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Résumé. 2014 La contribution électrostatique au module d’élasticité est calculée pour une bicouche
phospholipide chargée en milieu ionique. Cette contribution, identique pour une membrane conduc-
trice comme isolante, est toujours stabilisante. On montre que cette stabilité des membranes libres
est une conséquence de l’absence de tension superficielles.

Abstract. 2014 The electrostatic contribution to the bending elastic modulus of charged phospholipid
bilayers in an ionic solution is computed. It is found to be the same for conducting and non-conducting
membranes and is always stabilizing. This stability for free membranes is shown to be a simple conse-
quence of the vanishing of the physical surface tension.
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1. Introduction.

1fie physical properties and stability of phospholipid bilayers and the objects they form (cells
and vesicles) is an important problem in biology and pharmacology. Various aspects of these
properties have been studied over the years and some are by now well established, in particular
the Van der Waals and electrostatic intermembrane forces which form the basis of the DLVO

theory[l].
An artificial menbrane consists of a bilayer of phospholipid molecules with a polar head

(which may be charged) in contact with the aqueous medium and two hydrophobic tails which
form the bulk of it. In absence of external stresses (e.g. osmotic pressures, film tension, etc.) the
area per head of phospholipid molecules in a fluid membrane is optimized, i.e. the free energy is
minimized [2,3]. That results from a balance between hydrophilic and entropic interactions which
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tend to increase the area per head and the hydrophobic interactions between the lipidic chains
and the water which tend to reduce it.If the compressibility of the membrane is low the area per
head will be fixed at this optimal value and does not fluctuate much. In the following we suppose
that the compressibility is strictly zero; the total area of the membrane is thus fixed and the free
energy X is then essentially of elastic origin [4 - 6] :

Where Rl,R2 are the principal radii of curvature, Ro a possible spontaneous curvature and x, /~
the normal and Gaussian bending elastic moduli.

In the following, we will investigate the stability of a membrane with surface charge density 0-0
in an ionic solution characterized by a Debye screening length given by x -1. We shall be interested
mostly in the long wavelength limit (X » k = 27r/A), where the electrostatic contribution to the
free energy amounts to a modification of some local parameters, such as the elastic moduli. In
that limit the only relevant lengthscale is x-land sinuez and /~ have units of energy (typically:
x m 10- 19J [7 - 12], by straightforward dimensional analysis [13] the electrostatic contribution to
the elastic modulus x is ôx = CO"Õ/X3ê with C a constant of O(1) and e the dielectric constant of
the solution. There are two reasons one may want to go beyond this simple estimation. First, there
are now some rather accurate mesurements [7 - 12] of the bending rigidity, K, for phospholipid
membranes and it therefore becomes possible to make precise measurements of the electrostatic
contribution to x for charged phospholipid bilayers. The surface charge density can be controled
by changing the pH (which determines the degree of dissociation of the polar groups) and the
Debye screening length by changing the ionic concentration. The second reason is to determine
the sign of béc. If it is positive the membrane is rigidified, but if it is negative the membrane may
be destabilized at long wavelengths by the electrostatic interactions.

In the following we shall consider two cases: membranes for which the in-plane conductivity
of charges is much smaller than the conductivity of charges through the solution (non-conducting
or insulating membranes), or membranes for which the in-plane conductivity is much larger than
the bulk ionic conductivity of the solution (conducting membranes). For insulating membranes
the local charge is constant during a deformation, whereas for conducting membranes it is the
surface potential (and possibly the total charge) which is constant during the deformation. For
insulating membranes one expects a bending deformation to increase the free energy of the mem-
brane and thus the sign of 6/c is expected to be positive: the membrane is rigidified by the elec-
trostatic interactions. For a conducting mem6rane, however one may expect the existence of an
electrostatic instability similar to the electrostatic instability of a charged surface [14]. This is how-
ever not the case, as the full calculation (to be described below) shows. In fact charged insulating
and conducting membranes have identical positive 6K ! t

2. Electrostatic contribution to the free energy of a membrane.

Consider a charged infinite membrane of thickness d in contact with an ionic solution charac-
terized by a Debye screening length: x-1. For conducting membranes and for insulating ones with
equal charges on both sides, we may without loss of generality consider the limiting case: d = 0.
We suppose that the electric fields 4&#x3E;:f:on both sides of the membrane (+ above and - below)
satisfy the Poisson-Boltzmann equation, or its linearized version: the Debye-Hückel equation [1]
(for potentials: 0±  kBT/e ~ 25mV)
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For a monovalent solution of ionic concentration no the screening length is given by: x2 =
87rnoe2/kBT,W, where eW is the relative dielectric constant of water (eW m 80).We shall con-
sider two types of boundary conditions. If the membrane is insulating and incompressible with a
constant surface charge density 0"0, the fields on the membrane have to satisfy Gauss’law

where n is the normal to the interface. If the membrane is conducting its surface is an equipoten-
tial :

Let ((.c, y)be a small deformation of a flat membrane. Our purpose is too calculate the net change
in the free energy 6:F of the membrane as a result of this deformation. The procedure is straight-
forward :

1) Solve perturbatively équations (2, 3) for the field 0± up to 0 (c3) .
2) Compute the electrostatic energy[16]:

And identify the change 6C in the electrostatic energy due to the deformation.
3) Keeping the surface charge or the membrane potential constant (depending on the case

considered) compute the electrostatic contribution to the free energy Xe by integrating the ther-
modynamic relation[4,17]:

2.1 NON-CGNDUCTING MEMBRANES. - Let((x, y) be a small (0(e) ) déformation of a flat mem-
brane (Eq. (x, y, z = ((.c, y)) and ( (kx, ky) its Fourier transform:

We look for a perturbative solution of equation(2):

Inserting equations (6, 7) into the boundary condition equation (3a) and solving the resulting
algebraic equations order by order in - up to 0 (e3) yields:
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Where 1Îl (k"" ky) is the Fourier transform of e(x, y) = X2(2/2 - (V ( ) 2 /2 - (V2(. We may now
compute the electrostatic energy C, équation (4):

In the case of a surface in contact with an electrolytic solution (x # 0), part of the electrostatic
energy is "used" to lower the entropy of the solution by partially segregating the ions within the
Debye screening layer. The relevant thermodynamic quantity is the free energy Fe, equation (5),
which is obtained by integrating equation (9):

Where we have used:

2.2 CONDUCTING MEMBRANES - The case of conducting membranes held at constant potential
4&#x3E;0 (or which total charge Q is constant) is similar to the case of insulating membranes treated
previously. Inserting equations (6, 7) into the relevant boundary condition, equation (3b), yields:

Where,(fi (kxky) is the Fourier transform of 0 (x, y) = _X(2 /2 + ( f d2kq(k eik. p. For a membrane
held at a constant potential4&#x3E;o (by patch clamp techniques, for example), the electrostatic energy
is: 

--- - ...- -

The second term represents the work done in order to keep the potential of the membrane con-
stant [16], i.e. in order to bring a charge Q = f ud 2p from a "reservoir" at potential 4&#x3E;0. Using
equation (11) in equation (12) one obtains:

Let us note that in the limitez 0 and 0"0 = -WXOO/2ir = const., we recover the result for the
instability of a free charged conducting surface [14]:



693

In the case of electrolytic solutions x # 0, the free energy 0e becomes:

3. Vanishing surface tension and stability of the membrane.

The k2 terms present in equation (15) has a negative sign. This may naively suggest that the
conducting charged membrane is unstable with respect to long-wavelength modes (in opposite to
the insulating case, in which the k2 term, Eq.(10), is positive). On the other hand the k2 term
is usually associated with the surface tension which, as we have mentioned in the introduction, is
strictly zero for the free membrane. It is therefore necessary to reconsider the significance of the
vanishing of the surface tension and its çonsequences in our problem.

The size of a fluctuating membrane can be in general described by two distinct variables: the
total area A and the "projected" area Ap, i.e. the area of the projection of the membrane on
the plane (x, y). Whereas for the incompressible membrane, whose number of molecules does
not vary, the total area A is constant, this is not the case for Ap. Indeed, for the free membrane
there is no constraint on the value of Ap and it fluctuâtes around its mean value  Ap &#x3E; . As a

consequence the intensive thermodynamical variable coupled to Ap - the physical surface tension
r - vanishes identically [18]: 

- 1

Here 0 is the total free energy of the membrane, which is the sum of the three contributions: (i)
the elastic energy (1), (ii) the electrostatic term (10) or (15) and (iii) the chemical potential term
for the total area A:

ro is the chemical potential of the amphiphilic molecules. We have thus

where 
_

for conducting membranes

for insulating membranes

Since we consider in this paper the case of free, unconstrained, membranes, the coefficient
ro adjust itself so that equation (16) is satisfied. However, this also implies that the k2 term in
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equation (18) identically vanishes! Therefore there is no instability and the lowest term which
contributes to the free energy of the charged membrane is the last term of equation (18). It is the
same both for conducting and insulating membranes and is always positive.

The k4term gives the effective rigidity of the charged membrane Ketf. It can thus be written
as

where

where ew m 7 x 10-10 F/m is the dielectric constant of water.
Thus both insulating and conducting membranes are rigidified by electrostatic interactions.

Our results equation (20) are in agreement, in the long wavelength limit, with a similar and inde-
pendent perturbative analysis of reference [19] for conducting membranes, but they disagree with
calculations of 6", for the nonconducting case of reference [20]. We believe that the discrepancy is
related to the fact that in reference [20] the membrane has a finite thickness and a much smaller
attenuation length inside the membrane, so that the electric potentials on both sides of the mem-
brane are decoupled. It is not clear to us whether such an assumption is valid for purely dielectric
médium. We have checked that the procedure of reference [20], based on the comparison of the
electrostatic energies per unit area for a charged sphere, a charged cylinder and an infinite plane,
leads, both for insulating and conducting membranes, to the same results for the electrostatic con-
tribution to the bending modulus of elasticity K than our perturbative analysis. (1 ) It allows also to
assess the electrostatic contribution to the Gaussian modulus of elasticity R which is opposite to
6 "’.

4. discussion

Our result, equation (20), is only valid within the Debye-Hückel approximation, i.e. for

values of the membrane potential 4&#x3E;0  25mV. Since the values of the Debye screening length
x-1 vary between 10-6m in pure water no = 10-7M) and 10-9m in physiological conditions
(no m 0.1 M), for Oo - 10 mv,bn may vary between 0.2 x 10-19 J in pure water (where it should
be measurable) and 2 x 10-13 J in physiological conditions, where it is thus not expected to be
relevant. We also remark that the "bare" electrostatic contribution to the surface tension (the co-
efficient of the first term in equation (15): 6"( = ^X02) is always very small 7 x 10 -8  -by
 7 x 10-SN/m 7b measure ô x one could extend the work of Safinya et al [11] to charged phos-
pholipids (e.g. DMPG). In such a system by controlling the concentration of surfactants and ions,
one should be able to achieve a situation where 6", &#x3E; K, i.e. where the electrostatic contribution
to the bending rigidity is dominant.

(1) Note added in proof : This corrects a statement made in a preprint version of this letter. These re-
sults were independently found by several authors. See: P Higgs and J.-E Joanny (private communication);
B. Duplantier, R.E. Goldstein, A.T Pesci and V Romero-Rochin (in preparation), B. Duplantier (Saclay
preprint). See also D. Andelman, J.-E Joanny and R Pincus (to be published).
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