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Abstract. 2014 For the critical sandpile model of P. Bak et al., we present high statistics results
obtained by a fast non-parallel algorithm. In particular, we give results for 2, 3, 4 and 5
dimensional hypercubic lattices, and for Bethe lattices. On the latter, the model is in the same
universality class as (dynamic) percolation, but the upper critical dimension seems to be 4 instead
of 6 as for percolation. Between d = 4 and d = 6, the model seems to correspond to branched
true SAW’s as suggested by Obukhov. But this breaks down definitely below d = 3.
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1. Introduction.

In a series of papers [1, 2, 3, 4], Bak et al. have introduced the concept of « self-organised
critically » (SOC).

In conventional critical phenomena (such as the critical point in a gas-liquid transition), one
has to fine-tune a control parameter, in order to arrive at the critical point. Thus, if the
control parameter is set at random, with probability one the system will not be critical and will
thus not show long range fluctuations, neither in time nor in space.
Under these circumstances, it seems hard to understand the ubiquity of 1/f-noise (or, more

correctly, of f - a-noise, a = 1) [5], the basic feature of which is just the long range and self-
similarity of temporal fluctuations. One reason for that might be that 1/f-noise is simply not
related to critical phenomena. A number of alternative explanations have been proposed
indeed [6].
The other reason might be that systems are driven into a critical state without fine-tuning

explicitly. This is the basic idea of SOC. In this case, it is not the experimenter, so to say, but
the evolution itself which fine-tunes the control parameter.

This concept is not so new indeed. A well known model with anomalous scaling but without
a control parameter is diffusion limited aggregation. A model much closer to the concept of
SOC is invasion percolation [7]. In this model, each site i (we discuss only the site version ;
there exists of course a completely analogous bond version, too) is attributed a random

number ri E [0, 1 ] drawn from some continuous distribution. Starting from a single randomly
chosen site, an infinite cluster is built by adding at each time step the perimeter site with the
smallest ri. Here, we call a site a « perimeter site » if it is not itself in the cluster but has a
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neighbour which is. In the long time limit, the cluster will have the statistics of an infinite
percolation cluster at threshold. Most models discussed in references [1, 2, 3, 4] are indeed
similar to invasion percolation, though they seem not to be in the same universality class.
As we said, there are a number of different models which seem to show SOC. All of them

involve the flow of some locally conserved order parameter (« sand ») in a medium whose
transport properties are determined just by the amount and by the detailed structure of the
deposited order parameter (1). Not all of these models are in the same universality class. For
instance, in references [8, 9] versions have been studied in which the flow is directed. Already
in the very first papers [1], cases with scalar and vector order parameters were studied (see
also [10]). Finally, microscopic aspects such as the discreteness or continuity of the order
parameter seem to have an influence on the critical behaviour [10].
The model we study in the present paper is the « height model » studied also in references

[1, 2, 11, 12]. Here, the order parameter z is a discrete non-negative scalar, i.e. its value

zi at lattice site i is a non-negative integer. On a uniform lattice with coordination number N, a
configuration is called « stable » if for each i one has zi E 0, 1, 2, ... N - 1. The dynamics
involves the three rules :

(i) when the configuration is « stable », a site i is chosen random and at this site

zi is increased by 1 unit, zi - xi + 1.
(ii) if the configuration is unstable (e.g. since at the chosen site we had already

zi = N - 1), we apply the rule that

for all neighbours k of site i. We say in this case that site i « topples ».
(iii) For a boundary site with  N neighbours, rule (ii) is modified such that only the z N

neighbouring zk are increased. In this way, the average (z) can decrease. We call these

boundary conditions « open » (notice that this terminology does not agree with the one used
in [1]).

Alternatively, we have studied also other boundary conditions. In particular, we have used
(iii.a) periodic b.c. : here, there is no boundary and hence z can only increase. Thus, after

some finite time a state with an « infinite » avalanche is reached which goes on forever. In this

case, ergodicity is broken, and it is not clear whether an infinite system is driven into a critical
state. A similar problem applies to the « supercritical » simulations described in reference [1]
where one starts with large (z) and observes the relaxation without ever applying rule (i).
Also there it is far from obvious whether the state reached is the same as the one reached with

rules (i)-(iii) ; and
(iii.b) cylindrical b.c. : here, open b.c. are used in 1 direction, while periodic b.c. apply to

all other directions. This should lead to the same universality class as open b.c. in all
directions.

It is the interplay between the increase of z due to rule (i), the transport due to (ii), and the
decrease due to (iii) which drives the system into the critical state.

In the sandpile interpretation of the model, zi is the number of sand grains at site i (the
« height of sand »), and rule (i) corresponds to throwing sand grains randomly onto the
lattice. Rule (ii) leads then, if the average height has reached a sufficiently large value, to

(I) Actually, our identification of the order parameter is somewhat problematic. See the end of
section 5 for a discussion.
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large avalanches where a single toppling makes some neighbouring site unstable, whose
toppling renders further sites unstable, and so on. The avalanche is stopped only by sand
falling off the edges (rule (iii)), reducing thus the overall height.

Notice that at any given time only a single avalanche exists. The next sand grain is thrown,
and the next avalanche can start, only after the present avalanche has stopped.
As noted by several authors, this sandpile interpretation is somewhat unrealistic. In a

sandpile, the order parameter would be the slope (a vector), and a different critical behaviour
is to be expected. The present model rather applies to cases where zi is a pressure or a stress,
either in a physical sense (e.g. earth quakes [3]), or in a psychological. An amusing (semi-
realistic ?) interpretation would be a large office where no employee ever finishes any record
and gets a nervous break down if confronted with 4 or more records. In this case the records
are distributed among its 4 neighbours, except when the employee was sitting next to a
window : then, one of the record is just thrown out of it.

In the next section, we shall describe fast algorithms for simulating this model. In section 3,
these are then applied to large hypercubic lattices (with up to 4 x 106 lattice sites) in 2, 3, 4
and 5 dimensions.
Our aim is on the one hand to get just precise critical parameters and critical exponents. On

the other hand, we would like to know the upper critical dimension dc. There have been
various speculations on that. For instance, Obukhov [13] has conjectured that dc = 4, based
on the analogy of the model with a branched true self-avoiding walk. In contrast, the
similarity to percolation (or invasion percolation) might suggest d, = 6.
In order to understand better this problem, we performed also simulations on Bethe lattices

(Caley trees) with various coordination numbers. For these lattices, Dhar has announced
exact results [ 11 ], without giving however any details yet. A number of results on Bethe
lattices can be obtained by rather elementary arguments. These and our simulations are
described in section 4.

Finally, in section 5 we give our conclusions.

2. Algorithms.

The sandpile model can be formulated as a cellular automaton. It has thus appeared natural to
most authors to perform also simulations in parallel as in a typical cellular automaton. The
presumably fasted such algorithm was described in [12]. It uses multispincoding with
3 bits/site (updating hence 21 sites each time a computer word is updated), and it fully
vectorizes, resulting thus in up to 400 site updates/f.Lsec on one processor of a CRAY YMP.
The main drawback of such an algorithm in that most of the lattice is not changing during a

typical avalanche. Even though L 2 sites topple during the evolution of a typical avalanche
of an L x L lattice, at any given time only a minute fraction of sites is unstable. Thus, the
above algorithm during most of the time makes trivial updates. It is thus much better to

selectively update only unstable sites (and their neighbours), even if this cannot be vectorized
and each single update takes much more time.

In the following, we describe two such algorithms. We do this only for a 2-dimensional
square lattice with open boundary conditions. The modifications necessary for other lattices
are trivial.
The very simplest algorithm along this line of reasoning exploits the fact, pointed out and

used heavily in [ 11 ], that the temporal order of the topplings in any avalanche is irrelevant.
This is due to the fact that in the considered version of the model the height is an additive
variable. It would not be true in models where the order parameter is a slope, such as a
realistic sand pile.
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Denote by SAND (I, J) a subroutine which describes the effect of adding one sand grain at
site ( i , j ) in a square lattice of size L x L. The simplest algorithm uses recursive calls of
SAND itself :

RETURN

We did not use this routine for most of our simulatins, through it was indeed nearly as fast
(when implemented in BASIC on an ATARI home computer) as the one described below. Its
main drawback is that recursive function calls are not implemented in some languages like
FORTRAN, are somewhat slow in other implementations, and use an incontrollable amount
of stack. The latter became a problem on lattices with = 106 sites. Also, it requires somewhat
tricky book-keeping if averages like e.g. the average life time of an avalanche are computed,
which then destroys the above simplicity.
The algorithm used for most of the results presented below uses a list of topple sites, i.e.

sites which have received a sand grain during the last time step and whose value of

zi was already 3. While it applies rules (ii) and (iii), it builds a list of new topple sites for the
next time step. When the old list is gone through, it is replaced by the new list and, provided
this list is not empty (i.e., the avalanches has not yet stopped), the next time step begins.
Running on an IBM 3090 without vector feature, this algorithm was faster than the vectorised
multispin-coding algorithm on the CRAY for lattice sizes L &#x3E; 130.

This algorithm is very similar in spirit to the one used e.g. in [14] to build percolation
clusters. Important differences to percolation are that the disorder (the hight profile
{zi} ) changes slowly in the present case, while it is frozen in percolation. And that any site

. can only be once a growth site of a percolation cluster, while an single avalanche can pass
through a site several times.

3. Sand piles in 2 to 5 dimensions.

Up to now, the most extensive simulations had been performed on 2 dimensional lattices,
with sizes up to 672 [12]. We have performed simulations on some even larger lattices (up to
size 1 400 x 1 400), but not with sufficiently high statistics. The high statistics data shown
below are based upon lattices of sizes up to 6722, 1443, 404, and 205.

In these simulations, we started either from empty lattices (all zi = 0), or from

equidistributed lattices. In the latter case, the values of zi were chosen randomly between 0
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and N - 1. The latter is suggested by the proof of Dhar [ 11 that in the stationary critical state
all configurations which appear at all with non-zero probability are indeed equally probable.
Thus, when starting from equidistribution, the evolution towards the stationary state could be
just a contraction onto the allowed configurations.
We found that in 2 dimensions both types of initial configurations gave roughly the same

speed of convergence. With increasing dimension, starting with equidistributions gave
however increasingly better convergence. When starting on an empty lattice, the average
height did overshoot and approached the stationary limit slowly from above.
The following results, summarized in figures 1-13, were obtained from runs which we

checked carefully to be sufficiently long so that stationarity has been reached before averages
were taken.

(a) In figure 1, we show the average cluster size s&#x3E; versus the lattice size L on a doubly
logarithmic scale. The cluster size is here defined as the number of topplings in an avalanche.
If a site has toppled n times, it is counted n-fold, irrespectively of whether its z value is the
same after the avalanche as before. We see a very clean collapse of the data for all different
dimensions on a single curve. It was shown by Dhar [ 11 (see also [ 12]) that) scales on the
square lattice as (s) - L 2, and this method allows the same scaling to be deduced for other
dimensions too. On heuristic grounds, such a scaling had been predicted in [10] : on a lattice
of size L, a newly added sand grain has to travel a distance oc L before it can fall off an edge.
If the transport is essentially diffusive (i.e., by random walks), then it takes - L 2 topplings to
cover this distance. From figure 2, we find that a scaling (s) -- L 2 is very nicely satisfied : the
local slopes d s&#x3E; /dL in figure 1 approach a value of 2 when Lez oo, with scaling corrections
oc 1 /L.

(b) The average life time per avalanche is plotted, also on a doubly logarithmic scale, in
figure 3. While for 2 dimensions we find (t) - L, for higher dimension the increase is

definitely less fast than L. At first sight, this is surprising in view of the above heuristic
argument which seems to suggest that not only sizes but also life times of avalanches increase
as L 2. The problem is easily resolved by the intermittency of the process. Most of the sand is
transported during few very large avalanches. These large avalanches contribute little if one
considers the unweighted average as done in figure 3. Weighted average life times increase
much faster with L. In particular, we found that (s. t ) /  s &#x3E; increases for d = 4 with a power
off 2 : s . t&#x3E; / vs) oc L 1.85:t 0.1. This suggests that the power is indeed 2, and that the motion
of sand grains is diffusive as expected in [10].
We might add that also the dropping of the sand off the edges of the lattice is a very

intermittent process, with very few but strong bursts. This was already observed in
2 dimensions [10]. Though we have not studied it systematically, this intermittency definitely
becomes more pronounced when going to higher dimensions.
As seen from figure 4 where we plot again local slopes, we find that scaled

approximately as L 2/ d in ::::: 4 dimensions. We should however point out that this scaling sets
in very late (as obvious also in Fig. 3), and is correspondingly somewhat uncertain. In

particular, for d = 5 our data can’t distinguish between L 21d and BIL -
(c) The next quantity we studied was the average height (z) as a function of L. Results are

shown in figure 5 only for d = 4, but in different dimensions our results were very similar.
From the fact that we get straight lines when plotting (z) versus 1 /L, we conclude that

Such a behaviour is easy to understand : the main effect of the finite lattice size on

z&#x3E; is to create boundaries where z&#x3E; is smaller than in the bulk of the lattice. The relative
fraction of boundary to bulk is just oc 1 /L.
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Fig. 1. - Log-log plot of average cluster size (s) versus lattice size L for dimensions 2 to 5. Open
circles, filled circles, squares and triangles correspond here and in the following figures to

d = 2, 3, 4 and 5.

To test this, we performed also simulations with different boundary conditions. While the
closed dots in figure 5 represent the open boundary conditions discussed above, the open dots
are from « cylindrical » boundary conditions where the lattice is open only in one direction,
but is periodic in the other 3. This reduces the amount of boundary by a factor 4, an indeed
the effect on z&#x3E; is reduced by the same factor. We should mention that going to cylindrical
boundary condition increased also quite considerably the size and the time of the avalanches,
and slowed further down the convergence towards the stationary state.
The extrapolated values of z&#x3E; are given in table I. In addition to the critical height, we

also measured the probabilities f, that zi = z. Values extrapolated to L = oo are given in
table II.

(d) Let us now turn to the fluctuation of z in the critical state,

I n ordinary critical phenomena like e.g. the Ising model, this scales with L as
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Fig. 2. - Average slopes d log s&#x3E; /d log L versus 1 /L for dimensions 2 to 5. For the meaning of the
symbols, see figure 1.

Fig. 3. - Log-log plot of average cluster life time (t) versus lattice size L for dimensions 2 to 5. The
meaning of the symbols is as in figure 1.
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Fig. 4. - Average slopes d log (t) /d log L versus 1 /L for dimensions 2 to 5. Symbols as in figure 1.

Fig. 5. - Average height (z) versus 1 /L, for dimension d = 4. Heavy dots represent open boundary
conditions, open circles correspond to cylindrical b.c.
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Table 1. - Critical density and critical exponents for dimensions 2 to 5.

(1) From reference [12].

Table II. - Probabilities f, = prob (zl - z).

Figure 6 shows Oz versus L on a doubly logarithmic scale. We see indeed very clean scaling
behaviour, with v given in table I. This table shows that for all dimensions v is very close to

2/d, i.e. to very good precision we have Az oc B/D, as we would get if there were no long
range correlations in z. Actually, there is a small but statistically significant deviation from
this for all dimensions. The fact that this deviation is independant of d suggests that this
deviation might result from corrections to scaling, and that indeed Az oc BIL d.

(e) We know from [ 11 ] and from figure 1 that the number s of topples in a typical
avalanche in 2 dimensions increases as L 2. If each site would topple at most once during an
avalanche, this would mean that the clusters (defined as those sets of sites which have

toppled) are compact. Actually, sites can topple several times during one avalanche. From
figure 7 where we plotted the average number of topplings per cluster site, we see that this
increases as

with x = 0.36. Here, Sdistinct is the number of distinct sites in an avalanche which have toppled.
Since the total number of topplings is oc L 2 Sdistinct increases less fass than L 2 more
precisely [12]

(f) This might mean that typical clusters in d = 2 are fractal. But more careful inspection
showed that this is not true. Clusters are compact, but their boundaries are clearly fractal. The
increase of the boundary length of clusters which percolate in both directions (which
correspond to avalanches which throw off sand on all 4 edges) is shown in figure 8 (we define
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Fig. 6. - Log-log plot of the fluctuation Az (defined in Eq. (3.2)) versus lattice size L for dimensions 2
to 5. Symbols as in figure 1.

Fig. 7. - Log-log plot of average number of topplings divided by the average number of distinct toppled
sites versus L, for dimension d = 2.
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Fig. 8. - Log-log plot of average perimeter length versus L for dimension 2.

here the boundary length as the number of sites which are themselves in the cluster but which
have at least one neighbour not in the cluster). We find a fractal dimension boundary = 1.21.
Notice that we did not find any clusters at critically which had holes. Moreover, also the

sites which have toppled &#x3E; n times, n &#x3E; 1, form connected clusters without holes. In

figure 9a, we show a typical cluster. Sites which toppled 1, 2, 3, ..., 7 times are drawn black,
blue, green, ... and red. We see that indeed a nested set of compact clusters, with the
innermost having the largest number of topplings. A related structure is seen when looking at
those sites which have not returned to their original z value after the avalanche has died out
(Fig. 9b). We see that such sites occur only at the boundaries of the above clusters. In

avalanches where no site has toppled more than once, all sites except those near the perimeter
return to their original z value.
The intriguing structure is essentially observed only for d = 2. In higher dimensions, the

chance that a site topples twice or even more often is extremely small. For d = 4, we hardly
found any such site at all, and also for d = 3 they formed only a tiny fraction of all cluster sites
(see Fig. 10). This fraction increases slowly with L, but we prefer to consider this as a
logarithmic effect instead of a power law (in the latter case, the exponent would be
x = 0.002).

Finally, we foun&#x26; that the clusters in d = 3 seemed to be fractal, with fractal dimension
dF = 2.85.

(g) In [1] it was suggested that the differential distribution D (s ) of the number of topplings
scales as
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Fig. 9. - Typical large clusters in 2 dimensions. In panel (a), all sites which have toppled n times are
given the same color : black for n = 1, blue for n = 2, light green for n = 3, purple for
n = 4, yellow for n = 5, dark green for n = 6, and red for n = 7. In panel (b), those sites are shown
which have not returned to their original z values. Note that these sites are only near the boundaries
between different colors in panel (a).
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Fig. 10. - Same as figure 7, but for d = 3.

In 2 dimensions, this was verified in [12], with an exponent T = 2.22. Assume now that this
holds for s * LP, with some exponent /3 yet to be determined. Then we have

Since we know from [11] ] and from figure 1 that (s) oc L 2, @ this implies

Within the error bars, this was indeed verified.
We find thus that equation (6) must hold up to values of s larger than the number

L 2 of lattice sites, which obviously works only since sites can topple twice. Let us see how the
analogous situation is in d &#x3E; 3. There we know from the above that (at least within our error
bars) multiple topplings can be neglected, whence B  d. As for d = 2, we have still

(s) oc L 2. Thus, if we assume again the scaling law (6) fors  L/3, then we must have

In order to test these predictions, we show in figures 11 and 12 D (s) for d = 3 and
d = 4 on a logarithmically coarse grained scale as used also in [12]. More precisely, the points
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Fig. 11. - Cluster size distribution for d = 4 on a log-log scale. The height of the i-th bin shows the
fraction of avalanches with 2’ -«5 s -- 2" 1. Open circles, triangles, squares and dots represent
L = 144, 96, 64, 32.

shown in figures 11 and 12 represent Extrapolating these data to L = oo in the

way described in [12], we obtain the values of T given in table I. For d = 3, T agrees roughly
with the result of [4]. For both d = 3 and d = 4, the values are very close to the upper bounds
in equation (9), suggesting that equation (9) is indeed saturated in d = 3 and d = 4 [2]. This
would then inply that the largest avalanches have s - Ld (which agrees indeed with what we
found), and explains why the process becomes increasingly intermittent in higher dimensions.

(h) As a last set of data, let us show the average numbers s&#x3E;t of toppling sites at fixed
times. We know that on a very large lattice this cannot decrease with t, as all sand has to be
carried to the boundary. Indeed, if the avalanche represents a pure branching process (see the
next section), then in the critical state on an infinite lattice s&#x3E;t - const. for t - oo. If there
are also loops which correspond to branches which try to invalide regions which have toppled
already during the same avalanche, then s&#x3E;t t has to grow beyond all limits for

t -+ oo .

In figure 13, we show  s &#x3E; t for d = 2, 3, 4. In order to minimize boundary effects, we used
cylindrical b.c. and used in the averaging only avalanches which had started at a distance
&#x3E; L/2 from both open boundaries. For d = 2 and d = 3, we see a very clear power increase
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Fig. 12. - Same as figure 11, but for d = 3. Lattice sizes are L = 40 (circles), 32 (triangles), 24
(squares) and 16 (dots).

with exponents e given in table I. For d = 4, s&#x3E;t t either reaches a constant, or at most
increases logarithmically. If we would try there a power fit, the exponent would be
~ 0.03.

In 2 dimensions, we also looked at those sites which toppled at fixed time t, and which had
already toppled before. Their number increases roughly like a power of t, with a poorly
determined exponent .- 0.6, somewhat larger than that of s&#x3E;t.

(j) We have performed runs also for periodic boundary conditions, though we do not want
to show detailed results. The reason (alluded to already in Sect. 1) is that we are not sure that
we reached in this way the critical state. In 4 and 5 dimensions, we are indeed definite that we
did not reach it. For instance, on lattices with 504 sites, (z) overshooted when we started with
an empty lattice, and an infinite avalanche occured only at z&#x3E; = 4.151. This was brought
down to 4.110 by using equipartition in the initial state, but this is still significantly higher than
the value expected on a infinite lattice. We had started these runs in the hope of seeing scaling
laws (s), (t) cc (zcrit - (z) )const. For d = 2 (and, to a less clear extend, for d = 3) we found
indeed such scaling laws, but we are not sure that they present universal features. Even when
there is no overshooting, we do not have an ergodic system, and we do not know whether the
results obtained depend on the initial state. For d = 3, either the latter is indeed the case, or
there are unusually large finite size effects.
We shall discuss the results of this section, and what they suggest about upper critical

dimensions, in the last section.



1092

Fig. 13. - Log-log plots of numbers of topplings at fixed time t versus t. Data are shown for
d = 2 (L = 360 ; dots), d = 3 (L = 84 ; crosses), and d = 4 (L = 34 ; circles). Boundary conditions are
cylindrical. In order to reduce finite size effects, the statistics includes only avalanches starting a distance
&#x3E; L /4 from the boundary.

4. Sand piles on Bethe Lattices.

(a) When going to very large dimensions, the most important effect is that loops become less
and less important. In order to simulate thus the limit of very large dimensions (and in
particular the behaviour above any upper critical dimension), the most obvious thing to do is
to study the model on a Bethe lattice.
We used lattices with various coordination numbers (up to 5), and with various boundaries.

Below, we shall mainly present results for coordination number N = 3. Any site on such a
lattice can be given a « generation number » g according to its distance from the boundary
(see fig. 14). The leaves of the lattice are generation 1, the nodes leading up to the leaves are
generation 2, etc. By generation of the lattice G we mean the generation of the center node,
G = max nodes 9 .

In contrast to any hypercubic lattice, in a Bethe lattice of any generation most sites are close
to the boundary. Indeed, for G --&#x3E; oo half of all nodes have g = 1, a quarter has

g = 2, etc. Thus, averages such as (s ) or (t) are not very meaningful, as they measure
essentially properties of the boundary layer.

In addition, if we want to measure only « bulk » properties, it is more important than in a
hypercubic lattice to keep the boundary layer thin. We found that (at least for
N  5) there exists a possibility to keep it to exactly the first generation. This is achieved by
modifying rule (iii) to

(iii.c) If site i is a leaf, we decrease zl not to zi = 0 but rather to zl = 1. (Notice that we
could formulate this also in an alternative way, by modifying the range of z for leaves to
Zi E {0, 1,...,N-2 }.)
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Fig. 14. - Bethe lattice with coordination number N = 3 and with G = 3 generations. In our

terminology, the generation g of a node increases from the leaves (g = 1 ) to the center

(g = G).

With rule (iii.c) instead of (iii), we found e.g. for N = 3 that f o = 1/12, f = 1/3, and
f 2 = 7/12 (giving (z) = 3/2) for all sites i with g &#x3E; 2, while f = 1/3 and f 2 = 2/3 for leaves.
This was verified numerically for lattices with 4  G  20, with errors fully within the
statistically expected ones. With rule (iii), instead, we obtained a roughly exponential
convergence to (z) ~ 1.5 when g - oo. Similar simple ratios were obtained also for lattices
with larger coordination numbers, see table III.

In the following, we thus present only results obtained with rule (iii.c.).

Table III. - Probabilities f, = prob (si = z ) on Bethe lattices with coordination number N
and with b.c. according to (iii.c).

(b) Let us next prove the following
Theorem : Sites on a Bethe lattice can only topple n _ 2 times during one avalanche if they are
the origins from where the avalanche started, or if the neighbour which initiated the first
toppling has itself toppled at least n times.
For an inductive proof, let us first assume that the site i is a leaf, and that it is was not the

origin of the avalanche. Then it can topple n times only if its neighbour toppled
&#x3E; n times. Let us now consider a site i (with generation g) which is not the starting point. This
site divides the lattice into 3 branches (we assume here and in the following N = 3 ; for
N &#x3E; 3 the proof is completely analogous). The starting point is in one of the branches (call it
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branch 1) and we make the inductive hypothesis that the theorem applies to all sites in the
other two branches (called 2 and 3). In that latter case, we easily see that the theorem indeed
applies also to site i : in order to topple n times, site n has to receive 3n sand grains ; from
branches 2 and 3, it can at most receive 2n, whence it must have received at least n from
branch 1. In this way, we can move by induction into the interior of the lattice until only the
starting point of the avalanche is left, QED.

This theorem tell us that the set of sites which topple n times must form a connected cluster
which contains the starting point of the avalanche, for all n _ 1. Furthermore, the starting
point (and hence any other site) can topple twice only if all its 3 neighbours have
z = 2. In the same way, one sees that in addition all 6 next-nearest neighbours must have
z = 2 if the starting point (and thus any other point, too) is to topple 3 times, and so on. We
see thus that multiple topplings are very rare, and can in particular not significantly influence
the properties of large avalanches - unless there were very strong long range correlations.

(c) According to the above, and to the discussion in section (2.h), we expect

s&#x3E;t to tend towards a constant for t - oo, for avalanches started at infinetely large g. Indeed,
this constant should be exactly 12/7, since the average amount of sand transported away from
the site where the first grain has been thrown should be 1, and the number of avalanches per
grain thrown in just f 2. We show the corresponding data in figure 15. We see there that
indeed

We also see that (s) t :&#x3E; 12/7 for finite t &#x3E; 1. This is due to multiple topplings.

(d) We present next the fluctuation of z in the critical state. As we see from figure 16, a
very good fit is obtained with

as we would have expected from the absence of long range correlations.

Fig. 15. - Numbers of topplings at fixed time t versus t for Bethe lattices with coordination number 3.
Data are averaged over a range of lattice sizes, G = 13 to 19.
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Fig. 16. - Logarithmic plot of the fluctuation Az (defined in Eq. (3.2)) versus lattice size G for Bethe
lattices with coordination number N = 3.

There do however exist non-vanishing short range correlations. The nearest neighbour
correlations in the interior of the lattice are for instance obtained from (s) t = 1 since

where f 22 is the probability to find z = 2 on two neighbouring sites. This gives numerically

i.e. a small anticorrelation. For the correlations between next-nearest sites we found

f222 f2/f222 = 0.801, and for the chance to find z = 2 on all 4 sites of a Mercedes star we got
f 2222 = 0.915 f2222/f22.

5. Discussion and conclusions.

(a) The first conclusion we can draw from the last section is that on a Bethe lattice the

sandpile model is in the universality class of critical percolation. More precisely, it is dynamic
site percolation in the sense of [15], or a general epidemic process without recovery exactly as
the critical point.
The analogy between this process and the present one is the following. While percolation

can proceed only if a site is open, an avalanche can proceed only if z = N - 1 (we assume that
the coordination number is N). The differences are

(i) in percolation, the open sites are usually considered uncorrelated, while they are

correlated in SOC. This should however be irrelevant since the correlation is short range ;

(ii) in percolation, any site can be wetted (« infected ») only once, while a site can topple
more than once in SOC. Again, this should be irrelevant since multiple topplings are rare and
become negligible for large avalanches.
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There is of course the very important difference that in SOC the state is driven into the
critical state, while nothing like that is true for percolation. But this means just that there are
important correlations between successive avalanches (if for some time the avalanches have
been too small, the following avalanches will tend to be larger to carry away the accumulated
sand) ; it is not reflected in the statistics of individual avalanches.
We might add that f N _ 1 - which corresponds to the critical percolation probability

Pc - is rather close to what we would have expected in the absence of correlations. On a
Bethe lattice, the latter is just 1/(N - 1 ). For SOC we found numerically that

fN -1 - 1 / (N - 1 ) = 1 /6, 1/27, resp. 21/1280 for N = 3, 4 and 5. the fact that

f N - 1 &#x3E; 1 / (N - 1 ) is related to the negative correlations expressed e.g. in equation (14).
(b) In 4 dimensions, the sand pile model shows the same behaviour as on a Bethe lattice :

we have seen that (s)t increases less fast than a power of t, and we have seen that multiple
topplings are practically absent.
The only result which contradicts this is that v seems to be slightly less than 1/2. We tend to

take this as a finite size effect, and it is a very small effect anyhow.
Notice however that between d = 4 and d = 6 the sandpile model cannot be percolation-

like, since the latter has de = 6. Also, for percolation the number of growth sites

increases [14] with time with the exponent epercol = d - 1 - f3 /Vl’ where d is the spreading
dimension. Dor d = 4, this gives Çpereol = 0.29, in clear contrast to the sandpile model.
The above suggests that some exponents are, for d &#x3E; 4, those of mean-field percolation [2]

(see below for caveats). This applies in particular to T which for percolation above
d = 6 is 2.5 « 16]. Our result T = 2.44 (for d = 4) is compatible with this within the errors.

c) In [13], it was conjectured that the sandpile model is a branched true self-avoiding walk
(SAW). Notice that dynamic percolation is just a branching ordinary SAW. The reason why
branches of a sandpile should be self avoiding is clear : after an avalanche has passed and the
sites have toppled, a second avalanche is hindered from passing again the same region. The
difference between a SAW and a true SAW is that the former is - when seen as a real
walk - not self-avoiding but self-killing. In a true SAW, a walker is not killed when he comes
back to his own traces, but he gently turns away. Now it is clear that the same happens here to
some degree, as the z values near a branch of an avalanche have been enhanced by the
topplings, and there is thus some incentive for a next branch to turn away. But it is by no
means clear that both the tendency of self-avoidance and of compensating for the tendency to
kill are strong enough.

If sandpiles are indeed branched true SAW’s, this would give an upper critical dimension
de = 4. This is consistent with the above, but it faces another problem : in d = 2, the

avalanches are clearly not self avoiding. Instead, the average number a site is visited increases
like a power of L. This should definitely have an influence on the universality class the model
is in.

In d = 3, the situation is similar to the one in d = 4 in that the avalanches seem self

avoiding. But - unless we have been deceived by very strong logarithmic corrections
s&#x3E; t increases like a power of t. This means that not only the self-avoidance is effective, but it
is also self- killing. It is only since most of the branches are killed when forming loops, that
s&#x3E;t has to increase at the critical point.
Our conclusion is thus that dc = 4, and that above de the sandpile avalanches are essentially

branched true SAW’s as suggested in [13]. But below dc = 4, the sandpile model seems to be
in a new universality class, not equivalent to branched true SAW’s.

Since the sandpile model in d « 3 dimensions corresponds to branched walks which are not
strictly self-avoiding, one might suggest it to be branched ordinary random walks. This would
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mean an epidemic process without immunization, or directed percolation in d + 1 dimen-
sions [17]. That this is not correct is seen by comparing critical exponents : for d = 2, directed
percolation would give e = 0.540 ± 0.006 [17], clearly different from the value 0.37 found in
the present paper. Also, the life times would be distributed as D (t) ~ t -1.46 [17], while for the
present model D (t) ~ t-1.38 [12].

(d) Let us next make some comments on mean field approximations. Our results suggest
that the most natural approximation is that there are no correlations among the

zi. Notice that this is not exactly true even on Bethe lattices with finite N, since even there the
chance for falling back (and thus for multiple topplings) is not zero. Otherwise said, in the
mean field approximation we neglect the effect of all loops, including the trivial two-step
loops involving a single link. It is easily seen that in such an approximation, the above
sandpile model on a lattice with coordination number N is equivalent to an exactly solved
directed model (as studied by Dhar and Ramaswamy [9]) on a Bethe lattice with coordination
number 2 N. In the latter model, the nodes form an infinite stack of copies of the original
sites, and each node is connected by N outgoing links to the following copy, and by N
incoming links to the previous one. As shown in [9], the directed model is in turn equivalent
to a voter model which can be solved exactly. Indeed, as we had already said, critical

exponents in this mean field approximation (like T = 5/2 and e = 0) are those of mean field
percolation [2]. Notice, however, that not all exponents are those of percolation, since we do
allow multiple topplings. In 2 dimensions, the average number of sites which topple at time t
though they had already toppled at some earlier time scales roughly as (°.6, while it would be
zero in a mean field theory of percolation.

(e) In the présent paper, we have only studied the behaviour exactly at the critical point. In
[1, 2], also the situation off the critical point has been discussed. In particular, the exponent z3
has been defined via the average density of topplings at given (z). Denoting it as j, they
propose

in the supercritical regime (z) :&#x3E; (z) c. As we have said already, we must be very careful in
interpreting such an ansatz. In [1, 2] it was tested by starting with a randomly chosen
configuration with (z&#x3E; » (z&#x3E;,,,, and letting the system relax towards a stationary state. It is
easily seen that his can lead to wrong results, since the system can (and in general will !)
become stationary in a non-critical state.
One way to render equation (15) meaningful consists in first driving the system into the

cri tic al state, then adding randomly m sand grains at one time (i.e., increasing zi - z; + 1 for
m randomly chosen sites, without letting unstable sites topple) with 1 « m « L d , and then
letting the system relax. It is easily seen that this gives B = 1 exactly, due to the additivity of
the heights and the resulting independence of avalanches [11]. The value B = 1 was found in
[2] as a mean field result, but was clearly violated in the numerical simulations of [1, 2]. This
wrong result is most likely due to the fact that the systems in [1, 2] did not relax towards
critical states.
An alternative way to go off the critical state consists in not waiting until avalanches are

completed before adding new sand grains. Instead, one sets zi -+ zi + 1 at a fixed rate o :

Again due to additivity, the resulting j and (z) - (z)c are both - cr for small u, and

B = 1 exactly (values (3 # 1 could be obtained in models where the scalar z is replaced e.g. by
a vector, as in a more realistic sandpile models where topplings are not triggered when the
height becoms too large, but the slope).

It might seem [2] that the density of topplings j is a better candidate for an order parameter
than z since the latter is not singular at the critical point. We see however that j does not
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behave as a usual order parameter either. For a system with constant spontaneous growth rate
a « L 2, we have

since the number of topplings per avalanche is ~ L 2, independently of the eventual presence
of other avalanches. For a &#x3E; L 21 the behaviour of j is more complicated since the time scales
are changed when avalanches overlap. But in no case j is a density of an extensive quantity.
Thus neither j nor z are completely analogous to order parameters in conventional critical
phenomena. For convenience of presentation, we stuck to calling z an order parameter.

(f) Finally, we should point out that all densities on Bethe lattices seemed to be simple
rationals for all N studied. This suggests that a simple closed solution should exist, as has
indeed been announced in [11].
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Note added in proof:
After submitting the paper, we were able to prove exactly, on any hypercubic lattice, that
clusters of sites which have toppled &#x3E; k times (k &#x3E; 1 ) form simply connected clusters (see
Sect. 3f).
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