N
N

N

HAL

open science

Thermodynamics and kinetics of grafting
end-functionalized polymers to an interface

Christian Ligoure, Ludwik Leibler

» To cite this version:

Christian Ligoure, Ludwik Leibler.
functionalized polymers to an interface.

Thermodynamics and kinetics of grafting
Journal de Physique, 1990, 51 (12), pp.1313-1328.

10.1051/jphys:0199000510120131300 . jpa-00212447

HAL Id: jpa-00212447
https://hal.science/jpa-00212447
Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/jpa-00212447
https://hal.archives-ouvertes.fr

J. Phys. France 51 (1990) 1313-1328 15 JUIN 1990, PAGE 1313

Classification
Physics Abstracts
68.45 — 82.65 — 81.20S

Thermodynamics and kinetics of grafting end-functionalized
polymers to an interface

Christian Ligoure and Ludwik Leibler

Laboratoire de Physico-Chimie Théorique (*), E.S.P.C.I., 10 rue Vauquelin, F-75231 Paris
Cedex 05, France

(Regu le 15 décembre 1989, accepté le 6 mars 1990)

Résumé. — Nous étudions I’équilibre thermodynamique et la cinétique de formation de chaines
de polymeéres se greffant sur une interface par un groupe terminal fonctionnalisé. Nous prédisons
le taux de couverture et la hauteur de la couche adsorbée, en fonction de parameétres moléculaires
comme la masse moléculaire des chaines, la concentration des chaines en solution, I’énergie
gagnée par l’adsorption d’un groupe terminal. Nous montrons l’existence de deux régimes
successifs dans la cinétique d’adsorption. Le premier régime (temps courts) est gouverné par la
diffusion brownienne des chaines dans la solution, le second (temps longs), par la barriére
d’activation qui apparait dés que les chaines adsorbées commencent a se recouvrir fortement et a
s’étirer. Le temps caractéristique de construction varie exponentiellement avec I’affinité chimique
du groupe terminal et de la surface d’adsorption. Nous calculons aussi le temps de désorption
d’une brosse mise en contact avec le solvant pur : ce temps est toujours plus long que le temps de
construction.

Abstract. — We present a theoretical study of the thermodynamics and of the kinetics of grafting
end-functionalized polymers to an interface. The equilibrium surface coverage and thickness of
the grafted layer are predicted as a function of molecular parameters such as the molecular weight
of the chains, the solution concentration and the energy gained by adsorbing the terminal group.
We show that there are two successive regimes in the kinetics of adsorption. The first one (short
time) is governed by the Brownian diffusion of the chains in the solution, the second regime (long
time) by the activation barrier, which appears as soon as the adsorbed chains begin to overlap
strongly and to stretch. The characteristic construction time depends exponentially on the
chemical affinity of the end group and on the surface. The desorption time of a brush put in
contact with the pure solvent is also calculated. The desorption time is always longer than the
construction time.

1. Introduction.

Colloidal particles can be protected from flocculation in a suspension by polymer chains
attached by one end to their surface. Whenever two grafted layers are forced to overlap, they
repel one another and, in some cases, this so called steric repulsion may overcome London-
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van der Waals attraction [1]. The relevant parameter is the surface density of grafted chains o.
A simple and versatile method for anchoring polymers to a surface consists in adsorption of
end-functionalized chains [2] or block copolymers [3, 4]. The present work has two goals.
First, we predict the surface coverage which can be attained by adsorption of end-
functionalized chains in a good solvent as a function of molecular parameters such as
molecular weight of chains, the solution concentration and the energy gained by adsorbing the
terminal group. Secondly, we study the kinetics of the adsorption and of the desorption and
we estimate, in particular, the time necessary to build and to destroy a dense layer of
terminally anchored chains. Kinetic considerations may be also of some relevance for the
interpretation of recent direct measurements of the force between two grafted layers [2-4].
Indeed, when the surfaces are in contact with the solution of adsorbing chains, the interaction
force depends on whether during the characteristic experimental time the grafted and free
chains exchange themselves.

Theoretical studies of « polymer brushes » focused on describing the chains conformation
in a grafted layer in contact with a pure solvent. Simple Flory-type arguments and a scaling
approach [5, 6] indicate that, in a moderately dense layer, grafted chains are stretched. More
precise self-consistent-field methods [7, 8] show that the stretching of chains is not uniform
and that, in the presence of the solvent, the polymer concentration decays parabolically from
the surface [8]. Molecular dynamics [9] and Monte Carlo simulations [10] essentially confirm
this picture.

The self-consistent mean-field theory of Milner et al. [8] enables one to calculate easily the
chemical potential of grafted chains and thus provides a convenient framework for a study of
adsorption of end-functionalized chains. Still, as in the case of adsorption of block copolymers
[11, 12], the structure of a grafted layer is determined not only by the free energy of chains in
the layer, but also by the chemical potential of the solvent and the chains in the reservoir.
Hence, in section 2, we generalize slightly the Milner’s et al. [8] theory in order to calculate
the grafted chains conformation and chemical potential for a layer in contact with a solution
rather than with the pure solvent. This calculation provides essential ingredients necessary to
treat the equilibrium adsorption as well as its kinetics (Sect. 3). At equilibrium, the main
result is that the surface coverage depends strongly on the adsorption energy of the end-group
and on the molecular weight of the chains. The adsorption processes are complicated by the
tendency of end-functionalized chains to self-associate in the solution. In our study of
kinetics, we focus on relatively dilute case, below the critical micelle concentration. Then, one
expects essentially two simple regimes. First, a classical diffusion limited regime in which the
construction of the brush is controlled essentially by the diffusion of chains to the surface.
This regime stops rather quickly when chains in a grafted layer start to overlap strongly and to
form a barrier towards further adsorption of other chains. The penetration through and the
progressive increase of the barrier are characteristic of the second regime.

When the system is close to equilibrium, there is a substantial exchange of already adsorbed
and of free chains. The characteristic time, the exchange time is, in fact, of the same order of
magnitude as the time of the formation of the brush. When a brush formed by terminally
adsorbed chains is put in a contact with the pure solvent, the time of destruction of the brush
— « washing time » — is even longer than the exchange time.

2. Equilibrium adsorption of end-functionalized chains.

We consider a wall in contact with a solution of end-functionalized polymers in a good
solvent. The polymerization index of chains is denoted by N. We assume that the monomers
are repelled by the wall and do not adsorb except for the one end of the chain which is
attracted to the wall. At equilibrium the adsorbed chains form a brush with surface coverage
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o = a’/3, where 3 denotes the average surface area per adsorbed chain and a is the Kuhn
statistical length. By definition, the end-to-end distance for unperturbed chains is
R*=3Nd>

The surface coverage o depends on the chemical potential of chains u ., and the osmotic
pressure 7, in the reservoir. To calculate o, one needs to know the conformation and the
free energy of chains in a brush. A simple Flory-type approach enables one, for fixed o, to
estimate when the free chains penetrate the brush and to calculate the deformation of
terminally attached chains. Truly self-consistent models are more difficult to solve. Here, we
use Milner et al. [8] model for a brush in contact with a pure solvent slightly modified to take
into account the osmotic pressure of external solution. We thus consider the case of relatively
high o when the attached chains are strongly stretched and their conformation can be
represented by a trajectory of a classical particle subject to a potential arising from excluded
volume effects and from constraints imposed on the chain ends. Milner e? al. have shown that,
in such a classical limit, the self-consistent potential acting on attached chains must be
parabolic

u(2)/kT = A () - Bz? M

since all chains must reach the surface after the same number of steps N whatever is the
position of the other end. This imposes

B=nY8Na® )
In our case u (z) arises from the excluded volume interactions of free and attached chains, i.e.
r(z) = kT(v/a’)[$,(2) + ¢(2)] 3)

where v denotes the excluded volume parameter, ¢, and ¢, are the volume fractions of
attached and free chains monomers, respectively.

In figure 1 we show schematically the concentration profile of a grafted polymer layer in
contact with a solution. In general, we expect some penetration of free chains [6, 14] into the
brush and a depletion layer [6, 13] near the brush surface. We focuse on the case when both
effects are weak which occurs when (cf. Appendix) :

(v/a® ¢o< (h*/N%a?

where ¢, denotes the monomer volume fraction in the reservoir and # is the thickness of the
brush defined by ¢,(#) = 0. In this limit, the constant 4 (o) in equation (1) is simply given by
the condition ¢¢(4) = ¢, Hence, for a given o, the brush height can be calculated from the
normalization condition

Na:%lJ:¢a(z)dz=(h/a)¢0(1+§a) )
with

.- Bh’a’® _ ¢(0) - ¢,
dov o

©))

representing the relative excess of monomer concentration at the interface with respect to
&, The average chain deformation energy is equal to

_Fa 1 (° N VDo a(5+6a)
fd*ﬁ_;LNA(a')dcr_N7{l+m}. (6
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Fig. 1. — Schematic profile of monomer volume fraction profile of attached chains (¢,) and free chains
(¢¢) in a grafted polymer layer of thickness 4 in contact with a solution. Monomer volume fraction in
the solution is ¢,. ¢,(z) is parabolic, except near the extremity of the brush, where it vanishes and near
the wall where there is a depletion layer. d and ¢ denote respectively the characteristic penetration
length of free chains in the brush, and the characteristic length of the depletion layer outside the brush.
The local concentration profile (¢, + ¢ ;) is expected to be essentially parabolic.

The free energy of the grafted layer is thus given by
Fom/kT = (fa—4)Q2+Qlno Q)

with Q denoting the number of terminally anchored chains and A is the free energy gain (in kT
units) when a terminal end group is fixed. The last term in (7) represents the translational
entropy of chains in the brush.
At equilibrium the surface coverage can be determined from the equality of chemical
potentials of attached and free chains
oF film

Mext = Hfilm = ——— =NA(c)—A+Ino +1. ®)
0 (Q/ o) = const

We focuse on the situation when the chains in the reservoir do not form micelles so that
P/ kT =N (v/a®) $o+In o+ 1. ©)

Here the first term represents the excluded volume contribution and the last two the
translational entropy. The grafting density can be thus obtained from equation (4) with a
determined from (8) and (9):

N(@/a’) gga = A+1In ($o/0). (10)

This is actually an equation for the adsorption isotherm. It has a simple interpretation : the
left-hand-side term represents a correction to the Gibbs isotherm arising from the excluded
volume effects different in the brush and the reservoir.

It should be remarked that equation (10) enables one to determine easily the free energy
gain A if the surface coverage o or the brush height 4 are known. Ignoring the entropic terms
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in equation (10), Milner [15] has estimated A for the system used in the experiments by
Tauton et al. [2, 4]. However, for small ¢, the entropic terms are of the same order of
magnitude as the enthalpic terms and cannot be neglected. For instance, assuming the
equilibrium adsorption in surface force measurements for polystyrene chains of Tauton et al.
[2], we can estimate A to be about 9 kT (by taking a=7.6A; v=8A% N =1350;
do=2.52x10"%; o = 8.5 x 10~ 3). For block copolymers with a short end group [4], 4 can
be higher.

There are two interesting limiting cases : the solution dominated regime when a =1 and
the brush dominated regime when « > 1. In the first case, due to osmotic pressure of
reservoir, the brush is compressed so that the concentration at the interface and in the brush is
essentially equal to that of the external solution. Actually, this regime cannot be described by
this model because of the important penetration of free chains in the brush (cf. Appendix).
Much more important is the second regime when a > 1 and the brush is much denser than the
surrounding solution. Then one gets

13
h= (.1.2_) o BoB N an
oy
(as for the brush in contact with a pure solvent) and the surface coverage determined by
3/ w2\B [ p \2B
¢0=aexp{—A+§<T§) <a—3) 02/3N}. (12)

It is important to stress that even in this limiting case, the surface coverage depends on the
reservoir concentration ¢, especially at low ¢,, and the brush thickness is not proportional
to the molecular weight of chains but varies more slowly. These are general features of the
adsorption process.

In practice, in order to predict o, one needs to solve numerically equations (10) and (4).
Figure 2 illustrates the dependence of surface coverage o on the solution concentration
¢, for a typical set of molecular parameters (which actually may correspond to polymers used

(10 e |
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Fig. 2. — Dependence of surface coverage o on the solution monomers volume fraction ¢, for a typical
set of molecular parameters (Kuhn statistical length a = 7.6 A, excluded volume parameter
v = 8 A [3], energy gained when a terminal group is fixed A = 9 k7, the polymerization index N).
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by Tauton et al. [2]). The strong dependence of o on concentration at low concentration
regime implies also a rapid variation of brush thickness with concentration (Fig. 3). At higher
concentrations, a plateau regime for which 4 is almost constant is attained. This corresponds
to the solution dominated regime for which @ =1 and h = (N o /¢,) a. Since in this regime
o ~ ¢, we get h = const. The crossover between the brush and solution dominated regimes
depends on the molecular weight of chains and the value of A. The role of the energy gain 4 is
clearly illustrated in figure 4 where we plotted the dependence of the brush height on

HEIGHT (A)

L N=3000
11704
910.-

N=1350
sso'ﬂf_'f
390.4 N =300
130.1
.010 .030 .050 .070 .090
A=9 (DO

Fig. 3. — Dependence of the brush thickness 4 (A) on the solution monomers volume fraction
¢, for the same typical set of molecular parameters, and for different values of the polymerization index
N.

HEIGHT(A)
13504 A =30
1050+
750.4 A=9
K_’ N .
450. K,_f
150.
D ‘ 00 . 00 ‘ 1.40 ‘ 1.80
.200 .6 1. . _ )
N =1350 (10-2) @,

Fig. 4. — Dependence of the brush thickness 4 (A) on the solution monomers volume fraction
¢, for different values of the energy gain A.
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¢, for different values of A. As A is increased, the stronger is the tendency to adsorb, the
higher is the surface coverage o and thus the thickness of the brush.

In conclusion, we expect that at equilibrium the surface coverage o depends on the
concentration of polymer solution ¢, This leads to a nonlinear dependence of the brush
height 4 on the polymerization index N (Fig. 5). From plots Log h versus Log N, the non
linear dependence of brush height # in N may be approximated by a power law:
h ~ N°® for reasonable values of ¢, For high concentrations ¢, we expect the brush to be
relatively dense so that entropic terms In (¢,/0 ) can be neglected in equation (10). Then,
one gets from (2) and (11) 4 ~ N2 [15]. Numerical calculations confirm this result, but for
high ¢ for which, unfortunately, the model is no longer valid as the penetration of free chains
to the brush cannot be neglected.

HEIGHT (A)
2700 @, = o.1\
®y=2.52E-4_
2100+ \ -~

-
-
-
-
-
-

- "X P,=2.52e-5
1500 - o
S—
900.4
300.
Ao 120 .360 .600 .840 (104) N 1.08

Fig. 5. — Dependence of the brush thickness 4 (A) on the polymerization index N for different values
of the solution monomers volume fraction (energy gain 4 = 9 k7).

3. Grafting and desorption kinetics.

In this section, we study the adsorption kinetics for the brush dominated regime when the
concentration in the brush at equilibrium is much higher than in the solution. We consider the
solution below the critical micelle concentration (c.m.c.). We also assume that a
functionalized chain end in contact with the interface is adsorbed very rapidly. Then, the
kinetics of grafting is controlled by the diffusion in the solution and penetration of chains
through the brush protecting the wall.

It is important to realize«#hat the time 7, required to build a brush in which the chains just
start to overlap (0 = o* =~ N~") is usually very short compared to the time 7, necessary to
reach o = Teg- Indeed, below o *, there is essentially no activation barrier and the adsorption
is controlled by chain diffusion in the solution :

o (1) ~ ( o )”2 ($0/N) (13)
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where D is the chain diffusion coefficient. Hence, the overlapping brush is attained after the

cross-over time
a?

T Dg? (14)
" Typically for chains considered in section 2, N = 10%, D=3 x 10~ cm?/s and ¢, = 10~> we
get 7, =0.3s.

Above the overlap concentration, a further adsorption requires some stretching of the
chains and there is a potential barrier which opposes the penetration of the chains. Very
rapidly (for high A4 or N) the barrier becomes an essential obstacle and the diffusion of free
chains does not control anymore the adsorption kinetics. In fact, the transition between the
two regimes is smooth. There is an intermediate regime in which the two processes are
relevant.

We define a cross-over surface coverage o' by the requirement :

oo _ N5 g2
o

It will be shown later that the kinetics of grafting is controled by the Brownian diffusion in the
solution for o < o * and by the activation barrier for o > o'. For 0 * < o0 < o' we are in the
intermediate regime.

We consider the penetration of a chain into the brush with the surface coverage
o (1) < 0q and the thickness 4 (?) (Eq. (11)). The chain penetration can be characterized by
the position of the end-functionalized group x (Fig. 6). Only this part of the chain is stretched
and the potential energy of the chain (the barrier height at point A () — x) is

x df"el (h)
kTU =
w- [t

dh = p g(x) — pa(0) 15)

3(Fa Q)

aQ Q/ o = const
favored. Equation (6) yields

where pg(x) = . Note that the penetration by one end is energetically

U(x) = LAt | (16)
8 Na?

When x = h(t) — a, the chain is rapidly adsorbed and it gains the energy A (Fig. 6).
The kinetics of adsorption in this regime is governed by conservation equation :
do
E = az(Ji - Jout) (17)
where J;;, and J,,, are the flux from solution to the interface and from the interface to the
solution respectively. The flux J,, obeys a generalized diffusion equation

3
Ja(x) = =D (x)[ A¢/Na) 3V (4 /Na3)] . (18)

ox ox
As the chain penetrates the brush, its diffusion coefficient changes, so D(x) denotes the
diffusion coefficient of the end of the chain at point x in the brush.
It is reasonable to assume that the diffusion in the solution and the penetration in the brush

are decorrelated when the diffusion time 7, is much smaller than the characteristic time of
brush construction with an activation barrier 7.
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Fig. 6. — Schematic profile of the potential energy acting on a chain penetrating the grafted layer at
time ¢.

In such a case, the flux J,(x) practically does not depend on x

D(x) _uwx 0
Jin(x)=Jin(0)=Jin=—N—3’;e - ICE (18a)

The integration of (18a) gives with a boundary condition ¢ (x =h—a) =0
(do/a N )

e N i
J e i
0 D (x)

Jin = (19)

After linearization of U(x) near its maximum U(h — a), we integrate the denominator of the
right-hand side of equation (19) and get :

a *m¢,D(h)
—_—

N l/.’oe—yN::r"’/3 (20)

Jn =
where
y =2 @Y12)P (/) and m= 37t/ @'/a).
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Note that m~' represents the microscopic surface occupied by a monomer and yN o ?? the
stretch energy of a chain. D (k) is the effective diffusion coefficient at the interface. Thus
D (h) may be found explicitly.

Following Halperin and Alexander [16], we assume that the chain penetrates the barrier by
a reptation-type diffusion. This picture is consistent with the fact that the penetration by one
end is energetically favored [17]. Thus the relevant diffusion coefficient D is that of a chain in
a tube. By analogy with semi-dilute solutions

= (kTg(h))/(6 mmoéN) where ¢ ~ao ~'=3'2,

g = ¢3(#(0)/a’) is the number of monomers per blob, and u, = (1/6 w1y £N) is the blob
mobility, with 1, denoting the solvent viscosity. Hence, we get

e () B
37 -,'0,;1/3N N )

2 a4

The flux from the interface to the solution reads J,,, = voa~ “ o e~ %, where », denotes a
microscopic frequency. The conservation equation (17) relates v, to the macroscopic

parameters at equilibrium [do /d?], _ o = 0 leading to

mDydo (a-yNa2P

Vo= ——- ¢ “ (3))
N2 Oeq
Equation (17) now reads
dS - ‘yNa'gc/lasz/3 - )'Noezé3
— = - 22
q7=°¢ se 22)

Wthh is the differential equation governing the brush construction. s = (o /0) and
= (t/7,) are reduced variables, where 7, = (N2 o ea/ Domd ) is a short characteristic time.
Equatlon (22) can be easily solved numerically. Figure 7 illustrates the dependence of

reduced surface coverage s on the reduced time 7, for a characteristic set of molecular

parameter s: a=7.6 A; v=8A; A=20; ¢,=10"2; N = 3210.

S
.900+
.7004
.5004
A =20 N=3210
( (Do =1le-2
.300
6 = 1.63e -2)
100 A
200 6.00 10.0 140 LN (T) 18.0

Fig. 7. — Dependence of the reduced surface coverage o = o/ 0 on In (7), where T = t/7, is the
reduced time and 7, = N2 0e/Dome, is a short charactenstlc time. Molecular parameters are
A=20kT, N =3210, ¢,=10"% 7, = 5.6 x 10~ °s. The construction time is 7¢ = 15.4 x 10°s.
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To get some qualitative insight into the construction dynamics, we can distinguish two
regims. In the first « quasi-logarithmic » regime, the retrodiffusion is very weak, so that
Jout €an be neglected in equation (22). Under such conditions, the integration of equation (22)
yields :

3

4

2
+ )’N(T 5
sPe «

[SST S

YyNo o T. (23)

In this regime the time dependence of o is essentially logarithmic.
Using equation (23) with s = 1, one can evaluate the construction time

2
TC~3 T2€Xp {yNaZ’} [(¥Nao,) . (24)

It is important to remark that 7, is not the relevant construction time. The construction time
7¢ is much longer due to the exponential factor. This justifies the use of the blob model which
gives 7, up to a numerical prefactor.

The hypothesis that the diffusion of free chains in the solution does not control the
adsorption kinetics is justified, only if 7 > 7| where 7{ = [(N/¢,) a'eq]2 az/D which would
be the time to reach the equilibrium without activation barrier with D being the Zimm
diffusion coefficient: D = kT /(6 mn, N3¥Ba).

This condition is equivalent to the requirement

8/5 2

;3 N o

echreq > eq )
b0

Typically for N = 1350, 4 = 30, ¢ = 10~3, which leads to Oeq = 8.6 x 10~ 2 and the solvent
viscosity 7179 = 0.59 cp at 30 °C, we expect the construction time 7. to be about 7o~
9 x 10%s compared with diffusion time (7] ~ 1.2 x 10°s).

Near the equilibrium, both fluxes are of the same order of magnitude, and equation (22)
can be linearized around s = 1, yielding :

o-=a'eq[1—exp(—%ex>]. (25)

This is the second regime (exponential relaxation regime), where
Tex = T2exp {YNo 2 / (1 + % 'yNa-Zf)

denotes the characteristic exchange time of adsorbed and free chains close to equilibrium

+173
Tex ~TC Teq / .
For the same set of parameters, we estimate 7., ~4 x 105s.

Unfortunately, the crossover between both regimes cannot be expressed by a simple
analytical form.
But putting ¢t = 7¢, which would be the time to reach the equilibrium without retrodiffusion,
in equation (23), one gets
Ao

G'eq

~exp(— o4 <1.

This result means that the equilibrium is practically reached, without retrodiffusion, when the
solution is not too concentrated (equilibrium brush dominated regime).
JOURNAL DE PHYSIQUE. —T. 51, N' 12, 15 JUIN 1990 87
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Using equations (11), (12), we get

This result seems paradoxal : the stronger is A, the longer is the construction time, but in fact,
the stronger is 4, the higher is the surface coverage at equilibrium and then the higher is the
activation barrier. Because of the exponential term, the characteristic formation times of the
films vary over a wide range when the chemical nature of the end group is changed.
When a brush formed by terminally absorbed chains in equilibrium with a solution, is put in
contact with the pure solvent, the flux from solution to the interface J;, vanishes. Then the
kinetics of the brush destruction is governed by equation (17) with J;, = 0 and one gets

Tw

o =04 ,

where 7, =7, e"Na‘%‘/‘3 is the «washing time», ie. a characteristic time of the brush
destruction.

It is important to notice that 7, > 7 in all cases. This shows that as for the adsorption of
the entire chains the strong adsorption of end-functionalized chains is practically irreversible.
(For the same typical microscopic parameters as above, we estimate the « washing time » to
be about 7, ~ 5.5 x 107s).

Conclusion.

In this paper, we have theoretically discussed the equilibrium of a layer formed by strongly
stretched end functionalized chains anchored to a surface, in contact with a solution of the
same chains in good solvent. We used the theory of Milner et al. [8], slightly modified to take
into account the existence of a reservoir of free chains in the bulk. We have shown that the
parameters such as surface coverage and thickness of the layer depend strongly on the energy
A gained by absorbing the terminal group, and on the solution concentration especially at low
concentrations. The dependence of the grafted layer structure on the chemical potential of the
reservoir leads to a non power law variation of the layer thickness 4 with the polymerization
index N, at fixed solution concentration. The model enables one to determine easily the free
energy gain for a given surface coverage o, or the brush height 4. The determination of the
equilibrium brush parameters is an essential step to understand the kinetics of formation of a
brush. We distinguished two kinetic regimes. As long as the surface coverage is lower than a
critical value (the anchored chains do not overlap and are not stretched). The kinetics is
governed by the Brownian diffusion of free chains in the solution, which induces a dynamic
depletion layer near the extremity of the film. Above this critical value of surface coverage, an
activation barrier is created and governs the kinetics. The surface coverage increases
essentially logarithmically with time with a characteristic building time depending exponen-
tially on the chain deformation energy.

It should be stressed, that for moderate adsorption energy gain, or sufficiently low solution
concentration, the grafted chains can be strongly stretched, without big energy cost. This is
because the energy is minimized when some chain ends do not extend up to A Thus the
activation barrier is rather soft, and the Brownian diffusion remains often the dominant
kinetics factor. Even in this case, however, the kinetics may be still controlled by an eventual
chemical adsorption reactivity. This is the situation when the corresponding activation energy
is higher than the physical barrier due to chain stretching, on which we focused our attention
in the present article.
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In the case of high physical activation barrier, we estimated the time to reach the
equilibrium surface coverage (Eq. (24)). The time evolution of o is given by a differential
equation, which can be numerically solved. The dependence of surface coverage o on the time
is « quasi logarithmic », except nearby the equilibrium, where o relaxes exponentially to
0. The characteristic construction and exchange times are about the same order and vary
over a wide range of magnitude, as they exponentially depend on the energy gain and
polymerization index N.

We have also calculated the destruction or « washing » time of the brush in contact with a
pure solvent. This time turns out to be always longer than the construction time, and the
brush formation should be irreversible in most practical cases.

The eventual existence of micelles above the critical micelle concentration should limit the
equilibrium coverage density and reduce the construction time, because the micelles form a
reservoir of chains for the adsorption. Hence, the construction time should not excess the one
we predict in equation (24) with ¢, being the critical micelle concentration.
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Appendix.
Depletion layer.

The local volume concentration of free chain monomers ¢?(z) outside the layer (z > #) may
be found using Edwards’ ground-state dominance method [18] :

2 d%y
%_ciz_zf+ V|12 ge(z) = veo Ye(z2) - G

Evidently (c, — ¢ #(z)) is positive and decays to zero on the outside of the layer (Fig. 1) with
some length & which characterizes the depletion layer’s thickness.

Our assumption c(h) = a~> ¢ (h) ~ ¢, is correct if the depletion layer free energy per unit
surface

Fy te
fa kT L +§v(|/1,f'(z)—c§)dz

is much smaller than (o f,;), the elastic energy per unit surface of the brush.

fa<ofy. (A.2)
In view of equation (A.l), one expects on dimensional grounds [19]
£~af(vep)'”?
and
fa~ €veg ~ acy(vey)'?. (A3)
In the brush dominated regime (a > 1)

ho~ Nvl/3 0_1/3
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and

g-f ~£T)Na'5/3 (A4)
e] a4 . o

Using equations (A.3), (A.4) we get
2
fa < N (a ) <1

—_— < —
ofa a*\h

because a > 1 and the chains are stretched, and our assumption is valid.
In the solution dominated regime (a ~ 1)

acy
and

ofg~Nvcya 2o (A.5)
Using equations (A.3), (A.4) and the condition (a ~ 1), we get

fa  Na?

% ~ e <1 because the chains are significantly stretched .
TJ el

Penetration length.

The normalized condition (4) reads
No = (ﬁ ) & (1+3a) U ) dz.
a 0 3 a)l,
1"
We have neglected the last term J = 2 J d¢(2) dz.
0

This approximation is correct only if

J<(h/a)¢o(1+§a). (A.6)
In this case, we can assume that the concentration profile of anchored chains is parabolic.
The local volume concentration of free chains monomers in the brush obeys an Edwards
ground state dominance equation too :
d’y¢

2
(z<h) - “7 -+ A-B 2) Yi(z) = vey Pi(2) . (A7)

Near the extremity of the layer, (A.6) is linearized

232
_ a_ _l/;f-{- 2 Bhulll f(u) = UCO (Pf(u) (A'7)
2 du

with z = h — w.
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In view of equation (A'.7), one expects one dimensional grounds :

a2
2 Bhd ~ % = ve, (A.8)

where d characterizes some penetration length of free chains in the brush (Fig. 1).
In the brush dominated regime (a < 1), two cases may be discussed.
If vey < a’/d% (A.8) reads

N2ag*\ 13
a~ (%)

(A.4) provides

This case exists only if

vco<{(g)2.i4}”3. (A.9)

Thus

(A.9) implies

2 4/3
J < anN <1 (the chains are stretched)
No h?

and the approximation is correct.
If vcy > a’/d% (A.8) reads

N%ag?

d"’UCo 7

This case exists only if

R\2 1 \1B h?
((5) 'F) <vey < (A.10)

and

<1.

J ,N*a*
No (vep) e

The approximation is correct.
In the solution dominated regime (a ~ 1), two cases should also be discussed.
2

If vey < Z— , (A.8) reads

N?a*\13
d~ .
(%)
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2
Both conditions @ ~ 1 and v¢, < Z’—z are incompatible because the chains are stretched, and

this case doesn’t exist.

2
a
va('o';g—z
2.2
d’\‘vCO a"‘h
and
J g 1
No h

and the approximation is incorrect.

So our treatment is a good approximation only in the brush dominated regim
(a>1).

In the solution dominated regime, we must take into account the penetration of the free
chains into the layer, and the concentration profile of attached chains is not parabolic. This
regime corresponds to a concentrated solution.
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