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Resume. 2014 Nous montrons que les fluctuations de concentration dans une phase smectique
formée de lamelles de surfactant d’epaisseur w, séparées de couches fluides isotropes, sont
dominées par le froissage des lamelles lorsque (w/l)2 ~ 1, (l periodicite de la structure). Nos
résultats sont fondés sur une généralisation de la théorie d’Helfrich, dans laquelle le taux de

froissage k-2, les densités 03C1s et 03C1b du surfactant et du fluide sont susceptibles de varier. Dans la
limite « incompressible » où 03C1s, 03C1b et w sont fixés, les fluctuations de concentration à l constant
sont déterminées entièrement par k-2, et le rapport du module de compression des couches à
concentration constante (mesuré à « haute fréquence ») sur celui à potentiel chimique constant
(mesuré à « basse fréquence ») est d’ordre (03BA/T)2 (l 2014 w)2/l2 où 03BA est le module de courbure
des lamelles et T la température. Nous montrons que les corrections à la limite « incompressible »,
liées aux fluctuations de w sont d’ordre (w/l)2 (03BA/U) où U est une énergie moléculaire.
Abstract. 2014 We study relative concentration fluctuations in two component lamellar smectic
liquid crystals consisting of surfactant layers of width w separated by a background fluid and show
that these fluctuations are dominated by crumpling fluctuations of the surfactant layers when
(w/l)2 ~ 1 where f is the average layer spacing. Our results are based on generalizations of the
Helfrich theory in which the crumpling ratio k-2, densities 03C1s and 03C1b of the surfactant and

background fluid, and w as well as l are allowed to vary. In the incompressible limit with
03C1s, 03C1b and w fixed, concentration fluctuations at constant f are determined entirely by fluctuations
in k-2. In this limit, the ratio of the high-frequency, constant concentration compressibility
modulus B to the low-frequency, constant chemical potential modulus B is of order
(03BA /T)2 (l2014 03C9)2/l2 where k is the layer bending rigidity and T is the temperature. We show that
corrections to the incompressible limit arising from fluctuations in w are of relative order

(03C9/l)2 (03BA/U) where U is a molecular energy.
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1. Introduction.

Lyotropic smectics [1] are lamellar phases consisting of stacks of regularly spaced fluctuating
fluid membranes separated by a background fluid of oil (or of water). The separation between
membranes can be as large as hundreds or even thousands of angstroms [2-10]. The
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membranes consist of bilayers of surfactant molecules, possibly enclosing a thin layer of water
(or oil). Thus, unlike thermotropic smectics, lyotropic smectics are necessarily multi-

component systems with at least two conserved masses and correspondingly at least one
hydrodynamic mass diffusion mode. In this paper, we will generalize Helfrich’s theory [11, 12]
of sterically stabilized lamellar phases to include density as well as layer fluctuations in a two
component smectic. Our principal new result is that changes in the degree of crumpling of
membranes (depicted schematically in Fig. 1) at constant density of material in both the
background fluid and surfactant layer are the dominant cause of relative density fluctuations
at constant layer spacing when the ratio w If of the width w of the surfactant layer to l is
small. Such changes in surfactant volume fraction can be described mathematically in terms of
the crumpling ratio [13] specifying the inverse ratio of the area of a membrane surface
element to its area projected onto a plane parallel to the average layers.

Fig. 1. - Schematic representation of how changes in the degree of crumpling of a surfactant layer lead
to changes in the relative surfactant density. The crumpling ratio k2 equation (2.1) is the ratio

AB /A of the projected area A B of a membrane to its total area A. (a) shows a surfactant layer with
k2 near one. (b) shows a similar layer but with greater total area and thus smaller k2. The relative
surfactant concentration in (a) is larger than in (b).

The conserved variables of a two component smectic [ 14-16] are the energy density E, the
density Pb of the background fluid (water or oil), the density fis of the surfactant, and the
momentum density g. In addition, the strain Vzu = dl/l expressing the change 8 Q in layer
spacing f from equilibrium is a broken symmetry elastic variable. The variables entering
naturally into the two-component smectic hydrodynamics are a, ozu, the total mass density,

and the relative density,

To obtain a complete description of all hydrodynamic modes, one needs to know the free
energy to second order in all of these variables. At low frequencies, one may assume that both
the background fluid and the surfactant layers are incompressible, i.e., that the local density
p b of the background fluid and the local density p and width w of the surfactant layers are
constant. In this case, it is sufficient to consider the free energy density
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Here z is the direction normal to the smectic layers, X is the relative concentration

susceptibility, Ce a strain-concentration cross coupling, and B the layer compression modulus
at constant relative concentration which determines the velocity of second sound,
c2 = (B/p) 1/2. In our present thermodynamic analysis, we may assume that u(x) is

independent of coordinates x1 perpendicular to the z axis, and we ignore the bending term
KI (01 u )2/2 in f. This term is, or course, needed to describe spatially nonuniform distortions
of the smectic. Fluid membranes are characterized [ 12] by a bending modulus K with units of
energy. All of the coefficients in equation (1.3) can be calculated in a controlled expansion in
the ratio T/ K of the temperature T to the bending modulus. To lowest order in

T/ K , we find

B is related to the static or constant chemical potential modulus,

calculated in the Helfrich theory [6,11-14,17] via the thermodynamic identity,

Thus B = B - XC2c; is determined by corrections to the leading order terms in T/ K in B,
X, and Cc. Equations (1.4) and (1.5) imply

Our calculations-yield A = 256 / [3 - (12/ 03C02)] _100. B /É should be approximately indepen-
dent of f for i » w. In addition, B /B can be quite large ( ~ 400 ) even for experimentally
realizable values of K / T of order 1.5 or 2.0.
We have also calculated the contributions to B, X, and Ce arising from a nonzero

compressibility of surfactant layers (i.e., by variations in w considered in Ref. [16]). We find
when wu that these are smaller than those arising from steric repulsion and crumpling by a
factor of order (w If)2 (K 1 U) « 1 where U is a molecular energy that is expected to be of
order K or greater.
This paper contains four sections in addition to this one. Section 2 reviews the ther-

modynamics of stacks of membranes. Section 3 presents the calculations of B, Y, and

Ce using the Helfrich theory. Section 4 outlines how the Helfrich theory can be generalized to
include variations of parameters such as the densities of the surfactant and of the background
fluid and calculates the corrections to B, X, and Ce arising from a nonzero layer
compressibility. Section 5 reviews our results and discusses their relevance to the hydrodyn-
amic mode structure discussed and measured in reference [16].

2. Thermodynamie potentials.

In the Helfrich [11, 12] theory of lamellar phases, fluid membranes are sterically confined by
their neighbors to fluctuate about some average surface. One can, therefore, model the
smectic as a stack of identical, hard-walled cells of height f and base area A B in which a single
flùid membrane fluctuates. The total area A of a membrane is in general greater than
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A B (as shown in Fig. 1). A measure of the degree to which a membrane is crumpled’ is
provided by the crumpling parameter [13]

The surfactant and background volume fractions are respectively w (k -2/ f) and

[1 - w(k - 2/f)] ] so that the mass density of the surfactant and the background fluid are,
respectively,

Note that the average mass densities Ps S and Pb differ from the local densities p s and

p b, and they can change at constant p S, p b, and w in response to changes in k- 2 and f. The
relative concentration is

so that

at constant pg, Pb, and w where a = p Pb/p-’2. Thus, in this limit, changes in c are determined
entirely by the ratio,

of the inverse crumpling ratio to the layer spacing.
The function f(Vzu, c ) is most directly obtained by calculating first the thermodynamic

potential that is a function of the variable a- conjugate to c’ and then Legendre transforming.
We begin by reviewing definitions of the various thermodynamic potentials [13] that can be
used to describe a fluctuating nearly flat membrane. A nearly flat membrane is characterized
by two extensive parameters : its total area A and its projected area A B. The thermodynamic
potential

satisfies (at constant f)

where

is the surface tension and h is the field conjugate to A B. The energy per unit volume of a stack
of membranes separated by a distance f is simply
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The free energy f (Eq. (1. 3» is the part of f 1 harmonic in dl and 8 c = aw8 c’. Note the effects
of a finite width of the membrane are described by replacing f by f - w in l/J 1. Other
membrane potentials can be obtained from 0 1 via Legendre transformation. In particular,

Changes in l/J2 at constant f satisfy

so that

Thus, the surface tension cr, is the variable conjugate to k- 2. In analogy with equation (2.9),
we introduce the free energy density,

which satisfies

where a i is the force conjugate to the layer spacing which is zero in equilibrium. Thus,
fi (f, c’ ) is the Legendre transform Of f2:

1 (V zU, 8 c ) is easily obtained from equations (2.15) and (2.5).
In the next section, we will calculate 12(f, u) to lowest order in T/ K using the Monge

gauge for the fluid surface. As discussed in reference [13], the short length cutoff is treated
more consistently in a gauge in which A rather than A B is fixed. This leads more naturally to
the potential 13(f, h) = 4J3/(fA) rather than 12(f, u). The latter is, however, easier to
calculate and suffices for our purposes.

3. The harmonic free energy.

In order to calculate ’02(0-, Q ), we follow references [ 18] and [13] and replace the hard wall
constraint by a global constraint on f. In the Monge gauge where the membrane position is
R = (x1, h (x1 )) where x1 - (x, y), the membrane Hamiltonian is

where and n = gaz2(- 01 h, 1 ) is the unit normal to the surface. The
projected area of the membrane is the area of the domain of integration in the
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xy plane and remains fixed in this calculation. The free energy density associated with H is,
therefore,

The mean square height is

where » is a phenomenological parameter introduced by Helfrich [1]. The free energy
P2(u, f) is the Legendre transform of ~ 2 : 1

To obtain ~ 2 at low temperature (small T/ K ), wu can expand H to harmonic order in h.
Higher order terms in h give rise to subdominant corrections in T/ K , which for example lead
to a softening of the effective bending modulus [19-23]. They will not concern us here. In this
case,

and

where A is the ultraviolet wavenumber cutoff and where KA 4&#x3E; y, uA 2 and Ky &#x3E; a 2. Using
equations (3.7), (3.3), and (3.4), it is straightforward to derive (apart from an irrelevant
constant)

where

and

Then using equations (2.13) and (2.15), we find
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In the absence of external stresses, 8 fj /ô t = 0, and we find

Using equations (3.10), (3.12), and (1.3), we obtain

It is straightforward to verify using equation (1.6) that

in agreement with references [6] and [11]. Equations (3.14) and (3.13a) yield equation (1.7)
for BIÉ. Note that jS/2? is independent of the phenomenological parameter g. Note also that
BX =a 2 w 2 (rl t )2 to lowest order in T/K. Thus, to this order, BX = c 2 if w  f.

4. Generalization to more variables.

In the last two sections, we treated changes in relative concentration brought about by
changes in layer spacing and the crumpling ratio. In this section, we will outline a

generalization of Helfrich’s theory which can take into account the effects of variations in
P S, Pb, W, f, and temperature T. This theory can be used to calculate all thermodynamic
derivatives appearing in the linearized hydrodynamics of the lamellar phase. As a particular
application of this approach, we will outline how the results of the previous sections can be
corrected for a nonzero layer compressibility. When w « f, these corrections are of relative
order (K / U) (w / f)2 to lowest order in (T / K), where U is a molecular energy which is of
order K or larger. They are thus subdominant compared to already neglected corrections of
relative order ( T/ K )2 when ( w/Q )2  ( T/ K )2. They may, however, become important when
(w /f ) = (T/K ) as may be the case in systems such as those studied by Safinya et al. [6] in
which the Helfrich theory appears to be valid for ratios w/Q as large as 2.9/5.8 = 0.5.
There are four hydrodynamic variables, p b, P s, ,, and f, that are even under time reversal.

The susceptibility matrix involving all of these variables can be obtained from a free energy
density g that is a function of the background fluid and surfactant chemical potentiels,
a b and as, the temperature T, and the force ai conjugate to f. To construct g, we first
construct the layer free energy density,

Here Ibis the free energy density of the bulk background fluid and w 1 s is the free energy per
unit area of the surfactant layer. f is the Helfrich free energy, calculated in the last section
(Eq. (2.9)) but with variations in w and temperature dependence of K permitted. The free
energy g ( a b, a,, a t, T ) is obtained by minimizing
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over p b, Ps’ w, c’, and .l . 
’

As an application of the above development, we consider incompressible surfactant and
background fluids (p S and p b fixed) at constant temperature and calculate corrections to X, B
and Cc arising from variations in w. For each T, p b, Ps, there is a preferred layer width
wo, and we can expand [16] w f S as

The parameter D has units of (energy)/(length) [4] and should, thus, be of order

U jw4 where U is a molecular energy that should be of order or greater than K. To calculate
B, and Cc, we consider the function

where a = (ac, a f), TI = (w, c’, f ) and g is defined in equation (4.2). Let t = (c, l ). Then
the susceptibility matrix is

where summation over IL, JI = 1, 2, 3 is understood and where

When f &#x3E; w, it is straightforward to show that

where

The coefficients x, Cc, and B are obtained from Xij calculated according to the above
prescription from

After some very tedious algebra, we find
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where the quantities at D = ao are those evaluated at fixed w in the preceding section and
where

We have retained only the lowest order terms in T/ K in both equations (4.9) and (4.10). The
molecular energy U should be of order T so that s « 1 if w /Q  1 even if T/ K approaches
one.

5. Summary.

In this paper, we have considered coupling between fluctuations in relative surfactant

concentration c = Psi P and the strain Vzu in lamellar lyotropic liquid crystals stabilized by the
Helfrich steric repulsion between surfactant layers when the densities p S and Pb of the
surfactant and background fluid and the width w of the surfactant layers are fixed. In this
incompressible approximation, relative concentration changes are controlled by changes in
k- 2/j@ the inverse crumpling ratio divided by the layer spacing. We generalized the Helfrich
theory to treat fluctuations in both k- 2 and f, and we calculated both the low-frequency,
constant chemical potential and the high-frequency, constant relative concentration compres-
sion moduli, B and B. The ratio B/B is proportional to (K 1 T)2 (f - w )2 1 f2 with a
proportionality constant of order 100. Thus, in this incompressible limit, B/B is much greater
than one and depends only weakly on f when w « f. We also generalized the Helfrich theory
to allow for changes in pg, p b, and w as well as in k - 2 and f. We then fixed

p and p b and calculated the contributions to B and È arising from the finite compressibility of
w. We found these contributions to provide corrections to the incompressible theory of
relative order (W/f)2 ( K 1 U) where U is a molecular energy. Thus, crumpling fluctuations are
the dominant source of concentration fluctuations at constant f so long as (Wl)2 « 1 if

U -K. Layer compression can become important, however, when (w If)2 is not small

compared to one. The Helfrich theory provides a good description of the systems studied by
Safinya et al. [6] for values of (w If)2 as large as 1/4. Such systems may, therefore, be in a
crossover region between crumpling dominated and layer compressibility dominated concen-
tration fluctuations. Layer compressibility should be unimportant in large layer spacing
systems such as those studied by Porte et al. [6].

Nallet et al. [16] have derived the dispersion relations for the low frequency modes of an
incompressible lyotropic smectic and measured the frequency of one of these modes. The
nature of this mode depends on the orientation of its wave vector q = (qx, q y, qz) relative the
layer normal along the z-axis. Assuming temperature fluctuations relax quickly, there are four
other low frequency modes. If q = (qx, 0, 0 ), the four modes are two shear modes with

frequency ws = 2013 1 ( q /#) qjj an undulation mode with frequency w u = - 1 (K / q ) qx, and a
relative density mode with frequency {ù c = - i ( a .1 1 p2 X) q; where q is a viscosity,
K = K /f is the splay elastic constant, and à 1 is a dissipative coefficient. In the relative
density mode, variations in c are decoupled completely from those of u and the transverse
velocity. The structure of these modes is independent of any detailed model for the smectic.
Nallet et al. identify the relative density mode as a membrane peristaltic mode [24] in which
the thickness of the surfactant bilayer is modulated in time. We find, however, that relative
density variations are dominated by variations in k- 21 e rather than by bilayer thickness
variations. Since at qz = 0, there are no variations in V zu = 8f If in the relative density mode,
wè believe it would be more appropriate to refer to’this mode as a crumpling mode in which
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density fluctuations relax via modulation of the local crumpling ratio. When bôth

qx and q, are nonzero, there is a second sound mode with positive and negative frequencies
:t (B 1 p) 1/2 q x q z and a density or baroclinic mode with frequency W b =

- i ( a 1 / p 2 ) (B/XB ) qx when q, « qz. Again these dispersion relations are independent of
any particular model for the lamellar phase. In the model presented in reference [ 16] in which
density fluctuations are dominated by fluctuations in bilayer thickness, X B = c 2. The same
relations applies to the crumpling ratio dominated theory presented here when ( w /l ) 1 and
T/ (4 ’W K ) « 1 as discussed after equation (3.14). The experiments presented in reference [16]
verify that both co u and (JJb are proportional to qx In addition, they show that both

w u and (JJb vary as f-l at fixed q. The first result is in accord with an f-independent viscosity
and K = K /t. The second follows from BX = c 2 1 the Helfrich expression for B, and the
prediction by Brochard and de Gennes [ 15] that a  / (p-C) 2 _ (f - w)2. Thus the experimental
results of reference [16] are in agreement with the theory presented here, which predicts
BX = c 2 to a good approximation. They do not, however, provide independent measurements
of B, X, and Ce which would be needed for a verification of our predictions.

It would be of some interest to carry out further experiments to verify the predictions made
here. Perhaps the most direct check would be provided by a measurement of the frequency
(w c = - i (a .1. 1 p2 X) qx of the density mode at q z = 0. Then the ratio of the coefficients of

qx in the density mode at qz = 0 and the baroclinic mode at q2x  q2Z is simply the ratio,
B/B, which in the present theory is given by equation (1.7). Alternatively, of course, second
sound measurements with q of order 102 cm-1 

1 should provide a direct measurement of B.
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