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Abstract. — We present high precision measurements of the bending elastic moduli for bilayers of
a variety of different lipids and of modifications of the flexural rigidity by solutes. The
measurements are based on the Fourier analysis of thermally excited membrane undulations
(vesicle shape fluctuations) using a recently developed dynamic image processing method.
Measurements of the bending modulus as a function of the undulation wave vector provide
information on the limitation of the excitations by the constraint of finite membrane area (surface
tension effects) and by transient lateral tensions arising in each monolayer by restricted diffusion
at high wavevectors. Measurements of the autocorrelation function of the undulation amplitudes
provide a further test of the theoretical models. Studies of the effect of solutes show that
cholesterol increases the bending modulus of dimyristoylphosphatidylcholine from
K, =1.1x10""ergs to 4.2 x 10~ ergs (at 30 mole %). Incorporation of about 2 mole % of a
short bipolar lipid reduces K, to the order of k7. A scaling law between the projected radius of
gyration, R,, of these hyperelastic vesicles and the surface area, 4 (or number of lipid molecules
N) of R}oc A%%*°% was established.

1. Introduction.

Lipid bilayer vesicles fascinate physicists because of their peculiar elastic and dynamic
properties which are dominated by a very soft bending elastic modulus on the order of 10 kT
[1-4]. They appeal to biophysicists since (despite their simple structure) they exhibit typical
mechanical and rheological features of cell membranes. The bending elastic modulus may be
lowered by solutes towards the thermal energy in order to approach the limit of random
surfaces. New fascinating phenomena arise in mixed bilayers where the coupling of lateral
phase separation and curvature effects lead to a manifold of metastable vesicle shapes [8]. By -
using dynamic image processing methods, it has become possible to determine the mean
square amplitudes and the correlation times of the thermal membrane excitations as a
function of the wavevector in the optical regime, thus allowing high precision measurements
of the bending elastic modulus. In the present work we present first a more detailed
description of our experimental procedure of evaluation of the membrane undulations [1].
Secondly, we summarize our recent measurements of the bending elastic moduli of various
lipid bilayers and demonstrate that the method is well suited to distinguish vesicles composed
of different numbers of bilayers. In a third part we present measurements of the
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autocorrelation function of the membrane excitations and show that the equilibrium and the
dynamic models of the vesicle fluctuations [6, 7] agree well with experimental data. Finally,
we present measurements of the radius of gyration of vesicles with bending elastic moduli of
the order of kT as function of the total surface area and establish a scaling law with broken
exponent.

2. Theoretical background of the method.

It is generally accepted now that the thermal undulations of vesicles and also biconcave (and
moderately swollen) erythrocytes can be described in terms of the quasi-spherical model first
worked out by Helfrich [4] and Schneider [5] and subsequently improved by Peterson [6] and
Milner and Safran [7] to include spontaneous curvature effects and to account for the
suppression of long wavelength modes [1] by the constraint of constant area. The thermal
excitations of quasi-spherical vesicles are described in terms of a spherical harmonics
expansion (yg,(3, ¢ )) of the middle surface separating the two monolayers. The latter is
determined by the radius r(9, ¢ ) (J: polar angle, ¢ azimuthal angle) which is

r(d, ¢,t)= "0(1 + i ag, ;m (1) Yg, 1 (9, w)) M

m=0

where r, is the so called equivalent radius. It is equal to the radius of a sphere of the same
volume, V, as the vesicle. For symmetric bilayers, where spontaneous curvature effects can be
ignored, the undulations are determined by the elastic energy.

EC=L (%KCH2+7)dA @

where H is the mean curvature: H = 1/r, +1/r, (r, r,: principal radii of curvature),
K. is the bending elastic modulus and A is the surface area of the vesicle. y is a Lagrange
multiplier which accounts for the constraint of constant area. Physically it corresponds to the
lateral tension which arises for those excitational modes that require a larger excess area than
available. Provided the excitation of the spherical harmonic modes follows the equipartition
theorem, the normalized mean square amplitudes of the spherical harmonic mode charac-
terized by the angular momentum (f) and magnetic quantum number (m) are given by

Ky T

2
_ 3
(lag,m|*) KAO+2)E DT +1) = 9] v

where ¥ = -yrg/Kc. As pointed out first by Brochard and Lennon [9], the damping of the
membrane bending undulations is determined by the hydrodynamic flow of the enclosed and
surrounding fluid and for that reason the modes are completely overdamped. The (temporal)
autocorrelation function of the amplitude ay,, (¢) are exponentials [6, 7]

(g, (1) g,y (0)) = {|ag ,|*) exp{— @y, 1} G
where
K.
Wom=—5 +1) = 7)/Z(0) )
nroy

Q@+l +20-1)

A TS D Y( ) (450D ©)
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and 7 is the viscosity of water.

It is important to note that equipartition is possible only if the flow within the bilayer is fast
enough to accomodate for local density fluctuations (in each monolayer) associated with the
undulations. A break-down of the equipartition is suggested for membranes containing
cholesterol (cf. Sect. 4).

Experimentally, the excitations of the vesicle have to be analysed in terms of the
fluctuations of the contour observed in the phase contrast microscope. This is possible
provided

1) the vesicle is quasi-spherical so that the image plane goes through its center of mass
2) the time over which the fluctuations are observed is large compared to the response
(= relaxation) time of the excitations.

Let the Fourier transform of the momentaneous contour at time ¢ be

9max

r(‘P’t)=r0 z vq(t)exp{— lq(P} (7)

q=0

where ¢ is the longitudinal angle and v (¢, ¢) is determined by the deviation of the vesicle
surface from the sphere at 4 = 7 /2. By using equation (1) one obtains for the Fourier
component v,(¢) of equation (7) [1, 3]

’max 21!'
1 i
vq(t)='2—ﬂ_ Z at’,m(t)j Yf,m(%‘s¢) e'd® d(P (8)
0

l=qm

The sum starts at { = g but the minimum of £ must be larger than two. The mean square
amplitudes of the contour fluctuations are then

kg Trg ‘m
(01 === T (lan(0l’) Pl (057 ) ©

where Py (cos (7 /2)) are the values of the Legendre Polynominals in the equatorial plane.
Thus the mean square amplitudes of the fluctuation of the contour are directly related to the
mean square amplitudes of the spherical harmonics given in equation (3). The sum in
equation (9) converges rapidly with increasing £ and has been calculated for the quantum
numbers 2<g=<10 up to { =0, =34 [3].

3. Experimental procedure.

3.1 PREPARATION OF THIN WALLED VESICLES. — Giant vesicles with diameters larger than
10 pm were prepared by the following procedure. The lipid or lipid mixture was dissolved in
2:1 chloroform/methanol (1 mM solution). 20 ul of this solution (containing about
2 x 103 mole or 10~ g of lipid) was distributed as a thin film on the surface of a microscope
cover glass. The solvent was evaporated by placing the substrate in a vacuum chamber for a
minimum of one hour. The cover glass was inserted in a sample cell (where it served as the
bottom window) and was fixed with silicon grease. The sample cell was filled with distilled
water or a 100 mM solution of mannit and the top closed (and sealed) with a second cover
glass (the top window). The whole sample cell was inserted into a thermostated measuring
chamber made of V2A steel. The temperature could be varied between 0 and 50 °C by using
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Peltier elements cooled by water. The temperature in the sample chamber was measured with
a Pt100 temperature sensor.

3.2 EXPERIMENTAL PROCEDURE USED FOR FOURIER ANALYSIS OF VESICLE CONTOUR
FLUCTUATIONS. — The vesicles were observed and evaluated with an inverted Zeiss Axiomat
microscope. It was mounted (on air cushions) on a heavy ground plate which was suspended
from the laboratory ceiling to reduce vibrations caused by walking. A schematic view of the
optical set-up is shown in figure 1. One advantage of the Axiomat is that the position of the
image plane of the (infinity adapted) objective can be choosen freely. In this way a normal
bright field objective can be used for phase contrast microscopy by placing a phase plate in the
image plane far away from the objective. For the present work, a bright field air objective of
magnification 50 x (Zeiss) was used. Since the working distance of the objective was only
300 pum, the vesicles near the bottom window of the sample cell had to be observed by an
inverted microscope. Images of the vesicles selected were taken with a charge coupled device
(CCD) camera (frame transfer camera, HR600M, Aqua-TV company, Kempten, FRG) onto
which a section of 40 x 40 pum? of the image plane was projected. The camera is connected to
an image processing system (MAXVIDEO, DataCube BOSTON, USA) with VME bus and
0S-9 operating system. With this system the images from the video camera are digitized
512 x 512 pixels and 256 gray levels.

A fast algorithm was developed which allowed us to evaluate the (time dependent) contour
of a vesicle at a rate of 5-10 per second and to store the data in the computer memory. The
procedure is illustrated in figure 2. Since the phase shift of the light is maximal if it passes
tangential to the vesicle surface, the transient contour (that is the equator of quasi-spherical
vesicle) corresponds to a sharp minimum of the brightness of the image. First a starting point
(coordinate x,, y,) of the contour is selected by the cursor. Each pixel has 8 neighbours which
define 8 directions (numbered 0 to 7 in Fig. 2). As second step the adjacent contour point is
searched as follows : the intensity over three bands comprising 46 pixels and laying in three
different directions of the eight are summed. The position of the contour (x,, ;) adjoining the
starting point (x,, y,) lies in the direction of minimum total intensity and is given by
(x%p + 1, yo + 1). The three test directions are determined by the direction of the previous step.
The above procedure is repeated until one returns to the position of the starting point. The
number of 46 pixels is of arbitrary source. It has been found optimal to account for the fact
that the width of the intensity valley is 5 to 6 pixels (cf. Fig. 2). After having determined (and
stored) the positions of the contour the center of mass of the vesicle is determined according

to
1 k=1 1 k-1

Sx=‘kzxi; Sy=E zoyi (10)
i=0 i=

where K is the number of pixels of the contour and is typically K = 500-1 000. Now, the polar
coordinates (¢;, R;) of the contour are determined with the center of mass as origin.

The Fourier decomposition of the contour is performed using a Fast Fourier Transform
procedure [10]. For this procedure the contour line must be divided into 2V equidistant points.
Since the contour line is determined by 500-1000 pixels a new set of 2° = 512 points
(Rys11) is determined from the original set (R; x) by averaging the values lying within
segments of opening angle 2 7 /128.

The Fourier transformation yields complex Fourier coefficients

Cg = aq+tbq

* where g runs from — 255 to + 255. Of these the values for 0 < g < 10 are stored.
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Fig. 1. — a) Schematic view of apparatus built around a inverted Zeiss Aximat microscope used for
observation of vesicle. Since the focus of the objective is set at infinity its image plane can be positioned
at will by using the lenses L, and L, and the mirror. Therefore a normal bright field objective (Here :
Zeiss 50 x , Air, Pol, numerical aperture 0.95, working distance 300 wm) can be used for phase contrast
microscopy by placing a (ring-like) phase plate in the image plane. The sample could be illuminated with
a 100 Watt halogen lamp (Zeiss) or a high pressure mercury lamp (HBO-100) with ultraviolett cut-off
filter which improved the optical resolution. b) DMPC-vesicle with intensity distribution (white shaky
curve) along a direction indicated by the white straight line. The positions of the contour is determined
by the two minima in the intensity distribution.
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Fig. 2. — Schematic representation of algorithm used to determine the transient contour of the vesicles.
The starting point at (xy, y,) is selected interactively the first time. Then the intensity over three bands
comprising 46 pixels and lying in three different directions (of the eight possible) are summed to find the
direction of minimum intensity. An example of the depth of the intensity valley is shown at the left lower
corner.

As the next step, the mean square amplitude is determined as follows :
Since the excitation modes are statistically independent, the time average of the contour is
determined by averaging over the Fourier coefficients of an- arbitrary number of M-contours

Cog== Y (a,+ib; ) =a,,+ib,, (11)
M

where n is an eligible number of that contour from which the procedure is started. It must be
n= M /2. The mean square amplitudes of mode g are finally given by

(Vo) =5 B {@ug =@+ (b~ B, - (12

The bending modulus is directly obtained from equation (9). The average vesicle radius is
given by

ro=~/ao+b2, (13)
where a, o, b, o are the averaged Fourier coefficients for ¢ = 0. It should be noted that in the
limit of infinitely long sampling times, the average coefficients a, , and b, 4 in equation (11)
become zero. In the present procedure we analysed the difference between the contour
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¢, at time ¢ and the contour obtained by averaging over a time, A¢, which is considerably
longer than the correlation time of the longest wavelength mode. In this way it was possible to
analyse also vesicles of slightly oval form, which change shape very slowly, as predicted by
Millner and Safran [7]. The values of K, obtained for slightly oval vesicles agree well with
those exhibiting a spherical shape, showing that the quasispherical model applies also to
slightly oval vesicles.

4. Experimental resulits.

4.1 BENDING MODULI OF SYNTHETIC AND NATUREL LIPIDS AND THE EFFECT OF SOLUTES. —
Figure 3 shows values of the bending modulus of DMPC bilayers as a function of the wave
vector g characterizing the undulations of the contour (cf. Eq. (7)) measured at 30 “C. The
K -value of the lowest order mode (g = 2) is clearly larger than that of the higher modes
(g =3 to 10). The latter agree within experimental error although a shallow minimum
appears to exist around g = 5. The average value of K. obtained for 3=<¢g=<10 is
K. = (1.15+0.15) x 10~ 2 erg. It is essential to analyse a sufficiently large number of images
in order to probe all excitational states of the vesicle. By attributing the apparent incrase of
K. at g <3 to the influence of the surface tension, we determined values of ¥ for the
f =2 and f = 3 modes. These values were used below in order to correct the correlation
times in table II and are given there. In the present experiments, we analyzed at least 100
images in order to determine K, from the lowest order mode (f = 2). The average value of
K_ decreases with the number of contours analysed. That is the true bending elastic modulus is
given by the asymptotic values of K.

Figure 4 shows measurements of the bending modulus, K, as a function of the wave vector
q for DMPC containing 20 mole % and 30 mole % cholesterol. A qualitatively different g-
dependence as in figure 3 is observed. As in the case of pure DMPC, the K_-value for the
lowest order mode (¢ = 2) is larger than for ¢ = 3. However, at ¢ > 3, K_ increases again
with the wave vector. Below, this behaviour is interpreted in terms of a reduction of the high
order modes by the reduced flow of the bilayer.

20 K
K /10" erg

DMPC 30 C
18

16

14
12 ; 1
1

10
8 -
Mode q
6 T T T T T
0 2 4 6 8 10 12

Fig. 3. — Bending elastic modulus, K, of (most probably) single walled vesicle of DMPC as function of
wave number g characterizing the undulations of the vesicle contour. Vesicle radius ry = 9.91 pm ;
temperature 7 = 30 °C; 478 images taken at time intervals of 0.2 s were analysed.
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Fig. 4. — Bending elastic moduli of single walled vesicle of DMPC containing (a) 20 mole % and (b)
30 mole % cholesterol, respectively. Measuring temperature 30 °C. Case of figure 4a : 176 images taken
at time intervals of 0.2's were analysed ; vesicle radius was 9.88 pm. Case of figure 4b : 178 images
taken at time intervals of 0.25s were analysed ; vesicle radius 12.19 pm.

Figure 5 shows a summary of the average bending moduli of vesicles of DMPC. Altogether
26 vesicles were analysed. The ordinate of the histogram gives the number of cells yielding the
same K -value. Clearly, four groups with averages of K, = 1.1 x 107'2; K = 2.1 x 10~ 1%;
K,=3.1x10"'2 and K, = 4.1 x 10~'2 ergs are distinguished. The larger K_-values are
multiples of the minimum value. This leads to the conclusion that these groups correspond to
vesicles with shells composed of one, two, three, and four bilayers.

Figure 7 summarizes the values of the bending moduli of lipid bilayers determined in our
laboratory. The two more exotic lipids 1,2 di (5C,;-16:0)-PC and galactosyldiglyceride are
included in this figure. For comparison, we also give the value of K_ of erythrocytes measured
by direct Fourier analysis of the membrane excitations by reflection interference contrast
microscopy [11]. Each point corresponds to the measurement of one vesicle. The most
remarkable results are :

1) In several cases the measured K -values clearly form groups. The differences between
the average K -values of adjacent groups are equal to the lowest values of K_. Therefore each
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Number of Vesicles DMPC

S 10 20 30 40
Ko /107" erg

Fig. 5. — Summary of average values of K, measuréd for DMPC vesicles at 30 °C. The ordinate of the
histogram gives the numbers of vesicles exhibiting the same bending elastic modulus.

Autocorrelation of amplitudes

1.0
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1:3 = 0.68 sec
041 1:4 = 0.40 sec
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0.0 1
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Fig. 6. — Plot of auto-correlation function (v,(¢) v,(0)) of amplitudes of contour fluctuations for the
three lower order modes. The data points are fitted by single exponential functions using a least square
fitting procedure.

group of K_-values corresponds to a vesicle composed of a fixed number of bilayers. The
lowest values are attributed to single shell vesicles. This demonstrates the high degree of
accuracy of the present technique. The average values of the bending moduli of the single
shell vesicle are given in table I.

2) Cholesterol leads to a strong increase of the bending stiffness of phospholipid bilayers.
This corresponds well with the strong increase of the lateral area compressibility modulus
caused by cholesterol [13].
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Fig. 7. — a) Summary of bending elastic moduli, K, of vesicles of various synthetic and natural lipids
and of DMPC-cholesterol mixtures. On the right side the value of red blood cell membrane is shown.
The lipid C5-PC is a phosphatidylcholine (PC) with a branched chain. G-DG (= galactosyldiglyceride)
is a plant cell lipid with a high content of C = C-double bonds. Each point was obtained by evaluation
of one single vesicle. Note that the values for ‘DMPC, DMPC + 20 % cholesterol egg PC and C5-PC
form well separated groups. The differences between the average values of K, of adjacent groups are
equal to the lowest value of K. Thus each group corresponds to vesicles with the same number of
bilayers per cell. The lowest average K -values are summarized in table II. b) Structure of lipid C5-PC

and G-DG.
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Table I. — Summary of average values of bending stiffness of bilayers studied in present work.
Most remarkably is the low value of K. (= 5 kT) for the galactosyldiglyceride and the low value
for erythrocytes.

DMPC : K, = (1.15%0.15) x 1072 erg
DMPC + 20 % Cholesterol : K, = (2.1 £0.25) x 10~ 2 erg
DMPC + 30 % Cholesterol : K, = (4.0 +0.8) x 10~ erg
. Kc

KC

egg-PC = (1.15+0.15) x 10~ 2 erg
DMPC + C5-PC 1:1 = (1.7+02) x 10~ 2erg
G-DG K, = (1.5-4)x 10" Berg

Erythrocyte K, =(3-7)x10"Perg

3) Most remarkably is the very low bending modulus of the digalactosyldiglyceride, that is
about K, = 3 kg T. This is partially due to the low area packing density of this lipid. Judged
from accompanying monolayer studies (at the air water interface) performed in this
laboratory (H.-P. Duwe doctoral thesis) the area per molecule of this lipid is by about 30 %
larger (100 A/molecule) than for DMPC (65 A2/molecule).

4) Another remarkable aspect is the rather low bending modulus of the red blood cell
membrane. The lipid/protein bilayer of this composite membrane contains about 50 %
cholesterol and 50 % of its total mass is composed of integral proteins. One would thus expect
a tenfold higher value of K_.. In a forthcoming paper (K. Zeman and E. Sackmann, to be
published) we will provide evidence that the bending excitations may be determined by the
spectrin/actin network coupled to the bilayer.

4.2 CORRELATION TIMES OF MEMBRANE EXCITATIONS. — According to equation (4) the
dynamics of each spherical harmonic mode is determined by an exponential auto-correlation
function. Since the mean square amplitude of each contour excitation of wave vector q is the
sum over the mean square amplitudes |ay ,, |2, the auto-correlation function (v,(¢) v,(0)) is
also a sum over exponentials. However, it can be well approximated by a simple exponential
with the decay constant (reciprocal correlation time) w, = w, for the following reasons. First,
the lowest order term of each sum is ¢ = f (cf. Eq. (8)). Second, the correlation time
wy increases approximately with the third power of £ and the amplitudes ap ,, of the sums in
equation (8) decrease with the fourth power of f. The auto-correlation functions,
A,(7), of the three lowest order modes (¢ = 2, 3 and 4) of the contour fluctuations were
directly determined from the amplitudes v,(#) according to

1 N-7

A7) = g ¥ 0,(8) 0y, ) a4

n=1

where

1
S =ﬁ; |v,(£,)]>  and

N is the number of images evaluated for the calculation of the correlation function.

The auto-correlation functions thus determined are plotted in figure 6 for the three lowest
order modes (gq = 2, 3, 4). The experimental data can be well-fitted by a single exponential
function. The oscillations of the experimental plots of 4 4(?) are due to experimental errors
and/or slow Brownian motion of the whole vesicle during the measurement. The correlation
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times of the three lowest order modes are summarized in table II and compared with values
(denoted as theoretical in Tab. II) calculated from equation (5) with the measured values of
K, and the average vesicle radius ry. For ¥ = 0 one observes a systematic discrepancy between
calculated and experimental values. Good agreement is, however, observed for a value of
¥ = — 2.3. This value has indeed been obtained from the static experiment by fitting the
apparent value of K. for the lowest order mode (¢ =2) to the values obtained for
q = 3. We thus conclude that both the dynamic and the equilibrium model of the vesicle
fluctuation [7] agree well with experimental data.

Table II. — Comparison of experimental with theoretical relaxation times (2 wr ¢y = w{ ,,) for
modes q = 2 to q = 4 as calculated for y =0 and y = + 2.3. Vesicle radius Ry = 9.91 pm,
K. = 1.1 x 10~ 2erg ; water viscosity 7 = 1.002 mPs..

Relaxation time [s] T, T3 Ty

theoretical : v =0 .3.34 1099 043
theoretical : y = —2.3 | 2.45 ] 0.83 | 0.38
experimental : 2.5510.68 | 0.40

4.3 FREEZING OF UNDULATIONS AT THE L,-P,-PHASE TRANSITION. — Figure 8 shows the
temperature dependence of the mean square amplitudes of the second and third order modes
in the neighbourhood of the fluid-to-solid (L,-Pg-) transition of a DMPC bilayer vesicle.
Clearly, the higher order modes freeze at lower temperature than the second order excitation.
Thus at decreasing temperature the mean square amplitude of the = 2 mode starts to
decrease already at 24 °C whereas that of the £ = 3 mode remains essentially constant to
T = 23 °C before reduction sets in. This is largely a consequence of the reduction of the
vesicle area and the corresponding increase of the influence of the surface tension
(v). The gradual freezing of the long wavelength excitations well above the transition

1.2
Hm —o— .amplitude [=2

—e— amplitude =3

0 100 200 300 400 500 600
T=24% picture number n T=22°C

Fig. 8. — Plot of mean square amplitudes of 2nd and 3rd order modes of DMPC bilayer vesicle as a
function of temperature upon approaching the fluid-to-solid phase transition. The temperature varies
linearly between 24 °C at picture number n = 0 to 22 °C at picture number n = 600. The (chain) melting
(Pg-L,-transition) temperature of DMPC is T, = 23.8°C.
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temperature (7, = 23.8 °C) may be the origin of the precritical behaviour of the phase
transition.

4.4 HYPERELASTIC BILAYER. — An example of a drastic decrease of the membrane bending
modulus by solutes is shown in figure 9. If a small amount (about 2-5 mole %) of a bipolar
amphiphile (called bola lipid)

(0}
Il

0]
I
O—(CH,),—O
CH,0H—CH,—S— || o gCHg:i_og—S——CHzaCHZOH
[ i
(o) o)

is added to DMPC, the membrane undulations are drastically enhanced. As can be seen in
figure 9a, the contour is smeared which is a consequence of the very strong excitations of
undulations in the sub-micrometer regime. The amplitudes of these modes are considerably
larger than the half width of the contour intensity profile and a large number of these are
simultaneously excited which cannot be resolved.

In addition to these fast fluctuations of the membrane, one observes slow shape changes of
the vesicle which can also be seen in figure 9a (compare the first 3 pictures with the last 3).
Long time observations have clearly shown that these slow shape changes are periodic.

A rough estimation shows that for a vesicle of about 10 um radius, excitations of 5 um
wavelength (corresponding to £ = 5) exhibit amplitudes of about 1 wm. This yields an
approximate value of K, =~ 0.5kg T.

The very small bending stiffness and the large amplitudes of the undulations show that the
DMPC-bola vesicles exhibit a very small persistence length [14]. Therefore it may be expected
that these vesicles exhibit typical features of random surfaces (two-dimensional polymers)
[14]. In order to explore this aspect, we determined the radius of gyration of vesicles of
various size as a function of surface area at a temperature of 27 °C, that is, well above the
chain-melting transition. For this purpose the coordinates of 25 points which were equidis-
tantly distributed around the contour line of the vesicle were determined by image processing.
Then the radius of gyration of the two-dimensional vesicle image was obtained according to

- 1 N N ) 12
R = - R4 15
= (52 L 8) as

where R,-j is the distance between two points on the vesicle contour. We repeated this
procedure for 10 different pictures of each vesicle evaluated. With these values of
Rg, an averaged radius of gyration, R,, was calculated. Simultaneously the surface area, 4,
was measured as follows : The vesicles were cooled below the L,-Pg-transition where they
assume a spherical shape which allowed the determination of 4 from the vesicle radius. The
area, 4, at the temperature of the R,-measurement (27 °C) was obtained by assuming that the
bola-containing vesicles exhibit approximately the same change in area at the phase transition
(A4 /A =~ 20 %) and the same thermal expansion coefficient (@ = 7.22 x 103 per degree) as
normal DMPC vesicles. The DMPC-bola vesicles had an average excess area of 30 % relative
to the surface of a sphere of radius R,. The relative error of our measurements was 5 % for
R, and 9 % for A. .

In figure 9b the radius of gyration, R,, is plotted as a function of the vesicle area 4 in a
double logarithmic plot. Clearly the experimental data are well-described by a linear fit which
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Fig. 9. — a) Transient shapes of vesicles of DMPC containing 2 mole % of the bipolar lipid denoted as
bola lipid. The images were recorded from top left to bottom right. The time intervals between two
images is about 10 s. The temperature was 27 °C. b) Double logarithmic plot of projected radius of
gyration R, of DMPC vesicle containing 2 mole % of the bipolar bola lipid as a function of the vesicle
area A.

is confirmed by a coefficient of correlation of 0.99. From the slope of the straight line, one

obtains
2 0.94 +0.02
Ry oc A .

Thus R, scales as N%%***%92 where N is the number of lipid molecules.

5. Concluding discussion.

The present Fourier analysis of the shape fluctuations of vesicles allows the determination of
membrane bending elastic moduli to an accuracy of 10 %. In particular, shells composed of
different numbers of bilayers may be well-distinguished.

The detailed study of DMPC showed that the quasispherical model can describe the static
and the dynamic aspects of the membrane excitations well. The bending mode concept
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certainly breaks down at wavelengths comparable to the bilayer thickness (= 10 nm) where
the undulations are expected to be associated with lateral tension and with shear deformations
in the direction of the membrane normal [12].

The present measurements of cholesterol-containing lipid bilayers provide evidence that in
this particular case, the bending mode concept breaks down even in the optical wevelengths
regime. There are, of course, several reasons for the (anomalous) monotonous increase of
K, with £ :

(1) the decrease of thc correlation time of the undulations to values on the order of the
camera integration time (0.02 s), (2) the shear associated with the mutual shift of the opposing
monolayers, and (3) the lateral pressure arising in both monolayers if the lipid flow is too slow
to accommodate for the local density fluctuations. At the present stage of the technique, it is
not possible to distinguish unambiguously among these possibilities. Concerning the first
effect, we should like to point out that we did not observe the same monotonic increase in
K. for the multilamellar vesicles, even in the case of vesicles composed of four bilayers for
which K_ is increased by a factor of four. We thus favour the last effect for two reasons : first,
the lateral compressibility modulus is strongly increased by cholesterol (by a factor of four at
30 mole % cholesterol, [13]) and second, the lateral mobility is substantially reduced (by a
factor of about two at 30 % cholesterol).

Finally it is worth mentioning (1) that in mixed systems, one may also have a coupling
between undulations and phase separation [8, 14, 15] and (2) that strong evidence has been
provided that the fluid DMPC-cholesterol mixture exhibits phase separation between 10 and
30 mole % of cholesterol [16]. Thus phase separation may be another reason for the
anomalous behaviour of the K -versus-f plot of the DMPC-cholesterol mixture.

The remarkably low value of K, observed for the digalactosid diglyceride is surprising in
view of the fact that the area compressibility modulus reported for this lipid is similar to other
common lipids [18]. The correlation between bending and area compressibility modulus
suggested by micropipette experiments [17] holds well for other cases such as the cholesterol-
DMPC system. On the other side, the low K -value for the G-DG is expected from theoretical
considerations of Szleifer ez al. [19] who showed that K decreases drastically with increasing
surface area per molecule. As mentioned above the area per molecule for the galactolipid is
by about 30 % larger than for DMPC, and a considerably lower K -value is thus expected.
Since the bending stiffness depends also critically on the bilayer thickness [19, 20], extensive
studies of bilayers of various thicknesses and packing densities are required in order to clarify
this point.

Our value of K, = (1.15 + 0.8) x 10~ 2 erg for egg lecithin is about a factor of two larger
than the value reported by Faucon et al. [21]. Since the above value was the lowest observed
by us for this lipid, we assume that it corresponds to a single shelled vesicles. We do not have
an explanation for this discrepancy. On the other side, the value of the surface tension
(y = 1.5 x 10~ erg/cm?) reported by Faucon er al. agrees well with our data. Thus from
¥ = 2.3 for ry = 9.9 pum, we obtain y = 1.5 x 10~ erg/cm?>.

Recently, another technique for the measurement of bilayer bending stiffnesses was
reported by Bo and Waugh [22]. The value obtained by these authors for stearoyl-oleyl-
phosphaticlylcholine (K, = 2 x 10~ 12 ergs) is somewhat larger than for DMPC.

In contrast to cholesterol, many small molecules lead to a reduction of the bending
modulus. One example is pentanol which reduces the bending stiffness of DMPC bilayers
quite drastically as shown by Safinya et al. [20]. This has been attributed to a thinning of the
bilayer. A correlation between K, and the thickness of the bilayer has indeed been established
for the case of SDS—cosurfactant water mixtures [20].

One striking result of the present study is the dramatic effect of a very small amount of the
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bola lipid on the behaviour of DMPC vesicles. With respect to these systems the following
question arises : At large excess areas (of some 10 %) vesicles may undergo a blebbing
transition leading to the formation of tethers or chains of small vesicles which emanate from
the giant vesicles. Such a blebbing transition has been reported by Evans et al. for stearoyl-
oleyl phosphatidylcholine vesicles (E. Evans, private communication). In contrast, the giant
DMPC-bola vesicles can assume large excess areas without blebbing. One likely explanation
is that the bipolar lipid impedes the mutual sliding of the two monolayers which is required for
the formation of blebs.

On the other side, DMPC vesicles with bola lipid are unstable and eventually expel small
vesicles. These vesicles are completely and irreversibly separated from the giant mother
vesicle and swim away. After this process the mother vesicle eventually exhibits normal shape
fluctuations characteristic for DMPC. Therefore we conclude that the expelled vesicles are
enriched with the bola lipid.

Our scaling law Rg2 oc A%94+002 establishes a fractional dimensionality of the vesicle
surface. A fractional dimensionality of hyperelastic surfaces with K, = kT was predicted on
the basis of Monte Carlo simulation studies by Leibler et al. [14] for 2-dimensional vesicles
and by Baumgirtner (private communication) for the 3-dimensional case. The latter author
found an exponent of 0.8. The discrepancy of the latter result with our data is most probably a
consequence of the differences in the boundary conditions. For vesicles the volume V is
essentially constant while in the Monte Carlo studies ¥ is considered as variable. Another
reason for the discrepancy may be attributed to the fact that we can measure only the
projected radius of gyration.

A very interesting phenomenon exhibited in figure 9a is the slow and reversible transition
between a more prolate and a more oblate average shape. Such slow and reversible transitions
have been observed for several DMPC-bola vesicles. The response time of these slow shape
changes may vary between one and some 20 minutes. These ultraslow shape fluctuations may
thus correspond to the Goldstone-like modes predicted by Peterson [6] and Milner and Safran
[71.

As follows from figure 5 the lamellarity of giant vesicles may be determined by
K_-measurements. In principle the lamellarity of vesicles can also be determined by optical
contrast measurements [23]. However this method requires high-precision measurements of
absolute contrasts if vesicles from different preparations have to be compared as in our
studies. Moreover, small enclosed vesicles present in most cases may introduce large errors.
For these reasons this technique was not followed further after some initial attempts. In
contrast, the undulation analysis by the present technique allows absolute measurements of
the lamellarity, provided the value of K is known.

The effect of the shear associated with the monolayer-monoléyer slip depends on their
coupling strength. Lateral diffusion measurements on supported bilayers [18] provide
evidence for such strong coupling effects. The impeded monolayer slip certainly comes into
play in the 100 nm regime as shown by the following consideration: According to
equation (5) and tableII, the relaxation time of the undulations is of order f is
7 = 10 x 1073 s for a vesicle of 7y = 10 pm, whereas the undulations wavelengths A scale as
A =2 wry/l. On the other side, the reciprocal jump frequency of the lipid lateral Brownian
motion is =~ 10’ s~ !. Thus the monolayer-monolayer shearing is expected to become essential
for { = 1500 or for undulation wavelengths of =< 50 nm.

Very recently we performed coherent quasielastic neutron scattering experiments of
oriented multilamellar DMPC systems (at a hydration of 20 % water) by the Spin-Echo
technique in the wave number regime 0.03 < ¢ <0.11 A-! (W. Pfeiffer, E. Sackmann and
D. Richter unpublished results). Surprisingly we find that the correlation time = (reciprocal
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line width wy,, of the dynamic surface roughness) scales as g*3 to ¢°, that is, similar as in the
optical wavelength domain. However the value of K_ corresponding to the measured line
width would be an order of magnitude smaller than expected. These short wavelength
excitations may thus be of different origin.
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