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Résumé. 2014 Par relaxation numérique avec des potentiels inter- atomiques de paire, nous étudions
la stabilité de modèles quasi-cristallins. Nous montrons qu’un modèle monoatomique et un modèle
pour AlMnSi sont stables et nous présentons leurs fonctions de distributions partielles de paires. Ces
structures quasi-cristallines sont décrites par des coupes tridimensionnelles de motifs atomiques eux-
mêmes tridimensionnels dans un espace à six dimensions. Au cours de la relaxation, les atomes quit-
tent leur position initiale, et nous montrons que ces déplacements correspondent à des modifications
des motifs atomiques.

Abstract. 2014 By numerical relaxation with interatomic pair potentials, we study the stability of qua-
sicrystalline models. A monoatomic model and a AlMnSi model are found stable and we present
their partial pair distribution functions. These quasicrystalline structures are described by 3D cross
sections through 3D atomic motifs in a 6D space. During the relaxation, atoms move from their initial
positions and we show that these displacements correspond to modifications of the atomic motifs.
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1. Introduction.

Numerical studies of bidimensional quasicrystal atomic models [1-4] have led to important
results about the stability of quasicrystalline structures. In particular it has been shown [3] both
theoretically and numerically that a diatomic quasicrystal with a five-fold symmetry can be stable
with atomic pair potentials.

Even if real atoms do not interact through pair potentials, investigation of models with simple
interactions are valuable to the understanding of quasicrystals. A detailed study of the stability of
quasicrystalline models has been done by Roth et al. [5] who found one monoatomic and one di-
atomic quasicrystal stable. In this paper we confirm the meta-stability of the monoatomic packing
and we test a recent AIMnSi model [6] as well as différent variations of it. During the simulations,
the models relax to configurations which correspond to minima of the potential energy. Janssen [4]
has pointed out that the displacement field should have the symmetry of the initial quasicrystalline
state and, after a numerical relaxation, the final state should be a quasicrystal. Here we analyse
the relaxed states within the framework of the cut-method in hyperspace [7] and we present the
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modifications of the 3D atomic motifs induced by the relaxation process.

2. 3D-atomic motifs and relaxation.

2.1 6D-DESCRIPTION OF THE QUASICRYSTALS. - The four quasicrystalline models which have
been relaxed can be constructed either with the strip and projection method [8,9] or with the cut-
method [7]. However the last method is more general and allows a description of the final relaxed
states. Let us recall the notation: let (e1,..., E6) be the canonical basis of R6. The icosahedron
group leaves two 3D subspaces Ell and Elinvariant. The space Ell is identified with our usual
physical space. Let p be the orthogonal projector onto Ell whose kernel is the complementary
space El , le p(Ell ) = Ell and p(E.L) = {0} and let p’ = 1 - p. The vectors ei = p(e;)
and ei = p’(ei) point towards icosahedral directions in spaces Ell and E.L respectively. The
quasicrystal is the set Xt of atomic sites which are the projections onto Ell of the intersection of
the 3D space Ell + t with the 3D atomic motif A periodically set on the 6D cubic lattice ZZ6 (more
generally there can be different atomic motifs A,):

where the vector t belongs to El and indices equivalent structures, and the subset A is a 3D
hypersurface.

For the model before relaxation, as for any quasicrystalline structure which can also be ob-
tained with the strip method, the atomic motifs A are 3D solids which are subsets of El..

2.2 NUMERICAL RELAXATION METHOD. The total potential energy of particles which interact
through a pair potential e(r) is 

where rij is the distance between particles i and j. In the initial quasicrystal models, all site
environments are inequivalent and the particles are not in stable positions. They will move to
configurations where Epot is a (local) minimum. This relaxation is achieved numerically [10] using
the conjugate gradient method. We have used the potential cp(r) equal to the Morse potential

for r  rt;,c. and ro are, respectively, the depth and the position of the potential minimum and we
have chosen a such that aro = 6. The potential p(r) is equal to a fifth-order polynomial between
rt and a cut-off distance rc, such that p, 8p/8r and a2VIar2 are continuous. Finally p(r) = 0 for
r &#x3E; rc.

2.3 ATOMIC SIZES. In the monoatomic case we can set the energy and length units equal
to Eo and ro respectively. In a diatomic structure of, say A and B particle types, there are three
types of pairs: AA, AB and BB, and for each one we need the values of C, and ro. The potential
depths 60 are important when one deals with chemical ordering problems, but in a relaxation
process very little ordering occurs and we have merely set eoAA = cAB = C.B]3. On the other

hand the parameters roAA, roAB and roBB define the particle "sizes" and are pertinent geometrical
parameters. One could guess values for these parameters from the distances which occur, for
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instance, in Al- Mn alloys. But this method is more or less arbitrary since one has the choice
among different possible distances.

In their study on quasicrystal stability, Roth et al. [5] have optimized the potential parame-
ters ro by fixing the atoms at their original positions and by minimizing the potential energy with
respect to ro. Then they relaxed their stucture with these parameter values. Our method is to
consider Epot in equation (2) as a function of the atomic coordinates and of the parameters ro,
i.e.,

and to apply the conjugate gradient method to function f. Therefore the structure and the atomic
"sizes" are relaxed simultaneously and the final values of the parameters ro are optimized for the
final structure.

2.4 PERIODIC APPROXIMANTS. To avoid free surface effects, we use periodic approximants
to quasicrystals. This can be done by giving a different orientation to the cutting space and to the
physical space in the 6D space. Since we want to keep a perfect icosahedral orientational order,
the physical space and the parallel space EH are still identified but because we need periodicity
we choose a rational orientation for the cutting space Elul. The periodic approximant is then the
set Xt of atomic sites which are the projections onto Ell of the intersections of Ecut + t with the
periodically repeated atomic motif A:

where t E E.L and p is the projector previously defined.
The space Ecut is spanned by three vectors (p,O,-q,O,p,q), (qp,O,-p,-q,O), (O,q,p,q,O.p) where p

and q are integers of the Fibonacci chain.
Note that in order to keep physical properties such as a prescribed minimal interatomic dis-

tance or a tiling existence, the atomic motif is slightly distorted in the periodic approximant cases.
For instance to get a 3D tiling made of the Penrose rhombohedra, the atomic motif is the projec-
tion of the 6D unit cube onto E.L along Ecut and therefore depends on the Ecut orientation.

2.5 6D-DESCRIPTION OF THE RELAXED QUASICRYSTALS. Let Xt and Xi be a quasicrystal be-
fore and after the relaxation. A site x of Xt relaxes to a position xr. We assume that the new
position xr is associated with a new atomic motif Ar located at the same point N of the 6D lattice:
Xt is defined by (1) with x, a and A replaced by xr, ar and Ar. It follows

where ar belongs to Ar. We want the values of the final motif elements ar associated with the
relaxed positions xr. Since x and xr belong to EH and a belongs to El, equation (5) gives

In the periodic approximant case relation (5) is changed in 
becomes

and relations (6)

where the corrective term xr - Xc is easily calculated from xr - x.
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Thus the new atomic motif Ar has an extent in parallel space which is directly the site dis-
placements during the numerical relaxation. We will use equations (6) or (7) to compute the final
motif elements ar associated with the relaxed positions xr.

The initial atomic motif A is a 3D domain included in El.. It is usually represented by a
projection onto a 2D sheet of paper. Actually this drawing is also a 2D representation of Ar since
A is already the projection of Ar onto El (cf. relation (6) ). On the other hand to see the variation
between A and Ar we need to represent them in a 2D-plane which contains a direction of EH and
a direction of El.. We have chosen to represent sections of the atomic motifs by the planes Ps and
P3 which are respectively the five-fold and three-fold rotation 2D-axes in 6D. Plane Ps contains
£6, CI + ... + E6, e6 = P(£6) and e6 = P’(£6). Planes P3 contains ci - e2 + E3 and E4 + e5 + f:6.
Symmetry constraints imply [7] that ar belongs to the n-fold 2D-axis Pn when a belongs to Pn.
Since simulation deals with a finite number of sites, very few elements ar are strictly in plane Pn.
Thus we consider the motif elements ar obtained by simulation and which are in a strip of small
width d around plane Pn. We plot their projections onto Pn. We have used d = 0.2 Il ei Il 

3. Unit-sphère packing. 

The shortest distance between vertices in the standard 3D Penrose tiling is the length of the
small diagonal of the oblate rhombohedron: dr = 0.563e where the length unit is e = ei .
But only 0.76 bonds per vertex have their length equal to dr, while the next distances are equal
to e (the rhombohedron edge) and to df ~ 1.052e (the small diagonal of rhombohedron faces)
with frequencies equal to 6 and 6.5 respectively. Henley [11] has shown that, if we suppress the
dr distances by removing as few vertices as possible (22.0% ), it is possible to have a packing with
spheres of diameter equal to e and with a packing fraction equal to 0.6288. Henley has called
SI the 3D atomic motif which corresponds to such a unit-sphere packing. The volume of Sl is
directly related to the packing fraction. A precise description of Sl has been given by Oguey and
Duneau [12] : it is a stellated dodecahedron truncated by the standard triacontahedron.

We have used this atomic motif, suitably modified, to take the periodic approximation into
account (see Appendix B), to build a unit-sphere packing of 8051 particles corresponding to the
r-approximant p/q = 8/5.

Roth et al. [5] have shown that the unit-sphere packing is (meta-) stable when relaxed with
a Lennard Jones-like pair potential. We have studied the unit-sphere packing in the case of the
Morse potential and with several interaction ranges. We confirm its stability and the pair cor-
relation functions, g(r), of the relaxed states are shown in figure 1. However the relaxed state
is an amorphous structure when the cut-off distance rc of the potential p is equal to 1.5ro and
ri = 1.15ro. Since the initial displacement field is supposed to have the symmetry of the initial
state, we suspect that the quasiperiodic structure is slowly destroyed because of numerical round-
ing errors and because the initial strate is an approximant of a truly quasiperiodic state. On the
other hand, the quasicrystalline peaks broaden but remain when rc = 2ro ( and rt = 1.5ro).
The displacement distribution n(Il xr - x 11),shown in figure 2, is very narrow with a mean dis-
placement equal to 0.02e instead of 0.47e in the amorphous case. The optimized value of the
potential minimum position is ro = 1.045e and the potential energy per atom is equal to -6.05êo
as compared to -6.83êo for fcc lattice and -6.5&#x26;0 for bcc lattice. The stability has also been
obtained with the very short potential range rc = 1..2ro (rt = l.lro), for the intermediate ranges
rc = 1.65ro (rt = 1.53ro) or rc = 1.8ro (rt = 1.4ro), and for the long range rc = 3ro (rt = 2.5ro).

The sections of Sl and Sl by planes P5 and P3 are shown in figure 3. By definition Sl is
included in El while Sl has a small component in EH. Note that Sl is centrosymmetric, as can be
predicted from the icosahedron symmetry ouf the initial state.
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Fig. 1. - Pair correlation function g(r) of the unit-sphere packing: (a) initial quasicrystal, (b) relaxed qua-
sicrystal and (c) relaxed amorphous state. The length unit is the rhombohedron edge e .

Fig. 2. - Distribution of the atomic moves d =11 xr - x ) between the relaxed and initial unit-sphere
quasicrystals. The length unit is the rhombohedron edge e.
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Fig. 3. - Cross section of the atomic motif corresponding to the unit-sphere packing by the symmetry
planes: (a) P5 and (b) P3 . Segments are drawn between the initial and the final motif elements.
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4. AIMnSi quasicrystal models.

4.1 THE MODEL OF DUNEAU AND OGUEY. - Duneau and Oguey [6] have proposed a model for
AIMnSi icosahedral quasicrystal built upon a set of atomic motifs. The density and the concen-
tration fit to the experimental values and the smaller interatomic distances are compatible with
the distances found in corresponding crystals. The model does not distinguish between Al and Si
atoms which are randomly set on the Al matrix. This model contains a large number of Mackay
icosahedra [13] with no central atom.

Five atomic motifs are involved in this model. Three concentric domains are centered on
the TL6 nodes : the inner domain corresponds to the central void of Mackay icosahedra, and thus
this domain corresponds to vacancies; the second shell corresponds to Mn atoms and the outer
domain corresponds to Al atoms. The other two atomic motifs are one dodecahedron centred
at the body centers of ZZ6 (i.e. ZZ6 + b/2) which corresponds to Mn atoms and one solid cen-
tered at the sites ZZ6 :f: ei/2, i = 1...6, which corresponds to Al atoms set on the inner shell of
Mackay icosahedra. The sections of these atomic motifs by plane P5 are shown in figure 7. The
modifications of these atomic motifs necessary to take the periodic approximation into account
are described in Appendix A.

We have relaxed a model of 10028 atoms (7940 Al and 2088 Mn) which corresponds to the
r-approximant p/q=5/3 and used a potential cut-off rc = 2ro (rt = 1.5ro). A slice of the relaxed
structure is shown in figure 4. The length bonds have been optimized except roMnMn because too
few Mn atoms are first neighbours and the next neighbours yield too unrealistic a MnMn bond
length. We have fixed roMnMn = dr = 0.563e and we have obtained the optimized values roAIAI =
0.625e and roAlMn = 0.573e.From diffraction spectra [14] one can deduce the edge length e =
0.460nm and thus roaw = 0.288nm which is very reasonable compared to the nearest neighbour
distance in pure Al equal to 0.286nm.

We have checked that the numerical diffraction pattern still has sharp peaks and has kept the
icosahedron symmetry. However some large atomic displacements occur during relaxation even
if the overall structure remains stable. The move distribution, shown in figure 5, is broader than
in the unit sphere packing case, the mean displacement being equal to 0.08e.

The partial pair correlation functions of the relaxed model are shown in figure 6 and are in
agreement with the experimental curves obtained by neutron diffraction [15]. The positions of the
first peak maxima, for the model and the experiment respectively, are : 0.28nm and 0.282nm for
AlAl, 0.26nm and 0.255nm for AIMN, 0.24nm and 0.267nm for MnMn.

Figure 7 shows that the relaxed atomic motifs have an extent in parallel space Ell . Notre that
the motifs are periodically repeated on the 2D lattice ZZ6 n P5 with basis vectors e6 and b. The
shape of the atomic sections can be understood as follows : the displacement of each atom dur-
ing the relaxation, which is the parallel component of a, depends on its surroundings. Now there
are partitions of the atomic motif in domains which correspond to local environment classes in
physical space. A given boundary corresponds to an environment change outside a given range.
1Bvo points separated by this boundary, however close they may be, generally correspond to dif-
ferent displacements and discontinuities of all generally exist on this boundary. Since thinner and
thinner partitions of A can be made, two points are always on each side of a boundary. However
let us consider an atomic site x corresponding to the atomic motif element a; atomic sites corre-
sponding to motif elements closer and closer to a have a larger and larger domain around them
with the same environment as around x and thus the displacement of these sites is more and more
similar more similar to that of x. Therefore the discrete points obtained by the simulation lie on
a discontinuous curve but with discontinuities which are small except on the boundary locations
of coarse partitions of the atomic motif.
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Fig. 4. - View of the relaxed AIMnSi model.Al atoms are represented by large spheres and Mn atoms by
small ones. The depth is indicated by darkness.

Fig. 5. - Distribution of the atomic moves d = xr - x between the relaxed and initial AIMnSi qua-
sicrystals. The length unit is the rhombdhedron edge e.
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Fig. 6. - Partial pair correlation functions 9ij (T ) of AIMnSi quasicrystal. (a) relaxed model curves repre-
sented as a thick line; the thin line has been obtained with a Debye-Waller factor to take into account thermal
vibrations with a root mean-square displacement equal to 0.15Å . (b) experimental Curves [15].
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4.2 VARIATION OF THE AIMnSi QUASICRYSTAL MODEL. - We have studied two models which
are simple variations of the model of Duneau and Oguey.

The first model has been considered because one cannot rule out the possibility of an occu-
pancy of the central site of a Mackay icosahedron. Moreover, the distance between the central
site ànd the Al neighbours is equal to the nearest neighbour distance Mn - Al and in the relaxed
model the central void is even larger. Therefore we have set a Mn atom on the central site of a
Mackay icosahedron, i.e., the inner domain is a Mn atomic motif. We have built a model with
10152 atoms (7940 Al and 2212 Mn).

In the second model we have taken into account the experimental results of Janot et al.[16]
which have found one central Mn atomic motif, surrounded by an Al shell and one Al domain set
on body center positions. These results suggest to associate Mn atoms with the central domain
as in the previous model and to associate Al atoms instead of Mn atoms with the body center
domain. Except for these modifications, we have kept the Duneau and Oguey domain shapes and
volumes, which are not exactly those of Janot et al. , thus leading to a model of 10152 atoms (8076
Al and 2076 Mn).

The relaxation of both models produces similar results: the structures remain stable, the
atomic displacements have the same average values as in the model of Duneau and Oguey, the
partial pair correlation functions are only slightly different. The main différences are summarized
in table 1 where the numbers of nearest neighbours are presented.

Table I. - Numbers of neighbours of each type, up to 0.32nm or 0.36nm, and Mn atomic fraction
xMn in the relaxed AIMnSi models described in the text: (a) model of Duneau and Oguey; (b) first
variah’on; (c) second variation.

5. Conclusion.

We have carried out numerical simulations of quasicrystal models by building periodic ap-
proximants and using numerical relaxation with a Morse potential. The first one is a dense mono-
atomic packing introduced by Henley [11] and already studied by Roth et al. [5]. During relaxation
the atomic moves are small and the final state is metastable. The second one is a AIMnSi model
introduced by Duneau and Ogucy [6]. Although it is stable, large atomic moves occur during re-
laxation. The pair correlation functions computed on the final state agree with the experimental
results. 1Bvo variants of this model have also been studied and give similar results.

For both models, the relaxed state has been described in the 6D-cristallography framework
where atoms are viewed as three-dimensional motifs. In the initial states these 3D motifs are usual

solids, while in the relaxed states they have components in the physical space.



1109

Fig. 7. - Cross section of the periodically repeated AIMnSi atomic motifs by the symmetry plane P5 . (a)
segments are drawn between the initial and the final motif elements. (b) final motifs only where AI elements
are represented by circles and Mn elements by crosses.
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Appendix A

ATOMIC MOTIFS OF THE AIMnSi MODEL - The atomic motifs proposed by Duneau and Oguey [6]
were designed to imply physical properties such as a minimum interatomic distance. To conserve
these properties in periodic approximants, the atomic motifs should be slightly modified.

Tb forbid interatomic distances lower than rmin, one selects points in 2Z6 with an auxiliary
strip which is a cylinder along El. with a spherical basis of radius rmin in EH [12]. We project these
points along the cutting space Ecut onto El ; the atomic motif is the Voronoï cell, around the
origin, of these projected points. In the limiting case of the quasicrystal, Ecut is equal to EH and
the atomic motifs are the polyhedra described in [6].

Th obtain the 3D Penrose tiling approximants, we project the 6D unit-cube in the same way
as above. Then the atomic motif is a slightly distorted triacontahedron.

In the construction of Duneau and Oguey [6] small parts of these atomic motifs are removed
to forbid some atomic configurations. In our simulations these configurations have been excluded
directly in the physical space E//.

Appendix B

ATOMIC MOTIF OF THE UNIT SPHERE PACKING. - A description of the atomic motif which corre-
sponds to the quasicrystalline unit sphere packing has been given by Oguey and Duneau [12] . It
is the intersection of two polyhedra : the first is the triacontahedron which selects the 3D Penrose
lattice sites; the second polyhedron is a stellated dodecahedron which cannot contain the vector
f = e’ + e3 - e6 and those obtained by applying the icosahedral symmetry and thus forbids the
small diagonal distance dr = el + e3 - e6 . This solid is not convex and is larger than the
Voronoï polyhedron which excludes the distance rmin = dr (see Appendix A). To determine how
the stellated dodecahedron is distorded in the periodic approximant case, we describe it in a way
which generalizes the Voronoï construction.

We want a domain D of El which does not contain a vector f,i.e.,VM and N E D, MN # f.
Let vl, v2 and v3 be three vectors of El such that f does not belong to the planes defined by two
of them. Let Dl be the domain bounded by two parallel planes :

Domains D2 and D3 are defined in the same way. This definition implies : M e D1 =&#x3E; M+f % Di
which is also true for the domain D = (Dl n D2) U (D2 n D3) U (D3 n Di).

For the forbidden vector f = e’ + e3 - e6 in the quasicrystalline unit sphere packing, we take
vl = es - ei, v2 = e6 - e2 and v3 = e4 - e3 which define a domain D. The stellated dodecahedron
is the intersection of the ten domains deduced from D by the icosahedron symmetry.

In the approximant case, the atomic motif should not contain the vectors f which are the
projections of ê1 + e3 - -,6, and the symmetrical vectors, along Ecut onto El. Therefore the atomic
motif is defined as above with the ei, which are the projections of ci along Ell onto E.l, replaced
by the projections of êi along Elul onto El .
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