
HAL Id: jpa-00212429
https://hal.science/jpa-00212429

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stretching and buckling of polymerized membranes: a
Monte Carlo study

E. Guitter, S. Leibler, A.C. Maggs, F. David

To cite this version:
E. Guitter, S. Leibler, A.C. Maggs, F. David. Stretching and buckling of polymerized
membranes: a Monte Carlo study. Journal de Physique, 1990, 51 (11), pp.1055-1060.
�10.1051/jphys:0199000510110105500�. �jpa-00212429�

https://hal.science/jpa-00212429
https://hal.archives-ouvertes.fr


1055

Short Communication

Stretching and buckling of polymerized membranes: a Monte
Carlo study

E. Guitter (1, 2), S. Leibler (1), A.C. Maggs (3) and F. David (1,*)

(1) Service de Physique Théarique de Saclay(**), F-91191 Gif sur Yvette Cedex, France
(2) Engineering Department, University of California, Santa Barbara, CA 93106, U.S.A.
(3) Institut Laue-Langevin, F-38024 Grenoble Cedex, France

(Reçu le 2 mars 1990, accepté le 30 mars 1990)

Abstract. 2014 We study polymerized (elastic) membranes fluctuating under constrained boundary
conditions. We show that the low-temperature, "flat" phase is not described by the classical theory of
elasticity. Thermal fluctuations induce important modifications to mechanical laws such as Hooke’s
law. We study the approach to the buckled state of membranes, verify the finite-size scaling relations
and measure related critical exponents. In the presence of thermal fluctuations the buckled state is
qualitatively different from its classical counterpart.
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Although the existence of afinite-teniperature crumpling transition [1] for self-avoiding elastic
(i.e. polymerized or solid-like) membranes [2,3] is still an open theoretical [4,5] and experimental
[6] question, the presence at low enough temperatures of an orientationally ordered phase is not
put in doubt. In this "flat" phase the classical theory of elasticity is believed to break down due to
thermal out-of-plane fluctuations [7,8]. In particular, if one considers an elastic membrane in
the "flat" phase whose excitations are decomposed into transverse undulations, h, and internal
"phonon-like" modes, ul and u2 :

(where r = (0"1,0"2) are the cartesian coordinates in the reference plane of the membrane, and
r(u) is the corresponding position in space), then one can show that thermal fluctuations modify
the spectrum of these excitations:
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The critical exponents rih =- 17 and nu, describing the nonclassical behavior of two-point correla-
tion functions (Eq. (2)), can be evaluated in different approximation schemes such as the ,- or
1/d-expansions [7,8]. The subscripts appearing in equation (2) mean that the membrane ftuctu-
ates under no constraints. However, one can apply in general some non-zero lateral tension f
to the membrane whose behavior will be then modified [8]. Under the action of a positive f (i.e.
a stretching) the mean values of the excitations h and ua and their correlation functions take the
form:

where gh - gu - (6() - " - f"’/6’ and Xh and Xu are scaling functions which tend to constant
values for u 11 much larger than the correlation lengths eh and u . These equations define the
new exponents b‘ and v’. The perturbative calculations predict the value of the bl exponent to
be bigger than one: this implies that the classical Hooke law is also invalid in the "flat" phase [8].
This is a quite surprising prediction of the theory of elastic membranes. It can in principle be
verified experimentally by measuring the spectrum of fluctuations of polymerized vesicles or the
deformation of the charged polymerized vesicles in an electric field [9].

One of the main goals of this letter is to check this theoretical prediction in a Monte-Carlo
study of a tethered membrane [10,11]. In such a model membrane the centers of N impenetrable
circular beads of diameter a are linked by tethers of length £0 &#x3E; a to form a triangulated net (of
a global hexagonal shape of size L). The configurations of the membrane are altered according
to the usual local Monte-Carlo dynamics [11], with energy given by the bending elasticity term
Ebend = (k/2) EN 1 (1 - cos 9i) , where Oi is the angle between two neighbouring triangles and
is the bending rigidity. We have studied the response of a membrane to a stretching field f &#x3E; 0
and measured the value of the j7 exponents = 0.75 ± 0.05. Other critical exponents caracterizing
the "flat" phase can be obtained from t7 through the following scaling laws

which were derived in the renormalization group approach [7,8]. In particular, the exponent b’,
which can be viewed as describing the so-called buckling transition [8], i.e. the approach to the
unconstrained state (as f --&#x3E; 0) below which the membrane buckles, is found to be b’ = 1.7 ± 0.2.
This means that the classical Hooke’s law is indeed invalid.

Recent independent Monte-Carlo simulations of free tethered membranes [11] have mea-
sured the entropic repulsion between the membrane and a impenetrable wall [12]. This repulsive
potential varies with the mean distance from the wall, 1, as 1/£,r. The measured value of the expo-
nent r was T ~ 3.1 ± 0.2. Our result for ?y provides therefore a good check of the scaling relation
[13,11]: T = 4/(2 - ri). (Indeed, this phenomenological relation leads to T = 3.2 ± 0.2. )

When the homogeneo.us field, f, decreases below zero the membrane will enter a buckled
phase, with a non-planar average configuration. The detailed nature of the buckled state is un-
known. The buckling phenomenon exists for classical thin shells [14] and one could imagine a
buckled state as a membrane fluctuating around its classical (buckled) configuration (which de-
pends on details of the boundary conditions). Thus the simplest question one can ask how dif-
ferent are classical and thermally-excited buckling phenomena? To answer this question we have
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extended the range of our simulations to negative values of f and have studied the average config-
urations in the buckled state of a hexagonally-shaped tethered membrane. Although more quan-
titative studies are still needed, based on the results of our simulations, we can already say that
the average configuration of the buckled state is very différent at non-zero temperatures from its
classical equivalent, and it does not present any "domain-wall" pattern which one could naively
expect from the analogy with the ordered phases of magnetic systems [8]. An average buckled
configuration has its own pattern with caracteristic length which seems to be a function both of
the size of the membrane (as it is the case for classical buckling) and the correlation lengths eh
and e,,,.

We now describe in more detail the results of our numerical simulations and the method
we have used. The model considered here was introduced first in reference [10] to verify the
existence of the crumpling transition. In fact, in the absence of self-avoiding this model (with
a = 1, £0 = 1.6) exhibits a crumpling transition at K _ Kcr = 0.46 ± 0.03 (in units of kBT). In our
study of the "flat" phase we have thus considered the values r, &#x3E; kcr. We impose in the following
two types of boundary conditions:
(i) the boundary of the net is constrained to vary in the plane r3 = 0. The projected area of the
membrane onto this plane, A3, is a fluctuating variable;
(ii) the boundary of the net is fixed on a hexagon of a linear size (L ( 1  (  1.6) in the plane
r3 = 0. The projected area has its value fixed at A3 = NaÇ2 Ùfl, where Nà ( L ) is the number of
triangles in the net.

In order to study the approach to the buckling transition we have chosen the type-(i) boundary
conditions and put x = 1 [15]. The linear size of the network varies from L = 2 (N’à = 24) to
L = 9 (Na = 486) and we use the finite size scaling relations (valid for L large enough):

Where F(x) ~ xl/fJ’ as x -+ oo, and F(x) ~ x as x --&#x3E; 0. We have used here the

scaling relations (4), proven in the renormalization group framework. It is convenient to compute
 A3 &#x3E; f through

which can be viewed as a generalization of the fluctuation-dissipation theorem. Linearizing these
last two equations for small values of f ( f &#x3E; 0) leads to the following simple formula

which allows us to measure the critical exponent n.
In our Monte-Carlo simulation we have used a standard Metropolis algorithm, however, we

have divided the network into four independent sublattices and we have moved simultaneously
all beads belonging to each of the sublattices (with a step s  0.2 and random directions). The
simulations were performed on the Cray XMP. We have first checked that the mean projected area
 A3 &#x3E;o is proportional to Nâ (the condition for the "fiat" phase). The L = 9 network has well
been equilibrated after the total of T = 4 x 107 steps (i.e. ~ 105 steps/point). This corresponds
roughly to 10 hours CPU.

The inset in figure 1 presents the numerical check of the finite-size scaling relation (5). We
have presented here the extension of the membrane  A3 &#x3E;f -  A3 &#x3E;o as the function of the

applied tension f (appropriately rescaled). We can see that the relation (5) hold already for sizes



1058

Fig. 1. - Variation of the area fluctations with the size of the membrane. The inset shows the plot of

Y =  A &#x3E;}/2 -  A &#x3E;01/2) IN( 1-,7)/2 , S. X _ fNCf.-r)/2. The curves correspond to linear sizesf 0 à

L = 3, 4, 6, 7, 8, 9, and / 10/ (starting from the lowest one).

L &#x3E; 4. The same value q = 0.75 used in this scaling plot corresponds also to the one obtained
from the curve shown in figure 1, where the fluctuations of the projected area at f = 0 are plotted
as function of the size of the membrane.

Using scaling relations (4) we obtain from the result il = 0.75 ± 0.05 the following critical
exponents of the "flat" phase:

It is interesting to notice that the values of these exponents characterizing the "flat" phase and the
buckling transition are close to the ones obtained through the 1/d-expansion [8]. The uncertainties
of (8) are estimated by standard statistical methods but should be taken with caution due to the
smallness of the simulated systems.

In order to explore the nature of the buckled state we have mainly used the type-(ü) bound-
ary conditions (although we have checked the main conclusions in the fluctuating A3 case). By
varying ( below the spontaneous (f = 0) value (sp one modifies the average configurations of the
membrane. Figure 2 presents these configurations for a L = 7 net for different values of K./kBT
and (. In order to represent the three-dimensional configurations of the surface we have chosen
to plot the average values of the Gaussian curvature [16]: K = La (7r - Oa) , where the sum is
done over all angles a between neighbouring triangles for a given vertex. The Gauss-Bonnet the-
orem implies that the sum of the values of K over the whole network is zero, we have therefore to
concentrate on the distributions over the surface of the Gaussian curvature. The averages can be

performed over the configurations emerging from different initial conditions after the relaxation
time r, or over various configurations in a single long run (t y r). #pically we have averaged
over several thousands of independent configurations.

At low temperatures (or large K) the phenomenon of buckling is purely mechanical (Fig.
2a): when ( decreases the membrane buckles into a "bell-like" shape with positive Is around the
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Fig. 2. - Thermally excited buckling of a tethered membrane (L = 7): the squares (crosses) correspond to
positive (negative) Gaussian curvatures, K, while the size of each symbol is proportional to the magnitude
of K. The values of K./kBT are: (a) 5; (b) 3; (c) 2; (d) 1.

center of the membrane. This shape can easily be calculated in T - 0 limit by minimizing the
curvature energy Bend If we now increase the temperature (decrease k) the thermal fluctuations
start to modify the buckled state (Fig. 2b). At tclkBT  2.7 we observe a completely new picture:
instead of a single region of positive h (in the center) there are six localized regions with Ii &#x3E; 0

("spikes") near the vertices of the hexagon, whereas the center becomes flat (Fig. 2c). Finally,
for small K the membrane is fluctuating wildly, is flat on average and the buckling takes place only
on the boundary (Fig. 2d). The characteristic length, A, of (between) the curved regions (e.g.
the spikes) depends of course on K/kBT, and therefore on the correlation length g. Although we
could not look at the buckling of membranes bigger than L = 9, it seems from the comparison of
the buckled states for différent sizes (in particular Fig. 2c), that A depends also strongly on L£o
and is not a simple function of x. It is also remarkable that the buckling patterns seem unsensitive
to the value of ( for (  (sp ; only the amplitude of the curved regions vary with (. It would be very
interesting to explore more quantitatively the dependence on L and e, as well as the role played
by the boundary conditions (e.g. the hexagonal shape). For the moment we can only conclude
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that there exists a phenomenon of thermal buckling qualitatively very different from its mechanical
counterpart.

We would like finally to discuss briefly the possible relevence of this work for the experiments
in elastic membranes. Good candidates for the study of the stretching and buckling phenomena
in thermally çxcited regime are polymerized vesicles [9] and red blood cells [17]. Although some
phenomena resembling the buckling were indeed observed in crosslinked phospholipid bilayers
[9], more experimental effort is still needed. In particular, in order to do more quantitative studies
on polymerized vesicles one has to find the way to polymerize a whole vesicle (or at least a large
part of it). Nature, on the other hand, did develop such methods for numerous protein networks
[18], for instance for the spectrin networks of red blood cells [17]. It would be thus interesting
to continue the quantitative analysis of the flickering behavior of the erythrocytes [19], and con-
centrate on the elastic properties of the spectrins. If the modifications of the classical-mechanical
laws described in this Letter do apply to erythrocyte membranes then one has to reconsider many
of the mechanical analyses performed in these systems.
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