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Dynamics of a multi-layered perceptron model : a rigorous
result

A. E. Patrick (*) and V. A. Zagrebnov (*)

Centre de Physique Théorique, Luminy, 13288 Marseille Cedex 9, France

(Reçu le 24 novembre 1989, accepté le 26 janvier 1990) .

Résumé. 2014 Nous dérivons exactement et rigoureusement les systèmes d’équations dynamiques
pour un perceptron multi-couches proposé par Domany, Meir et Kinzel (DMK-model). Ces
équations décrivent simultanément l’évolution des fonctions de recouvrement essentielles et

résiduelles.

Abstract. 2014 We derive exactly and rigorously the system of dynamical equations for a multi-
layered perceptron proposed by Domany, Meir and Kinzel (DMK-model). They describes both
the main and the residual overlaps evolution.
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1. The DMK-model [1] is a layered feed-forward neural network without couplings within
layers. In this sence it can be considered as a generalization of the idea of the perceptron
(multi-layered perceptron), see e.g. [2]. The dynamics of the original DMK-model, and of its
various extensions, have been solved in [3-5] by a (hard controlled) saddle point integration
method, proposed in [6] for the studying of the parallel dynamics in fully connected neural
networks.
The aim of the present paper is to derive (exactly and rigorously) the system of dynamics

equations for DMK-model exploiting some main ideas of the probability theory and the
theory of dynamical systems with noise. As a result we get not only rigorous but even shorter
(then in [3-5]) way to exact system of dynamics equations.
Below we follow the line of reasoning formulated in [7] for the Hopfield model. This

program is focussed on the accurate calculations of stochastic properties of the intemal noise
in the limit of large neural networks. This approach have been improved in the subsequent
paper [8]. There we explain the importance to consider together with the main overlap the
corresponding stochastic equations for evolution of the intemal noise (residual overlaps). This
allows to rederive (exactly, rigorously and in shorter way) the Gardner-Derrida-Mottishaw
equation [6] for the main overlap (in the parallel dynamics) for the second step
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t = 2 and to derive the corresponding equation for t = 3. This approach gives a more clear
view on a possible behaviour of the main overlap for arbitrary t and allows to present a pure
dynamical few-lines derivation of the Amit-Gutfreund-Sompolinsky formula [9] for the main
overlap at t = 00.
Here we exploit this approach to DMK-model where it gives, besides the well-known exact

result for dynamics of the main overlap [3-5], the exact equation for the evolution of the noisy
terms (residual overlaps).

2. We recall that DMK-model can be formulated as follows. Each of the layer t
( = 1, 2, ..., T ) contains N binary variables (spin configurations) S (t) = { Si (t ) = ± 1 } N= i
and the set of M fixed realizations { {P (t ) } : = 1 of the sequence of independent identicallyP = 

distributed random variables of the length N.

Therefore, each {P (t) e n N (t) = {- 1, 1} N - the probability space with the natural
algebra and probability I?N {{} defined as the product-measure by Pr { ; _ ± 1 } =
1 

2. 
Then for the zero temperature (0=0) evolution of the DMK-model corresponds to

updating of the spin configuration at the (t + 1 )-th layer according to the effective fields

by the law

Here fields (1) are defined by the spin configuration on the previous t-th layer and by the
(directed) couplings between this two layers, which have Hebbian form [1]

For non-zero temperature (0 :o 0) evolution of the DMK-model is defined by stochastic
equation

Here i.i.d.r.v. {;(t)}N-1 reproduce a heat-bath temperature noise if

So, in contrast to the quenched random vectors (key patterns at each layer)
the random variables { (t ) ) i 1 are unquenched. We have to average over this termal noise
variables to consider dynamics in the presence of the heat-bath.

3. The problem of the neural networks dynamics is usually specified as follows. Let initial
configuration S(t = 1 ) has a macroscopic overlap with one of the key patterns, e.g., with
p = q. Then we are interesting in the evolution of this overlap ( t - oo ) after thermodynamic
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limit N --+ oo. For the DMK-model this means that for a fixed (quenched) random system of
uncorrelated key pattems

n 

one chooses initial configuration in such a way that

has non-zero limit m q( t = 1) for N --+ oo (main overlap) and for

p ( # q ) = 1, 2, ..., M even if M = a N (a - lim).
From equations (1), (3) and (6) one gets

where we introduce residual overlaps

In contrast to mKr(t), the residual overlaps (8) do not converge to any limits for the quenched
system of key patterns. But they have limits as sequences of random variables if we consider
patterns as random vectors in the space (f2, u, P).

Suppose that at the moment t a - lim m g (t) = M q(t) almost surely (a. s.) with respect to
the probability P. Then by the individual ergodic (Birkhoff-Khinchin) theorem ([10], V,
Sect. 3) we get that : (1) a - lim for the arithmetic mean in the rightihand side of (7) exists
for almost all (by the measure P) quenched systems of key patterns ; (2) this limit is a.s.
independent of the choice of the fixed system of patterns (self-averaging) and (3) it is equal to
expectation

Here noisy term q (t + 1 ) = -q i (t + 1 ) and

is the stationary (i = 1, 2, ... ) ergodic sequence of random variables. The convergence in (10)
occures in the sense of distribution.

Therefore, in the a - lim by ergodic theorem one reduces the initial problem for quenched
key patterns to calculation the expectation with respect to distribution of the limit random
variable (10). Hence, to construct dynamics for the main overlap we have to consider together
with equation (7) the evolution of the residual overlaps (8). Using equations (1), (3) and (8)
one gets
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This is a stochastic equation (recurrence relation) for random variables

generated by the different realizations of the key pattems and the noise

In the a - lim relations (7) and (11) form a system of coupled equations which
describes dynamics of the DMK-model.

4. According to above observation at first we have to derive in a - lim the stochastic
recursion relations for evolution of the residual overlaps {rP(t)} p+q (8) and then use the
distribution of the noisy term (10) for calculation the recursion relation for the main overlap
mq(t ) (9). We do this by induction in t.

For t = 1 the initial configuration S(t = 1) is chosen in such a way that

For unquenched key patterns this means that S(t = 1 ) and q (t = 1 ) are correlated :

Pr (Si (t = 1) = U) = (1 + mq(1 = 1), but for p # q p t = 1 Si(1 = 1)} °° 1 is a se-Pr(,(=l)== + ( )), but for Pq {(=1) ) ( )Îm is a sé-
quence of i.i.d.r.v. with Pr {U(t = 1 ) Si(t = 1 ) = ± 1 ) = 1. Consequently, by the central2
limit theorem (CLT) residual overlaps (as random variables) converge in the sensé of
distribution to the Gaussian random variable :

with mean 0 and variance 1. Moreover, for the different p (# q) they are independent, i.e.,
{rP(t = 1)};= 1 is the sequence of i.i.d. Gaussian r.v. Note that for t = 2 random variables
{?(t)} are independent of {rÑ(t = 1 )} (their arguments belong to different layers !). Then
by the symmetry of p(t = 2 ) _ ± 1 and of the distribution for N (0, 1 ) we get that

(§f(t = 2) rP(t = 1)}: = 1 is again a sequence of i.i.d. Gaussian r.v. This means that by the

CLT random variables (deviation of rÑ (t = 1 )

from rP(t = 1 ) can be controlled by the Berry-Esseen theorem ([10], III, Sect. 6), i.e., we use
CLT in the scheme of series) converge in distribution :

to the Gaussian random variable with the variance a. Finally, taking into account

equations (13), (14), symmetry of N (0, 1 ), independence of random variables Vq N (t = 2)} ,
el9,N(t = 2)} and again using the Berry-Esseen theorem, we get



1133

Using distribution (15) and ergodic theorem one gets (see Eqs. (7) and (9))

5. To go to the next step t = 3 for the mq(t) we have first to derive the probability
distribution for rP(t = 2 ), see (9), (10). To this end we calculate the a - lim for stochastic
recurrence relation (11), i.e., stochastic characteristics of random variables {rp(t = 2)}‘°p=

conditioned by arbitrarily fixed realization {rP(t = 1)};=1.
Now application of the CLT to the sequence of random variables N (t = 2 ) (see (11) and

(14)) is not very straightforward. For fixed Gaussian reafizations (r§ (t = 1 )}p (see (13)) one
gets that {çJ(t = 2) r(t = 1)}t;&#x26;q is the sequence of independent but not identically
distributed random variables : in general rpN (t = 1 ) rpN (t = 1 ) for p :0 p’. Therefore, one
has either to check for this sequence the Lindeberg conditions or to use Lyapunov’s method of
characteristic functions for the direct proof ([10], III, Sect. 3).

From Pr {ef(t = 2) r’(t = 1) = :L- r’(t = 1 )} = 1/2 it follows that for the random variable
one gets ESM = 0, Var . So, the charac-

teristic function fM(T ) for the random variable SM/ vVar SM has the form

Now, by the ergodic theorem (or the law of the large numbers) for the almost all realizations

we get that a - lim , see equation

(13) and remark after it. This means that by definition (8) and by the iterated logarithm law
([10], IV, Sect. 4) one gets

Consequently, from equations (17) and (18) it follows that
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i.e., SM/ y’Var SM -+ N (0,1) in the a - lim in distribution. Then as a corollary (cf. (11)), we
get

Using the independence {J(t = 2)} of random variables (20) and equations (12), (20) we
can calculate limit distribution for the random variables (cf. (11))

One gets

From the independence gf(t = 2)} P :ri: q of w-,§(t = 2)} and the symmetry of distribution* q j,N 

)} 
N

(22) we obtain that distribution of its products (cf. (11» {{j(t = 2) wf.’(t = 2)}:=1
coincides with (22) :

Therefore, random variables (for a a

fixed realization {r(t = 1)}t",’q!) form Li.d.r.v. Now we can apply CLT (again in the
scheme of series ([10], III, Sect. 4)) to the sequence {signqp  N controlling the rate of
convergence in (22) by the Berry-Esseen theorem ([10], III, Sect. 6) :

Let us stress that it is key patterns from the net layer t = 2 that guarantee the

independence (§f(t = 2) wf,’(t = 2)}=1 of realization {rpN,(t = 1)}P and finally the inde-j = 1 P

pendence N (0, 1 ), in (24), of rP(t = 1 ). For the Hopfield model they are dependent : this
créâtes main difficulties in dérivation of dynamical équations for this model [8].
By définition of the variance one gets
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Using equations (22) and (23) we can estimate expectation in (24) and (25) :

So, using equations (24), (26) we get the recurrence relation for residual overlaps (cf. (11)) :

Here, in accordance to that we have stressed above, the random Gaussian variable

N (0, 1 ) is independent of rP (t = 1 ). So, one gets for Var rP(t ) = D (t ) the following relations
(see (13) and (27)) :

6. From the explicit formula for ’n 2 N and the limit distribution (22) it follows that random
variables {Tlf} p are uncorrelated for p =1= p’: E (e,» (t = 2) eP’(t = 2)) = 0, and variables
{rP(t = 1)} P are even independent for p :0 p’. Therefore, random variables {rP(t = 2)} p are
uncorrelated. From (11) it follows that this property is reproducible. If {rP(t)} P are

uncorrelated at the moment t, then by above arguments the same property has the sequence

Therefore, we can use induction in t to dérive the recurrence relations for the main and
residual overlaps for arbitrary t. The first step we have proved in 4 and 5.
Now let {rP(t)} p be uncorrelated identically distributed Gaussian random variables with

zero mean and Var rP(t) = D(t). From the symmetry and the independence eP(t + 1) of
M 

j

rp(t ) we get that ) is again Gaussian variable (as a sum of Gaussians)

which in the a - lim is equal to  N(O, D(t)). Then, taking into account rP(t =
a - lim r (t) and equations (9), (10), one gets

Using for uncorrelated sequence the individual ergodic theorem we can state that
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for the almost all realizations. Let realization {rP(t)} P be fixed. Then, using (29) and the line
of reasoning of the section 5, we get (see (11) and (20)-(22)) :

This means that we can copy the proof in the section 5 to get (cf. (27)) :

where again the random variables N(0, 1) and rP(t) are independent, i.e.,

This finishes the proof for the zero temperature 0 = 0.
For 0 # 0 one has to use evolution defined by stochastic equation (4). As far as the heat-

bath temperature noise (5) is independent of intemal evolution we have simply to average
equations (28) and (30) over this noise. As a result one gets

where random variables N (0, 1 ) and rP(t), p :o q, are uncorrelated, rP(t = 1 ) = N (0, 1 ) and
D(t) = Var rP(t), i.e.,

7. The equations (28), (32) and (33), (35) have been derived at the first time in [3, 4] for the
case of linear Hebbian couplings (3) and for the various extensions of the basic DMK-model
in reference [5]. There one can find also a detailed analysis of the fixed point equation and the
critical behavior of the model.

Function D (t ) in the above papers in an auxiliary saddle point order parameter. The
advantage of our method is, in addition, in decoding of the meaning of the parameter
D (t) as the variance of the residual overlaps responsible for the intrinsic noise in dynamics of
the main overlap. 

Note added. - After this paper has been finished (Dubna, July 1989) we become aware of the
recent work by the DMK-model inventors [11] where very similar (except of the equation for
the residual overlaps and the rigorous proofs) ideas were proposed, see also [12].
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