neuchâtel, Rue A.-L. Breguet 1, CH-2000 Neuchâtel,
Switzerland

(Reçu le 20 juillet 1989, révisé le 13 février 1990, accepté le I S mars 1990)

Résumé. 2014 Pour clarifier la nature de la transition de phase du modèle XY-2D complètement
frustré, nous étudions le cas d’un réseau avec des liaisons modulées, où la transition se dédouble
en deux transitions distinctes. La méthode utilisée est une approximation harmonique autoconsis-
tante (« SCHA ») qui nous fournit un système d’équations pour les couplages effectifs

Kij et les moyennes thermiques 03B8ij&#x3E; des différences angulaires entre plus proches voisins. Nous
prédisons l’occurrence d’une transition de phase du type Ising, suivie à plus haute température
d’une transition du type BKT. Dans le voisinage de la 1re transition, les équations SCHA ont été
modifiées en accord avec les exposants critiques connus du modèle Ising-2D en évitant ainsi la
divergence des fluctuations inhérente à la méthode. Dans le cas non modulé, les deux transitions
sont confondues en une seule ayant un caractère mixte. La validité de « SCHA », reliée aux
fluctuations de phase, est discutée. Nous comparons nos résultats à ceux obtenus avec une

approche de type Champ Moyen sur un modèle à deux couches, à des simulations Monte-Carlo et
à des résultats expérimentaux.

Abstract. 2014 In order to clarify the nature of the phase transition taking place in the fully
frustrated XY model, we examine the case of the array with modulated bonds, where one
observes a splitting of this transition in two distinct ones. The method used is a Self Consistent
Harmonic Approximation (SCHA) that provide us with a set of self consistent equations for
effective couplings Ki,j and for thermal averages of angular differences 03B8i-03B8j&#x3E; between

nearest neighbours. We predict the occurrence of an Ising like phase transition followed by one of
the Berezinski-Kosterlitz-Thouless (BKT) type at higher temperatures. In the vicinity of the
1st transition, the SCHA equations were modified in accordance with the known critical

exponents of the 2D-Ising model in order to avoid the divergence of phase fluctuations inherent to
the method. For the unmodulated case both transitions merge in a single one of mixed character.
The range of validity of the SCHA, related with the phase fluctuations, is discussed. The results
are compared with those of the mean-field solution of a two-layer model, Monte-Carlo
simulations and experimental data.

J. Phys. France 51 (1990) 1373-1386 1er JUILLET 1990,

Classification
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1. Introduction.

The 2D X Y spin model describes the thermodynamic properties of planar arrays of proximity
junctions. In recent years there has been a great deal of theoretical and experimental
interest [1] in the properties of such arrays. When a transverse magnetic field is applied, the
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system behaves as a frustrated XY model. In particular, a square lattice of such junctions in a
transverse magnetic field with half of an elementary flux quantum per plaquette, corresponds
to a fully frustrated XY model [2]. In this case, frustration introduces a discrete symmetry
(related to the double degeneracy of the ground state) on top of the continuous symmetry
(global rotation of the spins) already present in the unfrustrated case. These two distinct
symmetries are related to two kinds of phase transitions : the Ising transition (driven by
domain wall excitations) and the BKT one (driven by vortex excitations). Both exper-
iments [3] and computer simulations [4, 7] show a single transition. However the occurrence
of this single transition of mixed character is not yet well understood, since different

approaches disagree about its nature.
The work by Berge et al. [5] was, to our knowledge, the first tentative to split these

transitions by modifying the frustration through varying the stength of negative bonds of
Villain’s fully frustrated model [6]. They performed a Monte-Carlo simulation, finding the
Ising transition preceding the BKT one in temperature. By looking at the cusp of the specific
heat they conclude that for the transition in the non-modulated case the Ising character was
dominant.
The same model was investigated recently by H. Eikmans et al. [7] ; this contribution

contains two different and complementary approaches of the problem : a derivation of the
Coulomb gas picture of the modulated system and a Monte-Carlo simulation. The first leads
the authors to the conclusion that, in the modulated system, existence of dipoles of fixed
length centered on the weak bonds can inhibit the formation of free fractional charges
(responsible for the screening of the Coulomb interaction) associated with the growth of
domains at the Ising transition. The helicity modulus (or inverse dielectric constant) will then
contain an « energy like anomaly » at TIS and will go to 0 at a higher temperature
T BKT. Both predictions were confirmed by the MC simulation. For further comparison with
our variational approach, we want to focus on two particular results in reference [7] : the
density of domain walls vs. temperature that supports the dipole picture, and the shape of
helicity modulus that contains both the anomaly at Tjs and the jump at TBKT·
The purpose of our paper is to investigate the frustrated and modulated (F-M) model,

introduced by Berge [5], within the Self Consistent Harmonic Approximation (SCHA). In
section 2 we recall the definition and the principal features of the model ; in section 3 we
derive the set of equations for effective couplings K;j and average angular differences
( () i - Oj&#x3E;. In section 4, we present an iterative method for solving the coupled equations of
section 3. In section 5 we present the results for the helicity modulus, domain wall densities
and the phase diagram for the double transition ; comparisons are made with other theoretical
approaches [5, 7, 8] and experimental work [9]. We summarize our results and draw
conclusions in section 6. Some precautions must be taken in evaluating thermal averages near
the Ising critical point to avoid divergence of the fluctuations inherent to the SCHA. This
point and other technical difficulties are discussed in the appendix.

2. The model.

Our starting point is the usual fully frustrated 2-D XY model. This model applies to an array
of proximity junctions in a transverse magnetic field of flux Ba2 = ~ 0/2 (~o = hc being the0 2e e g

magnetic flux quantum and a the lattice constant). We thus consider the Hamiltonian :

where A is the corresponding vector potential.
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In the Landau gauge (i.e. A = (0, Bx, 0 )), the quantities Aij are 0 for all horizontal bonds
and nx 7r for vertical ones, located at horizontal distances nx a from the origin. Consequently
Hamiltonian (2.1) can be written as follows :

with .l;j = J for horizontal bonds and for bonds on every second vertical row, and
- J on the other half of vertical bonds.
The generalization introduced by Berge et al. [5], consists in multiplying the negative bonds

by a factor a. A picture of the modulated array is shown in figure 1, where the dotted line
encloses the unit cell of the array we shall consider in the next section, in accordance with the

symmetries of the well known doubly degenerate ground state [2].

Fig. 1. - Modulated array. Double vertical lines stand for antiferromagnetic (J  0) bonds. The dotted
line encloses the unit cell of the ground state.

3. The variational equations.

We consider a trial Hamiltonian HTR, quadratic in the deviations from thermal equilibrium of
angular differences between nearest neighbours :

The variational free energy is given as usual by :

where the averages with the o TR » subscript have to be computed with the trial density
matrix :

Introducing (2.1 ) and (3.1 ) in expression (3.2) we obtain :
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with

The quantities Xij are calculated, as usual, by the eigenvalues of the harmonic Hamiltonian
HTR (see appendix for some details). If we define the average current on the (1, j ) bond by :

the minimization of F with respect to the parameters  (o i) yields the, current conservation on
every node of the array.
On the other hand, the minimization of F with respect to the parameters Xij provides us

with a set of self consistent equations for effective couplings :

Taking into account the symmetries of the system, we can define three non equivalent kinds
of bonds : the horizontal bonds (subscript « h »), the unmodulated vertical bonds (subscript
« v ») and the vertical modulated bonds (subscript « « »). If we define in addition, the bond
variables :

(where sites 1, 2, 3 and 4 are defined on a typical plaquette in Fig. 2), we can express the
current conservation as follows :

Fig. 2. - Labelling of the sites for a typical plaquette (see Eq. (3.7)).

With the additional condition



1377

(3.8) can be written in a more useful way :

with

and

Using the same notations, the set of equations (3.6) reduces to three self consistent

equations :

As a check, the ground state for a given alpha can be evaluated from (3.9) and (3.10) by
making Xh = 0, Xv = 0 and X a = 0 ( T = 0) :

At a = 1, we recover the well known result for the fully frustrated XY model. Notice that

equations (3.12) admit non trivial solutions (Oh :0 0) only if a &#x3E; 1 .
i 

*

In figure 3 we display the evolution of the ground state angular configuration when
varying a.

Fig. 3. - Evolution of the two degenerate ground state configurations when varying the modulation a.

4. Iterative solution of the SCHA equations.

The aim of our calculation is to get, for a given a, the evolution in temperature of both the
effective couplings (Kh, Ky, Ka) and the equilibrium angular configuration ( 0 h, 0 y, 0 a, ).
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The starting point is the ground state given by equations (3.9)-(3.11) at T = 0 (i.e.
Xh = X v = X a = 0). The iteration from a temperature T to a temperature (T + 8 T ) is

performed in the following way :
a) we first change T by ( T + 8 T ) in the density matrix of equation (3.3) ;
b) we then update the values of Xh, X, and Xa using the updated density matrix and the last

calculated values for Kh, K, and Ka ;
c) we introduce the news X’s in equations (3.10) in order to update the Os.
d) the updated X’s and Os are then used to compute the K’s through équations (3.11).

Steps b) to d) have to be repeated up to obtain stability of the results (in practice, for
8 T = J 10- 2, the procedure converges in less than four cycles).

kB
All operations described above are straightforward except the thermal averaging using

Eq. (3.3) in step b). This calculation is detailed in the appendix.
At this point, we should discuss the validity of SCHA on our specific system. Indeed, the

original periodic potential in cos (03B8i - 03B8j) is replaced by an effective one in (p i - P j)2 ; thus,
for weak enou h couplings Kij, phase fluctuations (characterized by their quadratic mean

 ( P i - P j )2) T¡J can carry the average phase difference outside its definition interval

[- 7T, 7T ]. Furthermore, as pointed out by Fishman [10], even if the phase difference remains
in its allowed interval, the approximation becomes doubtful for phase fluctuations of the
order 1 . Fortunately in our case we can check, a posteriori, that average phase fluctuations4

are always well below 1 (the value where the cosine curvature changes its sign) at
2

equilibrium values of K;j found self-consistently.
The eventual existence of another free energy minimum at lower values of K is not a

problem for us since, starting from the known ground state, we follow the solution

continuously in temperature. (This continuity argument must be reconsidered in the case of
quantum fluctuations induced by charging effects [11].)

5. Results.

The procedure described in section 4 was used for different values of the modulation

parameter a.

Figure 4 shows a typical result of our self consistent calculation ; the X and Y components
Kh

of the anisotropic helicity modulus r (within our approximation r x = h and
J

Kv+K03B1 e kB T
T Y = 2 J ) are plotted versus the reduced temperature t = 4 . J (we use the SCHA

critical temperature of the unfrustrated and unmodulated system Tco = 4 - J as our
e kB

temperature unit [13]). The dotted line represents the Ising like order parameter
S = sin (Oh), that goes rapidly to 0 at the Ising transition. Notice the singularity in the first
derivative of T appearing at the same temperature where S goes to 0. Although this is

obviously not apparent in the numerical curves, the cusp at TIS corresponds to the logarithmic
derivative singularity in the internal energy or the nearest neighbour correlation function of
the 2D Ising model. This can be seen as follows : the renormalized force constants

Kh, K, and Ka depend, according to expressions (3.11) on the nearest neighbour fluctuations
Xh, X, and X,, which are given by expressions like (A7). In a mode decomposition the latter

contain (1 cp 3 (q ) 12&#x3E;, i.e. the fluctuations of the third mode which goes soft at TIs. This mode
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Fig. 4. Fig. 5.

Fig. 4. - Two components of the helicity tensor r a{3 (full line) and Ising like order parameter S (dotted

line) vs. reduced temperature t = 4 . e kB Tfor a = 0.5.
Fig. 5. - Helicity modulus T vs. reduced temperature t, for different values of the modulation

parameter (a = - 1 ; 0.4 ; 0.7 and 1). (The dotted line is plotted to exhibit the universality of the jump).

belongs to the eigenvector v3 (see appendix) the form of which, at q = 0, is

with This mode corresponds precisely to the

pattern of the ground state of our system, in other words : rotations of the spins on the 4 sites
of figure 3 by angles corresponding to the components of vector V3, starting from a
ferromagnetic configuration, precisely generates the ground state pattern. One can thus
interpret the field 0 3 as representing, in the spirit of a o continuous spin» l/J 4-model, the
Ising spin variable, and Xh, X, and Xa corresponds to the Ising spin nearest neighbour
fluctuations  (Si - Si + 1)2&#x3E; = 2 - 2 (Si. Si + 1 &#x3E; . The correlation function (Si. Si + 1) have
the same critical behaviour of T - Tc long ( 1 T - Tc 1) as the internal energy.
The same feature is observed for all values of a above 3 i.e. an Ising like phase transition 3

followed by one of BKT type at higher temperature.
The rapid drop of S reflects the fact that, above TIS, the current conservation

equations (3.10) admit only the trivial solution 0 h = Oy = ° a = 0. The jump of T at
TBKT reflects the fact that, for strong enough fluctuations, the self consistent equations (3.11)
admit only the trivial solution Kh = K, = Ka = 0. (In fact, the free energy minimum

disappears at this temperature, and constitutes the signature of the BKT transition in the
harmonic approximation.)
The case a = 1 (fully frustrated without modulation) is specially interesting to discuss : for

~2 ~2
a = 1, S = 2 at T = 0 and all the Ks are 2 J. In increasing the temperature, the mean
fluctuations on different bonds will evolve identically since they have the same starting
strength. Thus, the quantities a and b of equations (3.10) will remain equal to unity and the
average angular configuration will be constant up to the temperature above which the non
trivial solution of equations (3.11) is no longer valid.
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Bellow a == 3 , S = 0 at all temperatures, thus the self consistent equations (3.11) evolve 3

independently up to the jump at TBKT. In figure 5, we show for comparison, the helicity
modulus versus reduced temperature for four different systems : the simple unfrustrated array
( a = -1 ), the fully frustrated array without modulation ( a = 1 ) and two frustrated and
modulated arrays (a = 0.4 and 0.7). As in reference [7] we take into account the anisotropy
by plotting the geometric mean T = Tx T y. At this point we want to stress that the present
calculation is mainly aiming at studying the various aspects of the Ising transition. The B-K-T
transition itself is probably no very well described by SCHA [14] ; although it does take
thermal fluctuations into account, which renormalise the helicity modulus, as it is done by
calculations based explicitly on the existence of vortices [15]. Nevertheless it is interesting to
note the « universality » of the jump of F at the higher temperature transition.
The phase diagram (a, t c) in figure 6 resumes the situation described above. Comparison

of our results with the phase diagram of Berge et al. [5] and with the curves for helicity
modulus of Eikmans et al. [7] (both obtained by Monte-Carlo simulation) are highly
satisfactory. In addition our results agree with those obtained earlier by us in a mean field
approach on a two-layer model [8]. Finally, recent measurements of the helicity modulus in
square arrays of Josephson Junctions by Théron et al. [9] seem to show a weak singularity in
agreement with our predictions.

Fig. 6. - Phase diagram (a, te). Notice the absence of Ising transition below a = 1/3. 
z

The analysis of the helicity modulus only is, of course, not conclusive as to the nature of the
transitions. In order to compare our results with the dipole picture of reference [7] we should
evaluate, within our approach, the density of different types of domain walls at each

temperature. To do it, we shall use a « zero current criterion » to detect domain boundaries in
the system. This approximation, that clearly overestimates domain walls densities, is justified
at low temperatures by the fact that minimal energy domain walls are centered on bonds
through which there is zero current. In addition, within our variational approach we deal
naturally with effective couplings and currents (see Eq. (3.5)) that are provided without
additional numerical cost by the iterative procedure.

Let us write the probability for a certain bond (i, j ) to be sitting on a domain wall as
follows :
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A truncated cumulant expansion, followed by a Gaussian integration gives :

The quantities  8) 2 and  82) c’ for S = sin (0 l - e J - A jj), can be evaluated in the SCHA :

and

Curves for Dij vs. t on h, v and a-bonds are shown in figure 7 for three different values of
the modulation parameter a. One can see from the plot that, excepting the isotropic case,
the domain wall density on a-bonds is very small compared with those on unmodified vertical
and horizontal bonds and it becomes important just close to the Ising point. The same
qualitative behaviour was observed in reference [7], where the authors evaluate the densities
of domain walls using nearest neighbour charge-charge correlation functions on the dual
lattice.

Fig. 7. - Density of domain walls vs. t for three different values of the modulation parameter.
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6. Conclusions.

In this work, we have used a variational technique to deal with the problem of Ising phase
transitions in frustrated 2D XY models. Our results (in good agreement with those obtained
by numerical simulations [5, 7], earlier analytical approaches [8] and recent experimental
work [9]) shows that the Ising character associated with the discrete symmetry is present all

over the range of modulation above « = 1; it causes a double phase transition for
3

a # 1 and renormalize the critical temperature at a = 1. For values of « in the interval

1,1 ] the picture that emerges is, as proposed in reference [7], those of an array of dipoles3

flipping around the center of a-bonds that undergoes an Ising transition at low temperatures.
At a higher temperature, unbinding of thermal induced vortex-antivortex pairs (integer
charges), causes a BKT transition. At a = 1, there are no more fixed dipoles, and isotropic
domains, by liberating fractional charges when growing, precipitates the BKT transition. The
fact that the screening of Coulomb interaction is due to fractional charges does not seem to
affect the value of the jump in helicity modulus at a = 1. On another hand, the observed
singularity of the specific heat [5] shows that the Ising character of the transition is always
present in the isotropic case.
Topological order is observed to coexist with Ising disorder but not the contrary. We

believe that this last property is a particularity of the model and not an universal feature [16].
In other words, we can imagine 2D systems in which the coupling between the Ising and the
BKT variables allows topological disorder in the interior of Ising ordered domains. However
in our system, the Ising order parameter in a sort of chirality measure of topological
excitations and looses its sense when topological quasi-long-range order disappears.
The variational technique used in this paper is able to account not only for the double

transition but also for the microscopic picture of the transition mechanism. In view of the
preceding remark, we can trust our phase diagram of figure [7] and conclude that fractional
charges remain confined at the Ising point for a approaching unity. Both transitions are
always splitted and they merge only for a = 1. This fact, proposed by H. Eikmans et al. [7]
based on domain wall energy considerations, was, up to now, never contradicted by any
experiment or numerical simulation.
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Appendix

Calculation of  ( c/J j - c/J j )2&#x3E; TR .
In order to use the density matrix p TR of equation (3.3) to evaluate statistical averages, we
shall first diagonalize the quadratic form HTR:
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A four site basis is introduced on the array, in the following way :

where

a being the lattice constant of the array, x and ÿ the unit vectors on the x and y axes,
nx and ny the integer coordinates of the center of the unit cell in the new array (see Fig. 8).

Fig. 8. - Parametrization of the lattice with basis introduced in equations (A2).

Expanding all functions of p in Fourier series, HTR can be rewritten as follows :

the dynamical matrix M(q ) being given by :

Its eigenvalues and eigenvectors are listed in the following table :

Eigenvalues :
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Eigenvectors :

with the notations :

Thus, for each site (p ; s ; t ) we can write :

where au (q ; s ; t ) is the (s, t ) component of the eigenvector Vu defined above. HTR can then
be expressed as follows :

and the thermal averages (1 p u (q) 12) TR with the Gaussian density matrix (3.3) take the
value :

We have now all the tools we need to perform the averages Xij entering in equations (3.10)
and (3.11 ).
As an example, we will compute Xh :
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Approximating the q-dependent quantities by their small q limit, and replacing the sum

by an integral d2q on a circular Brillouin zone of area 7T 2 we find :

In a similar way one finds :

Expressions (A8) can be used directly in the iterative procedures of section 4.
However, a problem arises with the procedures when we reach TIS from below : the X’s

diverge because the denominator D = G (G + 2 ) - F2 in equations (A8) goes to 0 at the
transition. Indeed, at TIS the Ising like order parameter S is 0. Thus, from equations (3.10) we
get 4 a Zab - (a - a )2 = 0, G = (ab)1/2-a(b/a)1/2 and F = (ab)1/2+a(b/a)1/2. Simple
algebraic manipulations yields G ( G + 2 ) - F 2 = 0, or in an other form :

This divergence is related to the softening of the third optical mode at the Ising transition,
since for q --&#x3E; 0 one can write :

where 03BC ~ 0 at TIS.
The softening of an optical mode is an usual signature of Ising transition in SCHA, and

causes divergencies in two dimensions, since the dispersion relation goes as q2.
However, we known from RG analysis [12] that the q dependence for 2D Ising models near

the critical point is actually q (2 - 1/ 4)0 In order to avoid the difficulty we have chosen to replace
the third eigenvalue in the small q approximation and near TIS as follows :

since this correction to the mass of the third optical mode will induce a correction of the
denominator D near TIs :

The above replacement is conceived in order to suppress the divergence at its origin.
Quantitatively Au is chosen in order to simulate the effect of the actual power of q in the
dispersion relation, when computing statistical averages :

thus



1386

The actual dispersion relation of the third optical mode near the Ising critical point should
be of the form :

It will be changed in :

1 will be changed in

Since we are interested in 

using thé correction AD just 
close to the critical point, we can

assume the relation G + 1 = F2 + 1 in evaluating it. Finaly, the expression of D (that
comes from the product U 3 U 4) will be given, near TIS by :

as we wish in expression (A9).
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