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Institut für Physikalische Chemie, Johannes Gutenberg Universität, Jakob Welder Weg. 11,
D6500 Mainz, F.R.G.

(Reçu le 13 septembre 1989, révisé le 5 janvier 1990, accepté le 17 janvier 1990)

Résumé. 2014 Les profils des réflexions de Bragg provenant d’une couche de Langmuir-Blodgett
sont dérivés selon trois modèles plausibles de l’organisation moléculaire : une phase polycristalline
à ordre orientationnel de longue portée; un paracristal possédant une densité de défauts
ponctuels qui ne dérangent pas les rangs moléculaires ; et une phase smectique hexatique du type
Nelson et Halperin dans la limite « Debye-Hückel » où les interactions entre les dislocations sont
faibles. Les trois prévisions sont nettement différentes l’une de l’autre. Des résultats expérimen-
taux à température ambiante sont présentés pour des couches de Langmuir-Blodgett fabriquées à
partir d’un lipide, le DMPE, et du sel de cadmium d’un acide gras insaturé, le 22-tricosénoïque.
Seule la théorie de Nelson et Halperin donne un accord satisfaisant, malgré des deviations qu’on
peut attribuer à des défauts du type paracristallin ou à un comportement non ergodique de la
couche. On en déduit des densités de dislocations de l’ordre de 10-4 à 10-5 par molécule.

Abstract. 2014 The profiles of the transmission diffraction spots from a Langmuir-Blodgett film of
aliphatic chain compound are derived from three plausible models of molecular organisation : a
polycrystalline phase with long-range orientational order; a paracrystal possessing a density of
point defects which do not interrupt the lattice rows ; and a Nelson and Halperin hexatic smectic
phase in the «Debye-Hückel» limit of weakly-interacting dislocations. The three resulting
predictions are distinctly different. Experimental results are presented for the room-temperature
diffraction patterns from Langmuir-Blodgett films of a lipid, DMPE, and the cadmium soap of a
fatty acid, 22-tricosenoic. Only the Nelson and Halperin theory gives a satisfactory fit, although
there are deviations attributable to paracrystal-type defects or to non-ergodic behaviour of the
layer. Dislocation densities of between 10-4 and 10-5 per molecule are deduced.
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1. Introduction.

Electron diffraction has been used since the 1930s [1, 2] to investigate the molecular packing
on the nanometre scale in the organic films deposited by the Langmuir-Blodgett (LB)
technique. The diffraction patterns obtained contain a number of discrete spots, which in
these and subsequent studies [3-7] have been interpreted in terms of a crystalline packing of
the molecules. 
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While the crystalline hypothesis has the advantage that many such materials are known ànd
that the theory of their diffraction patterns is well understood, it has never been completely
satisfying as an explanation of LB film diffraction results. Ideal crystals produce sharp
diffraction spots, even in the presence of thermal disorder : the effect of an equilibrium
distribution of phonons is to reduce the peak intensity (by the Debye-Waller factor) and to
introduce a smooth scattering background, without any peak broadening [8]. In contrast, the
reflections from LB films generally display peak broadening as well as arcing, a fact which was
first brought to attention by Fischer and Sackmann [9], and subsequently by Garoff et al. [10].
In the usual case of a polycrystal, the distribution of grain orientations is isotropic, and the

diffraction pattern consists of Debye-Scherrer rings. In contrast, reflection high-energy
electron diffraction studies of LB films typically show a fibre pattern. This is normally
considered to arise from polycrystalline aggregates with statistical fluctuations about a

preferred molecular orientation (the fibre axis) [11].
An additional feature of the diffraction patterns from LB films is that the number of

reflections is much smaller than that obtained from single crystals of molecularly similar
materials [11]. The missing diffraction spots are those of high order. This may also be ascribed
to fluctuations in molecular orientation or position, and indicates that their correlation length
is small.

The observation of localised peaks of diffraction intensity in spite of these fluctuations of
molecular positions and orientations indicates the presence of orientational order of the
lattice extending over much larger distances. Information about this can be obtained more
conveniently using polarised microscopy. In recent studies of LB films of the fatty acids and
soaps [12], textures typical of hexatic smectic mesophases have been reported. These are
characterised by a continuous variation of the preferred optical axes at almost all points. At
some points, the orientation of the optical axes changes much more rapidly than elsewhere,
forming a pattern of lines similar in some respects to grain boundaries. However they do not
enclose « domains » of constant orientation, and most are open (i.e., have two ends), without
Y-junctions. The change of orientation across these lines is equal to 60° within experimental
error, and the resulting diffraction patterns which can be indexed as arising from grains
differing in orientations by 60° have been ascribed to « hexagonal twinning » [13]. The ends of
the lines of discontinuity have been identified as the orientational defect structures known as
disclinations [14-16]. Taken together, the observed details of the texture imply complete loss
of translational correlation within optically-resolved separations in all directions within the
monolayer plane (as in a liquid), while correlations of the lattice orientation are retained to
much greater distances, typically tens to hundreds of ktm.

It is of more than academic interest to understand the physical basis for the differences
between crystalline and smectic behaviour, because in attempts to apply LB films in practical
applications, characteristic smectic textures appear to be responsible for many of the

departures from desired behaviour [17, 18]. Moreover, one of the commonly expressed aims
of LB research is « molecular electronics » [19], where the local environment of each and
every molecule is expected to be important. Since the diffraction pattern is readily accessible
and produces distinctly different results with crystalline and smectic materials, it seems
reasonable to test theories of molecular order in these phases against their predictions of the
diffraction pattern.

It is well known that the interaction of electrons with matter is very strong, and the
possibility of multiple diffraction (or dynamical scattering) must be very seriously considered
in any detailed correlation of a structure and the resulting diffraction pattern. However
Dorset has shown [20] that the single-scattering (kinematic) approximation holds well for
crystalline sample thicknesses of less than 7 nm, while in recent work with liquid crystal
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polymers it has been shown both experimentally [21] and theoretically [22] that the kinematic
approximation is valid for sample thicknesses of a few tens of nm. Hence for the case of
organic monolayers thinner than 3 nm supported on an amorphous substrate less than 20 nm
thick the kinematic theory is quite adequate.

In the present work, three possible models of molecular organisation are analysed using the
kinematic approximation. Each is plausible, and has at some time been proposed seriously to
describe the order in smectics or LB films. The first is a polycrystalline texture, in which
regions of defect-free crystal with constant orientation (« grains ») are separated by sharp
boundaries. This is the model implied by the normal nomenclature used in diffraction studies,
which was developed for inorganic materials. In order to make this model conform with the
observed long-range orientational order in LB films, it is necessary to assume that, as a result
of some mechanism, the orientations of neighbouring grains are highly correlated.
The second is the Nelson and Halperin (NH) theory of hexatic smectic mesophases, which

has in previous papers [14, 15, 23] been proposed as a model for fatty acid LB organisation.
Unfortunately, although Nelson and Halperin have extensively analysed the expected elastic
and thermodynamic properties of these phases [24-27], and have derived functions related to
scattering, nowhere in their work do they directly derive the diffraction pattern. This

oversight is rectified in the present paper for the physically plausible « Debye-Hückel » limit
of weakly interacting dislocations.
The third model is a paracrystalline model of disorder [28]. Historically, the paracrystal

concept proposed by Hosemann and Bagchi was the first attempt to explain the diffraction
spot broadening encountered with many organic materials, and was developed from plausible
models of lattice disorder in one dimension [29], assuming that, unlike the case of inorganic
materials [30], dislocations can be ignored. Unfortunately for this theory, dislocations have
recently been observed directly in organic thin films [21], and there is no theoretical

justification for « Gaussian error propagation » in two or more dimensions. The original
formulation has been ably and definitively criticised by Bramer and Ruland [31], and by Crist
and Cohen [32]. Although there are sufficient free parameters in the theory to fit the variation
of spot widths observed from many organic materials, they pointed out that the predicted
small-angle scattering does not correspond to experiment. Hence there are no grounds for
believing that the parameters extracted for a particular material provide any insight into its
local molecular organisation.
Although Hosemann’s version of paracrystal theory can therefore no longer be taken at

face value, it does address a real phenomenon which is ignored in the NH theory. Hosemann
considered line broadening to be due to defects such as vacancies, chain kinks, impurities,
random crosslinks, or regions of different but near-commensurate molecular packing, whose
overall Burgers vector is zero, and it is clear that defects of this sort exist. The NH model
treats only the effects due to dislocations.
The methods used in the NH theory indicate how the underlying physical assumptions of

the Hosemann model might be treated correctly in two dimensions. The defective assumption
of « Gaussian error propagation » must be replaced by the self-évident one of mechanical
equilibrium. The resulting analysis of the modified model is presented here. As in the NH
model, the lattice is assumed to be mechanically isotropic, an assumption which is exact for
hcp packing.

Finally, the diffraction patterns predicted by each of these models have been compared to
experimental results. Two monolayer-forming substances were investigated, in case a

particular substance should turn out not to be typical. For this reason also, an attempt was
made to select substances from different categories, although the selection could not be
entirely at random, because NH model predictions are only available if the lattice is
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hexagonal close packed. Two substances were chosen : firstly, a biological lipid, dimyristôyl
phosphatidyl ethanolamine (DMPE) ; and secondly, the cadmium soap of a long-chain
unsaturated fatty acid, 22-tricosenoic acid (Cd 22TA). Molecules of both substances are
similar in possessing long aliphatic chains as an important structural feature, although the
number of chains per molecule and the details of the hydrophilic headgroups are quite
different.
Provided that the predictions of the three models differ by more than the experimental

error, then agreement of one of the models with the measured value can be taken as a
criterion of validity. Conversely, if the prediction of a given model disagrees with the
measured value by more than the experimental error, then this can be taken as grounds for
rejecting it. However in this case it must also be considered whether the model can be

plausibly modified to bring its predictions into line with observation.

2. Experimental.

The LB deposition was performed using either a Lauda type FW-1 analog-controlled trough
or a Nima type TKB 2410 A computer-controlled trough. The subphase water was purified
using a Milli-Q recycling deioniser/active charcoal/filter unit fed with distilled water. For the
deposition of cadmium tricosenoate, 1.4 x 10- 4 M CdCl2 and 10- 4 M NaHC03, both Merck
p.a. grade, were added. Spreading solutions of both DMPE and 22-tricosenoic acid of
approximately 1 g/1 concentration were prepared in freshly purchased p.a. grade chloroform.
The 22-tricosenoic acid was synthesised as described previously [33] and was found using
NMR to contain 1.5 % of the 21-isomer. The DMPE was purchased from Merck and was used
without further purification.

Hydrophilic Formvar-coated electron microscope grids were prepared using a technique
described previously [34, 35]. Using an optical interference technique described elsewhere
[36] the thickness of the Formvar film was determined to be typically less than 20 nm. These
were coated with monolayers of DMPE at a surface pressure of 27 or 39 mN/m, or with
cadmium tricosenoate at a surface pressure of 35 mN/m, both at a withdrawal speed of
83 pm/s and temperature of 20 ° C.

It is well-known that radiation damage poses a serious problem in electron microscopic
studies of materials consisting largely of aliphatic chains [37-39]. Beam damage leads initially
to spot broadening and, in extreme cases, the lattice expands measurably, inducing a phase
change from an orthorhombic to a hexagonal subcell packing [40, 41]. For this reason the
electron diffraction patterns were all obtained under low-dose conditions. Changes in the
diffraction patterns were detectable after four times the standard exposure.
Transmission electron diffraction patterns from the Formvar-coated grids were obtained in

a Philips EM300 electron microscope at normal beam incidence and calibrated against an
evaporated thallium (I) chloride sample. The accelerating voltage in all cases was 80 kV. The
sample area contributing to the diffraction pattern corresponded to one hole of an electron
microscope grid, i.e. approximately 100 pm in diameter. The images were recorded on Ilford
PANF film and developed using Kodak D19 developer for 5 min. Two-dimensional scans of
optical density of the resulting negative were obtained using a Plumbicon camera whose
output was digitised and stored in computer memory as a 512 x 512 array of 8-bit brightness
values.
The coordinates of the undeviated beam centre were determined by averaging those of the

six (100) diffraction peaks. The small linear shift in baseline caused by nonuniform
illumination of the negative was subtracted, as was the circularly-symmetrical scattering
background from the Formvar substrate. -
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All processing subsequent to background subtraction involved least-squares fitting to

theoretical peak profiles. Almost all previous studies have investigated the fit to the one-

dimensional Lorentz profile (1 + ar2)-1. However in appendix D it is shown that in two

dimensions, exponentially decaying correlations lead to a (1 + ar 2)- 1.5 behaviour. A variable
exponent was therefore included in the program, with the advantage that the Gaussian case is
given by the limit of large exponent.
To obtain a contour plot, the digitised intensity values cannot be used directly because they

are not defined at a continuum of points. To derive the plot of figure 2, the background-
corrected values were convolved with a smoothing function S(x, y) defined by :

when

otherwise,

where the coordinates x and y are expressed in pixel units. The resulting intensities at the
pixel centres differ minimally from the original measurements, but in addition are defined at
all intermediate points with continuous first derivatives, so that the directions of the contour
lines vary smoothly. The smoothed function was not used in any of the model fitting
procedures.
The histograms of figure 3 were obtained by summing normalised Gaussians for each peak

measured (18 in each case) with a mean equal to the observed axis ratio and a standard
deviation equal to that for the measurement. To determine the aspect ratio of a peak, all the
pixel values immediately surrounding it in the range from 20 % to 100 % peak height were
least-squares fitted to the theoretical function with the intermediate value 5 for the exponent.
To determine its standard deviation, the variances due to Gaussian fluctuations in each pixel
were added, assuming essentially linear dependence on each of the pixel values. The standard
deviation of each pixel was conservatively taken equal to the entire rms difference between
the measured values and the best fit function, i.e., assuming no systematic error.
To determine which profile was a better fit to the (100) reflections (Fig. 5), the least-

squares fit routine considered all pixel values within a square of side equal to three times the
typical full-width half-maximum (FWHM). The goodness-of-fit criterion was taken to be the
value of rms error. Due to the low-dose exposure, the silver density in the film was small. No
evidence for saturation of the film response was observed, and in consequence no

compensation for nonlinearity was applied. It should be noted that any residual nonlinearity
will tend to favour the Lorentzian fit relative to the Gaussian.

In tables 1 and II, each value of radial peak width FWHM given is the mean of the six values
FWHM, from the corresponding sample. The value quoted for its standard déviation was
calculated from the N = 6 values using the usual statistical formula :

3. Results.

3.1 THEORETICAL. - The theoretical spot profiles for the polycrystalline, Nelson-Halperin
(NH) and paracrystal models are derived in appendices A, B and C respectively. The
predictions can be classified into three distinct aspects, concerning the aspect ratio of the spot
contour, the profile of radial sections through the spot, and the relationship between the spot
widths of different diffraction order, respectively.

Contour Aspect Ratio. The most readily measurable feature of the spot contour, or locus of
points with a given scattering intensity, is its aspect ratio, defined as the ratio of tangential to
radial width. All three models predict that the value should be independent of the particular
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intensity. The polycrystalline model gives 1, the NH model predicts B/3, while the paracrystal
model can give values larger or smaller than unity depending on the balance between isotropic
and anisotropic defects in the lattice.

Profile. The radial spot profile is Gaussian for the NH model, Lorentzian for the

polycrystal, and power law for the paracrystal.
Spot Width Variation. Although all three lead to spot broadening, the FWHM (full-width

half-maximum) spot width is independent of diffraction order in the polycrystalline case and
proportional to diffraction order in the NH case. In the paracrystal case there is a critical
distance from the origin, inside of which the spot FWHM is zero, and outside of which there
are no spots at all.
Hence all three predictions are well defined and distinctly different, an ideal situation for an

experimental test.

3.2 EXPERIMENTAL RESULTS. - TED negatives were obtained from 3 DMPE samples and
3 Cd 22TA samples. Figures 1 shows all the diffraction patterns of the two types. When
measured conventionally by optical comparison with a graduated scale the d-spacings of all
first-order reflections were the same and equal to 0.416 ± 0.008 nm, corresponding to hcp
packing with unit cell vector equal to 0.481 ±0.010nm. It can be seen that the first-order
(100) spots are oval in shape, with tangential and radial symmetry, and tangential dimensions
somewhat larger than radial. Faint (110) spots are visible, but higher order diffraction spots
are missing.

Fig. 1. - Transmission electron diffraction pictures from all of the samples : Cd 22-TA : (a) 55879 (b)
55880 (c) 55882 ; DMPE : (d) 55499 (e) 55518 (f) 55775.
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The negatives were digitised and stored on diskette as a file of 512 x 512 bytes for further
analysis. The contour plot of figure 2 was obtained from one of the (100) peaks of the
figure la negative as described in section 2.
Monolayers on Formvar substrates of the cadmium soaps of the fatty acids [42] and DMPE

[43] have been previously reported to display hcp molecular packing. However, just as
reported in reference [44], the intensities of the six (100) spots were found to fluctuate by
more than 20 %, their radial and tangential widths by more than 10 % and their d-spacings by
2 %. These fluctuations are greater than the maximum probable error in the measurements.

Fig. 2. - Contour plot of one of the (100) spots of the DMPE diffraction picture shown in figure 1, after
digitisation, background subtraction, and convolution. The undeflected beam is in the direction of the
bottom of the page.

Figure 3 shows histograms plotted for the (100) and (110) peaks of both DMPE and Cd 22-
TA samples as described in section 2. In each category there are three samples with six spots
each, giving a total of eighteen peaks for each histogram. The values observed are marked by
symbols plotted on the curves, with different symbols indicating different samples. For the
(100) spots, the values are clustered near B/3, the lowest values being within experimental
error of J3 but the highest values significantly larger. The spread of values for the peaks from
the one sample was considerably smaller than the spread between samples.

Fitting to the (110) peaks was difficult, probably related to the fact that in the best case the
peak was only a factor of 5 higher than the noise, and two of the DMPE (110) peaks could not
be distinguished from noise. When the best-fit algorithm was allowed simultaneously to vary
the peak coordinates, amplitude, and widths, the result in 80 % of cases was very slow
convergence to a completely implausible best fit. The values plotted were obtained by fixing
the positions at points on the hcp lattice found to be the best fit to the (100) peak positions,
and the amplitude to correspond to the largest pixel value encountered. The spread in the
aspect ratios for these peaks, even within the one sample, was significantly larger than the
computed standard deviations.
Figure 4 shows the pixel values along a radial cut through the peak of figure 2 as a

discontinuous, piecewise constant function, supérimposed upon the best-fit Gaussian



1010

Fig. 3. - Histograms formed by àdding normalised Gaussians for each best-fit major/minor axis ratio
with a standard deviation equal to that of the measurement. The frequency scale is arbitrary but the
same for both curves on the one plot. (a) First-order and second-order peaks for the three cadmium 22-
tricosenoate samples. (b) First-order and second-order peaks for the three DMPE samples.
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Fig. 4. - Radial cross-section plot of the (100) spot of the DMPE diffraction picture whose contour is
shown in figure 2, represented as piecewise constant pixel values, together with best-fit Gaussian and
Lorentzian functions (solid curve, and broken curve, respectively).

(exponent 100) and Lorentzian (exponent 1.5). In both cases the background value was
assumed fixed at 32 by the background subtraction program, but the centre position,
amplitude, radial FWHM and tangential FWHM were allowed to vary as part of the fit. It can
be seen that the Gaussian overestimates the FWHM and underestimates the amplitude, while
the Lorentzian underestimates the FWHM and overestimates the amplitude. This was the
case in essentially all the peaks analysed. When the exponent was also allowed to vary, the
best fit in all cases was found for intermediate values of the exponent. In particular, the one-
dimensional Lorentzian (exponent unity) was never a better fit.

Figure 5 shows the residual error for the fit to the Gaussian versus the residual error for the
fit to the Lorentzian, plotted as the rms value (i.e., the square root of the sum of squared
residuals divided by the number of points). The values were in all cases significantly larger
than the background noise, indicating the presence of systematic error. While individual cases
can be found where the Gaussian or the Lorentzian is a better fit, overall this test does not
favour either the polycrystalline or the NH model. However the width of the best-fit
Lorentzian was in all cases much larger than the film or equipment resolution, so that pure
negative power-law behaviour as predicted by the paracrystal model is completely incompat-
ible with the observations.
Table 1 gives the fit parameters relevant to the polycrystalline model for the third area of

comparison, namely, the variation with diffraction order of the peak width of the best
Lorentzian fit to the radial profile. With both 22-TA and DMPE the (200) diffraction peaks
could not be detected, so the comparison is essentially between the (100) reflections closest to
the undiffracted spot, and the (110) reflections whose d-spacing is smaller by a factor of
. According to the polycrystalline model, the peak width should be independent of
diffraction order, so that the quantity in the second-last column of table 1 should be unity.
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Fig. 5. - Plot of the best-fit Gaussian error versus the best-fit Lorentzian error for all 36 first-order

diffraction spot measured. The units are the those of the video digitiser, and correspond to

approximately 1 % of the peak height.

Table 1. - Peak width variation with diffraction order and extraction of physical parameters on
the polycrystalline model.
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However the values for this ratio appear to be systematically higher, by an amount larger than
the probable error. All values lie outside the ± 2 u error bars, and one lies outside
3 o,.
The characteristic domain size e was calculated from the best-fit FWHM using equation

(A.3).
To test the NH model in the third area of comparison, a Gaussian is fitted to the diffraction

spot profiles, and table II gives the resulting best-fit parameters. On this model the peak
width should be proportional to the scattering vector Q of the diffraction spot, so that in
column 4 the width ratio divided by the scattering vector ratio should be unity. In fact of the
entries in this column, two lie within the ± a error bars and all lie within ± 2 a.
The dislocation density in column 5 of table II is deduced from equation (B.12) using the

measured values of radial FWHM. In comparison with table I, it can be seen that the number
of dislocations required to explain the spot broadening on the NH model is much smaller than
the number of domains required on the polycrystalline model.

Table II. - Peak width variation with diffraction order and extraction of physical parameters
on the Nelson and Halperin model.

4. Discussion.

4.1 THEORETICAL. - Although Nelson and Halperin do not derive an expression for the
scattering function, they do derive the asymptotic expression for a related function

Cq(R) as R tends to infinity [26]. Cq(R) is the Fourier transform of the peak of the Patterson
function centred at the real-space lattice point R, evaluated at one of the six first-order

reciprocal lattice points q :

This would seem to imply a Lorentzian profile for the diffraction spots, as opposed to the
Gaussian law derived in appendix B. The discrepancy may be traced to the evaluation of the
integral (B.8) where the following approximation is made :
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This is justified when 1 YI is small, i.e. for the inner peaks of the Patterson function
corresponding to separations much smaller than the average distance between dislocations.
When the approximation is not made, the correct asymptotic form for C,(R) is obtained.
However the outer peaks of the Patterson function are so broad that they merge into one
another, and at the observed normalised dislocation densities of roughly 10- 4, the detailed
asymptotic behaviour of the Patterson peak widths makes little difference to the observable
features of the scattering function.
The NH theory is not the first ansatz-free analysis of diffraction line broadening due to

dislocations. The theory for bulk media has been treated in several reports [30, 45-48], but the
results are distinctly different from the present 2D case. In particular, in equation (B.12), the
expected radial diffraction spot FWHM varies with the normalised diameter B of the selected
diffraction area, whereas in the three-dimensional case the spot broadening is independent of
B. For an infinitely wide film and incident beam, the predicted NH spot diameter diverges.
Physically, this is related to the fact that a uniformly spaced linear row of identical dislocations
with Burgers vector perpendicular to the row (a symmetrical grain boundary) produces a
finite change of orientation but a strain field which decays rapidly to zero. As a consequence,
there is no stress field neighbouring the row which might cause other dislocations to move and
hence introduce an exponential shielding factor, such as in found in the Debye-Hückel
treatment of an electrolyte. On a more fundamental level, the divergence is related to Peierls
proof [49] that long range order in two dimensions cannot persist to infinite separations.
However, in practice this logarithmic divergence is scarcely noticeable. The smallest feasible
value of B is roughly 2 x 104 for a 1 pm-diameter selected diffraction area, and the largest
roughly 2 x 106, giving a range of variation of spot size with diffraction aperture of less than
22 %.
The line shape predicted by the NH theory has been described as Gaussian, and this is to a

good approximation true. However strictly speaking, it is a Gaussian divided by the square of
the distance to the origin. This results in a shift of the spot centre towards the origin, and
hence larger d-spacings, with respect to the position for a defect-free lattice.
The NH model is physically incompatible with the polycrystalline model, because they

correspond to two completely different ways of organising the dislocations of the crystalline
lattice. However the NH model is compatible with the paracrystalline model, which describes
the line broadening due to unbound lattice defects of a different type. When both types of
defect are present, the resulting spot profile is the convolution of the two individual profiles.

4.2 EXPERIMENTAL. - The broadening of the diffraction peaks is in all cases much higher
than any possible limit imposed by the electron microscope. The paracrystal model predicts a
power law peak profile, with zero FWHM. Hence it is possible to rule out the paracrystal
model, at least in its pure form, and to say that the crystal lattice of the monolayer must
contain dislocations. This is the case in the other two models considered : they are either
organised in specific configurations, as in the polycrystalline model, or almost randomly
distributed, as in the NH model.

It can be seen from figures 2 and 3 that the contour lines are not circular, as would be
expected for the polycrystalline model analysed. The observed aspect ratios for the well
defined (100) peaks show a sharp clustering in the vicinity of the value of v3 predicted by the
NH model. This was also the case in an independent study of diffraction spot intensities from
monolayers of cadmium soaps of three different fatty acids [44]. The polycrystalline model
could perhaps be amended to include a statistical fluctuation of the domain orientation to
restore agreement with the experimental findings. It is however difficult to see how such an ad
hoc modification could account for the observed clustering of the aspect ratios of the (100)
peaks. 



1015

On the polycrystalline model, the best fit characteristic domain size e is of the order of
5 nm, that is to say 10 lattice constants. Now it is known that the density of dislocations along
a grain boundary is related to the change of orientation across the boundary. From the
diffraction patterns it can be seen that the standard deviation of orientational fluctuation
cannot exceed 0.05 radians. The difference in the orientation between two neighbouring
domains must on average be less than twice this value, leading to an expected number of
dislocations on domain boundaries of order unity. However an initial assumption of the
model was that the interior of each domain was strain-free, and efficient shielding of external
strains by a grain boundary requires many dislocations. Hence the fit to the polycrystalline
model is internally inconsistent.

Since it leads to a contradiction to assume that the boundary of a grain shields its interior
from external strains, the notion cannot hold for the present system. On a suitably modified
version of the polycrystalline model, therefore, the orientation within a grain is not

necessarily constant. As already discussed, the observed long-range orientational order is

incompatible with the presence in the films of large-angle grain boundaries. It is well known
that low-angle grain boundaries can be resolved into a sequence of widely-spaced dislocations
[50]. Hence the polycrystalline model revised to take account of the present experimental
findings starts to look very much like the NH model.
A recent paper has reported thé direct electron microscope image of a cadmium

eicosanoate monolayer showing a roughly-circular region ouf - 103 molecules free of

dislocations or grain boundaries [51 ]. This is consistent with the present fits to the NH theory,
which indicate a defect density of fewer than 1 dislocation per 104 molecules, but at variance
with the present fits to the polycrystalline model, where in each case the characteristic domain
size e2 contains fewer than 102 molecules.
The NH theory can provide an explanation for the observed small, but significant,

departures of the diffraction peaks from hexagonal symmetry. The divergence of the spot
FWHM for infinite aperture size is related to the fact that the strain field from a dislocation

decays as r-1, with no cut-off. Dislocations significantly outside the diffraction aperture cause
the same strain at each diffracting point, and so do not contribute to spot broadening, but do
cause an overall shift in the peak position. Since grain boundaries in a polycrystal effectively
isolate each domain from any strain fields in neighbouring regions, the polycrystalline model
cannot explain this phenomenon.
The deviations of (100) spot aspect ratio from the NH prediction were in the direction of

higher ratios. High aspect ratios were also found in an independent electron diffraction study
of stearic acid monolayers [10]. This is the effect expected from a density of disclinations,
which are observed in the films but which are not considered in the NH theory. The density of
disclinations in monolayers of 22-tricosenoic acid produced in the same laboratory using the
same equipment as the present experiments has been elsewhere reported [52] to be of the
order of 10 mm- 2. A disclination of rotation 60° located 300 pm from the diffraction aperture
of diameter 100 pm will result in a maximum relative rotation of the crystalline lattice by 20°
from one side to the other, resulting in an increase of the tangential FWHM of an otherwise
sharp (100) peak of approximately 0.3 cycles.nm - 1. Hence the excess tangential broadening
observed in the present work can be readily explained in this way. In a different laboratory,
one of the present authors has measured much higher disclination densities, of the order of
1 000 mm-2 [53], so that much greater deviations from the « ideal » J3 ratio can also be
explained. Unfortunately, methods of producing aligned monolayers have not yet been
perfected, so that this source of uncertainty cannot yet be eliminated.
Although some of the spot profiles observed in the present work show smaller residual

errors for a Gaussian function, others give a better fit to Lorentzian. A better fit to Lorentzian
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form for the radial scattering profile was also observed in two previous studies [9, 10], and is
incompatible with the « pure » NH theory derived in appendix B. However there appear to be
two plausible ways in which the theory could be extended to explain a proportion of non-
Gaussian profiles.

Firstly, the existence in LB films of lattice disturbances with zero Burgers vector can
scarcely be doubted. Reflection high-energy electron diffraction (RHEED) studies have

provided unambiguous evidence for the coexistence of orthorhombic and triclinic aliphatic
subcell packings with similar tilt in LB films of pure long-chain acids [12]. It is also clear that
impurities are almost always present at the 1 % level, and many authors have proposed that
g+ g- kinks commonly occur in the chains [54].
A further type of disturbance with zero Burgers vector which is indisputably present is

provided by the molecular shape, which does not share the observed macroscopic hexagonal
symmetry. In many smectic B phases it has been well established that the diameter of the
smallest cylinder which completely contains the Van der Waals surface of one molecule is
considerably larger than the measured lattice parameter, indicating that the observed sixfold
symmetry is the average over many small orthorhombic domains with orientation differing by
120° [55]. This is also the present case. Assuming molecular dimensions of 0.154 nm for CC
bonds, 0.107 nm for CH bonds, 0.12 nm for the Van der Waals radius of H and 109° 28’ for all
bond angles [56], the minimum enveloping cylinder diameter for an aliphatic chain is
0.516 nm, corresponding to a cross-sectional area per hcp chain of 0.23 nm2.

All such paracrystalline lattice disturbances will lead to stress fields of the disclination
quadrupole type. As shown in appendix C, it is possible to combine the NH and paracrystal
theory to form a theory of lattices with independent random distributions of both disclination
dipoles and quadrupoles. The resulting spot profile is the convolution of the spot profile due
to dipoles only, with that due to quadrupoles only. Hence on this model the central shape of
the peak, including the FWHM, is still determined by the dislocation density. When
paracrystalline defects are present in significant numbers, the wings of the profile are power-
law (as is the case in the Lorentz profile).

It is also possible to explain a non-Gaussian lineshape in terms of a non-equilibrium
distribution of dislocations. It has previously been reported that the component of optical loss
due to large-angle scattering in LB films of 22-tricosenoic acid has a square-law variation with
the in-plane optical anisotropy, suggesting that variations of local 2-dimensional lattice
orientation are the major cause of this scattering [18]. The present study indicates that
dislocations are a plausible cause of these variations. There have been a number of reports
[57] that the large-angle scattering in LB films of several different materials is not uniform,
but is concentrated at certain points, and that the density of these light-scattering points varies
systematically with position in the film [58] and deposition conditions [59]. Hence it is

plausible that the dislocation density in the films displays macroscopic inhomogeneities.
Clearly it is possible to modify the NH theory with a suitable statistical distribution of
dislocation densities to explain the observed slower-than-Gaussian fall-off. Since spot
smearing is also accompanied by a displacement of the spot centre towards the origin, this
model also leads to an asymmetric profile, falling off more slowly on the side of the
undeflected beam, although with the present best-fit parameters this asymmetry is undetect-
able.

5. Conclusions.

The diffraction pattern from a real two-dimensional crystal has been derived mathematically
for three distinct cases where specific lattice defects occur with specific statistics. Each of the
three cases has been proposed at some time to describe the organisation of monolayers or
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smectics. The diffraction pattern to be expected from a Nelson-Halperin hexatic smectic has
not previously been derived from first principles. The present treatment of the paracrystal is a
significant improvement on previous attempts in that the strain pattern caused by the defects
is in mechanical equilibrium.
The predictions of each of the three models have been compared to experimental patterns

for LB films of two different aliphatic chain compounds, leading to the same conclusions for
both materials. Using the aspect ratio criterion, the polycrystalline model could be rejected.
The radial profile criterion provided a definitive refutation of the paracrystalline model but
did not choose between the polycrystalline and NH models, each of which showed systematic
error. Although the differences between the polycrystalline and NH models for the width
variation criterion were comparable to the experimental error, this test favoured the NH
model, and moreover the best fit to the polycrystalline model contained an internal

contradiction. To sum up, the best agreement was achieved for the NH model of an

interacting gas of dislocations, while the other two models had serious shortcomings.
Some discrepancies in the fit to the NH model remain, and two ways of improving it have

been proposed for future investigation. However, independent of the fine details of

interpretation, loosely bound dislocations have been demonstrated to be a major cause of
broadening of the diffraction spots.
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Appendix A.

Dérivation of the polycrystalline scattering function.

In the normal concept of a polycrystalline material, individual grains are essentially strain-free
perfect crystals, with no correlation between the orientations of neighbouring grains. When
the selected diffraction area encompasses many grains, this always gives rise to a ring
diffraction pattern, contrary to observation, and contrary to the optically observed long-range
orientational order in LB films. Hence it is necessary to consider an unusual case in which,
through some mechanism, neighbouring grains have highly correlated orientations. However,
in order for the polycrystalline idea to make sense it must be assumed that there is no
translational coherence from grain to grain, and that grain boundaries are randomly
distributed.
The first step in the derivation of the scattering function is to calculate the Patterson

function, or spatial correlation function of the material refractive index, from the assumed
statistics of molecular position. In the following, point molecules with a delta-function
refractive index profile will be assumed. For investigations of the lattice contribution to
scattering, this is all that is required, and in any case the scattering function for real molecules
can be readily derived from that for point molecules by well-known methods. Within a grain,
the contribution to the autocorrelation function from a given spacing is equal to that for a
perfect lattice. Since there is no phase coherence between grains, then if a grain boundary



1018

separates the two points, the contribution to the autocorrelation function is constant and

equal to the lattice density. As in the Poisson distribution, the probability that no grain
boundary separates two points varies exponentially with the distance between them. Hence, if
M is the 2 x 2 matrix formed by the unit cell vectors, then the Patterson function is given by :

Appendix D defines the lattice comb function IIIM(D8) and derives its Fourier transform
(D.9) as well as that of e- r (D.7). The Fourier transform of the overall Patterson function, i.e.
the scattering function, is then readily derived to be :

Hence apart from the small-angle scattering peak, the diffraction spots are all identical, with
circular cross-section and Lorentzian profile (in the sense of power law asymptote - more
precisely, Lorentzian to the power 1.5). The characteristic domain size e is related to the
FWHM by :

Appendix B.

Derivation of the Nelson-Halperin hexatic smectic scattering function.

The system Hamiltonian is given by [26, 60] :

where

This is a bilinear form in the Burgers vectors biP, which have the dimensions of length. i and j
are lattice position labels, while p, a = 1, 2 label the Cartesian components, and repeated
suffixes imply summation using the Einstein convention. a is the nearest neighbour spacing of
the hcp lattice, A is related to the Lamé elastic constants of the mechanically isotropic layer
by :

while 2 C / à, the energy required to create a dislocation of smallest possible Burgers
vector, depends in addition on the high-strain nonlinear elastic behaviour of the lattice. On
physical grounds it is possible to say that, since most lattice points are not dislocated, then
C &#x3E; kT, while since the dislocations only interact weakly, then Aa 2 kT.
In the Debye-Hückel approximation the expectation values of measurable parameters are

calculated by allowing the amplitudes of the various Burgers vector components to vary
continuously [26]. At thermal equilibrium all possible configurations of the b’s contribute to
measurable system parameters, with probability or weighting factor proportional to

exp(- H/kT). This has the general form of a multivariate Gaussian distribution of the b’s.
Since H commutes with translation, reflection and rotation, the matrix of the bilinear form

is diagonalised by a choice of basis consisting ôf longitudinal and transverse plane waves of
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dislocation density. The most convenient is the all-real Hartley basis. For a bilinear form, it is
essential to define the amplitude of the basis elements : this may be conveniently taken to be
1 m.m-2 rms density. Explicitly, for the two basis elements with wavevector Q c.m-l, the

total Burgers vector Sb of bad crystal contained in a small area ds’ centred on X is given to
first order by :

Longitudinal : 

Transverse :

where cas à = cos 1i + sin v, and £ pu is the unit antisymmetric matrix. Then the correspond-
ing diagonal elements of H are proved in reference [26] to be given for a region of area S by :

Longitudinal polarisation (b II Q) : B

Transverse polarisation (b 1 Q ) :

Since there are no off-diagonal terms of the Hamiltonian matrix expressed in terms of the
coefficients A of the Hartley basis, it follows that these coefficients are independent Gaussian
random variables, with zero mean and variance kT/2 h. Since C &#x3E; kT, the vast majority of
dislocations will have Burgers vector of length a, so that the total dislocation density n is given
in terms of the plane wave amplitudes by :

A point dislocation in a hcp lattice with Burgers vector b. is well-known to produce the
following displacement field u. at a point located at distance r and azimuth il from the
dislocation [50, 61] :

with a = (M + À ) / (2 u + A ), » and BA being the Lamé coefficients of the dislocation-free
lattice, or alternatively a = 0. 5 / ( 1 - v ), v being the Poisson’s ratio. It is of interest to note
that this displacement field can be considered to be due to a disclination dipole [62] :

where

The displacement field produced by a general longitudinal plane wave, say, should be
derivable from that due to one with its wave vector parallel to x, by rotation. However direct
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Fourier transformation of (B.5) to give the displacement field produced by the Hartley basis
(B.2) does not have this property, due to the multivalued nature of e and the asymptotic
divergence of In r. The following displacement fields have the correct symmetries, and give
the correct local lattice rotation. They have the variation in a expected for the Fourier
transform of (B.6), i.e. due to all terms except the multivalued term v, and can be derived
from a stress field corresponding to a force 1£ e p u bu/2 1T on each dislocation b :

Longitudinal modes (b II Q) : 

Transverse modes ( b 1 Q ) :

It should be noted that these fields are single-valued, like any plane wave field, and so
represent the smoothly varying, commensurate, part of the total displacement field.

In order to derive the scattering function S(K), the spatial correlation function or Patterson
function P (X) must first be calculated and then Fourier transformed [28]. In the present case
the Patterson function is the sum of Gaussians, representing the probability distribution
function of each perfect hexagonal lattice spacing Y distorted by the strain field. Since the b’s
are all real, independent random variables, the correlation matrix Cp,(Y) for the

displacement of this lattice spacing is the sum of the contributions from each. In a coordinate
system with unit basis vectors parallel and perpendicular to Y, it is readily expressed as :

with Qo the angle between Q and Y, and with a range of integration over the first Brillouin zone
of the hexagonal lattice, which is approximately a circle with radius 0.61 /a. The first integral
(associated with longitudinal modes) diverges at the origin : the divergence can be eliminated
by specifying a cutoff radius which may be interpreted as the reciprocal of the diffraction
aperture. It is also permissible to approximate the final sin2 term by the square of its
argument. Because of the divergence of the first term, the second integral associated with
transverse modes may be neglected under most circumstances.
Hence the Patterson function is given by :

where

so that



1021

B is the ratio of the diffraction aperture diameter to the lattice spacing, and M is the matrix
formed by the unit-cell vectors of a dislocation-free lattice with the same orientation and
lattice spacing as the smectic layer. IIIM(Y) is the comb function for this lattice, defined in
equation (D.8).
The Fourier transform with respect to X of the integrand in (B.9) may be derived from the

standard integral (D.9) :

while the integral over Y can be handled using the identity (D.11 ) :

This is approximately a sum of Gaussians, each centred on one of the points of the
reciprocal lattice. The scattering intensity contours are ellipses, with a ratio of major to minor
axis of J5 = 1.73205.. and the minor axis pointing in the direction of the origin. The radial
full-width half-maximum (FWHM) divided by the distance to the origin is given by :

where n is the normalised dislocation density per molecule.

Appendix C.

Scattering function for a paracrystal.

The essential difference between the displacement fields giving diffraction broadening in the
NH model and those in a paracrystal is that the latter consists everywhere of good crystal in
Burgers’ sense, with zero circuit closure vector at each lattice point. Structures giving rise to
such displacement fields are easy to imagine, for example vacancies, impurities, chain kinks,
random crosslinks, or regions of different but near-commensurate molecular packing. The
deformed lattice must be in mechanical equilibrium, so that the displacement field at all
normal lattice points must satisfy the following differential equation :

or in alternative notation :

This equation is satisfied both by the dislocation fields of (B.5) and by the disclination field of
(B.6). In the present case the boundary conditions are different. It has been proved [62] that
all solutions of (C.1 ) associated with point defects are sums of derivatives of the field due to a
disclination. Clearly, the dominant long-range effects will be produced by the lowest order
derivative : if dislocations are ruled out then disclination quadrupoles will dominate.
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There are then three linearly independent possibilities a, b and c for the displacement fièld
of a point defect, with radial and tangential components given by :

Physically, the a-field might be associated with a vacancy, the b-field with a crosslink parallel
to the y-axis, and the c-field with a crosslink at 45° to both the x- and y-axes. Paracrystal
statistics can be calculated from these displacement fields once the statistics of vacancies and
crosslinks is defined. In the following, it will be assumed that the positions of these defects are
uncorrelated. In an isotropic medium, the mean density of the b- and c-sources must be zero,
and their variances must be equal.
As with dislocation density, it is useful to construct a complete set of eigenvectors of

bilinear forms of vacancy and crosslink density commuting with translation, reflection and
rotation. However here the displacement fields are much better behaved and there is no

problem with Fourier transformation. The basis elements are plane waves, and for each
wavevector Q there are three polarisations, corresponding to vacancies, crosslinks parallel to
Q, and crosslinks at 45° to Q. For a density of each source type of cas (2 7TQt XT), the
displacement fields are, respectively :

The Patterson function may now be calculated in a similar way to the NH case. If there is a

nonzero mean density of vacancies, the average position of the Patterson function peaks will
be shifted : it is easy to show that this gives rise to a uniform shrinkage of the distances
between the Patterson function peaks. The spot broadening depends only on the statistical
variance of the plane wave amplitudes. Just as for (B.8), the correlation matrix for the lattice
spacing Y is given, in a radial/tangential coordinate system, by :

In this case, the integrand is finite everywhere so that it is no longer appropriate to
approximate to the sin2 term. However by expanding all trigonometric terms as sums of
exponentials it can be seen that each term in the integral is the Fourier transform of a

truncated r- 2 . e im-iJ function, with m = - 2, 0 or 2. The transform of r- 2 . e imv is derived in

appendix D, equation (D.4).
Since the effect of local defects predominates, the assumption of a Gaussian distribution is

not as good as in the NH case. However, it is still a reasonable assumption, and much more
easily handled mathematically than more sophisticated alternatives. Hence equations (B.9)
and (B.10) are valid for the paracrystal, with the correlation matrix now given by :
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/3, 03BE and y are constant parameters combining A, B, C, a and a. y is a measure of the spot
anisotropy. Its modulus is always less than that of {3 and it can have either sign. If isotropic
defects dominate then the peak is preferentially broadened in a radial direction, while if

crosslink-type defects dominate the broadening is tangential. The desired form of the
scattering function is then obtained by applying identity (D.11 ). This gives the peak centred at
reciprocal lattice point K as the Fourier transform of :

where cp is the polar angle of K. It is readily seen from equation (D.3) that the radial variation
of the diffraction spot is given by :

Hence within the critical radius B/2/3 the peak intensity is infinite and the FWHM is zero,
while outside this radius there are no peaks at all.

It can be seen that there is a marked parallelism between the derivations of this appendix,
valid for disclination quadrupoles, and that of appendix B, valid for disclination dipoles. If
both types of defect are present and independent of one another, then equations (B.9) and
(B.10) are still valid, with the correlation matrix Cpu(Y) for the Patterson function peak at
the point Y now equal to the sum of the matrices for the two defect categories separately. In
the final step (B.11 ), each peak of the scattering function is the convolution of the peak due to
quadrupoles alone, with that due to dipoles alone.

Appendix D.

Définitions and derivations.

This appendix contains definitions of special functions and notations used in the other
appendices and indicates methods of evaluation for Fourier transforms and other integrals.
x and y are used ambiguously : either directly as variables, or as functions of two other

variables, such that x(a, b ) = a and y (a, b ) = b. However this should not lead to any
difficulties. r and à are similarly functions of two variables, conventionally defined in terms of
x and y by :

the principal value being
in the range - 7r = à « 7r

The symbol S is the Fourier transformation operator on functions of two variables :

As in reference [28], the resulting frequencies k and f have the units of cycles per unit x and y.
This simplifies comparison with experimental work (the d-spacing is the length of a cycle, not
a radian). In addition, in these units v2 is the operation P of inversion through the origin, with
no complicating factors of 2 77-.
The functions r- n . e imv are especially important. A simple change of variable in the
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integral (D.2) readily gives the transform apart from a multiplicative factor :

where

The coefficients K may be evaluated by direct integration to give :

This diverges in the interesting case m = n = 0. However since

and inversely

Now, sin v, valid even for the discontinuity at à = ± 7T

The Patterson function derived for the polycrystalline case has the form exp ( - r). In 1 D,
the Fourier transform is the well-known Lorentzian. In two dimensions, the integral (D.2)
expressed in polar coordinates may be evaluated by first integrating with respect to r from
- oo to + oo, and then using the substitution t = tan à :

IIIM( Y) is the generalised comb function [63], consisting of a sum of delta functions located at
each point of a Bravais lattice. The lattice is specified by the matrix M whose columns are
formed by the unit cell vectors. The comb function is formally defined by :

The transform of IIIM can be derived by transforming to a coordinate system in which M is the
unit matrix. The one-dimensional unit comb function is its own transform :

The Fourier transform of the general Gaussian function is required to transform the
Patterson function (B.9) into the scattering function (B.10) in the NH case, and for the
corresponding step of the paracrystal case. It can be derived from the following standard
integral [64] :
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This is similarly proved by transforming to a coordinate system in which B is diagonal.
The following identity is required for the final derivation of the scattering function for both

the NH and paracrystal theories :

The left-hand side is the Fourier transform evaluated at zero frequency of the product
function FG. The right-hand side is the convolution of SF and Se evaluated at zero offset.
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