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Résumé. 2014 Nous présentons une étude quantitative des réseaux hexagonaux, cellulaires ou

dendritiques, obtenus lors de la solidification vers le haut d’alliages Pb-30 % en poids Tl. Ces
réseaux sont reconstitués par la méthode de Wigner-Seitz, ce qui permet la détermination de
l’espacement primaire, l’identification des défauts du réseau et l’analyse, à partir de concepts
développés pour la fusion bidimensionnelle, de la désorganisation des structures interfaciales.

Abstract. 2014 A quantitative study of the cellular or dendritic hexagonal arrays, obtained during
upward solidification of Pb-30 wt% T1 alloys, is presented. These arrays are reconstituted by the
Wigner-Seitz method which allows the determination of the primary spacing, the identification of
the defects and the analysis of the disorganization of the interface structures by using concepts
developed for two-dimensional melting.
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Introduction.

Recent theoretical advances on the propagation of Saffman-Taylor fingers, growth of a free
dendrite and cellular solidification [1-3], have given a new impetus to the analysis of structure
selection in systems forming interfacial patterns. Concerning directional solidification of

binary alloys, there is a need of precise experimental data especially in the cellular domain.
The aim of the paper is to report observations on cellular (and dendritic) arrayed growth
during upward solidification of Pb-30 wt% Tl alloys, with solutal-driven convection in the
liquid phase. The emphasis is laid (i) on the influence of fluid flow on the primary spacing
A , which is determined from a reconstruction of the structure, and (ii) on the defects and
disorder of the interfacial array.
The spatial structuration of the solid-liquid interface is controlled by the temperature

gradient in the liquid GLI the solute concentration C~ and the growth velocity V. For given

(*) U.A. au CNRS n° 797.
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Fig. 1. - Schematic diagram showing the variation of the primary spacing A with the growth velocity
V, for cells and dendrites.

C~ and GL, the interface morphology changes from planar to cellular to dendritic as

V is increased. In the absence of convection in the melt, these morphological transitions are
easily defined from the variation of the periodicity A with V [4] as shown in figure 1. A cell or
a dendrite can be characterized by shape parameters, e.g. A. All experimental variables and
the thermophysical properties of the alloy can be properly taken into account by means of
three lengthscales : a solutal length

a thermal length

and a capillary length

where D is the diffusion coefficient of the solute in the melt, m the liquidus slope,
K the solute partition coefficient, and h the capillary coefficient. In a non-dimensional
formulation [5, 6], the characteristics of the patterns ultimately depend on the level
v = f If s of morphological instability and on the absolute-stability parameter A = Kdolf S,
introduced by Mullins and Sekerka [7], which contains capillarity. A level v &#x3E; 1 corresponds
to the existence of constitutional supercooling in a liquid layer ahead of a flat solidification
front [8].
The critical wavelength A~ of morphological instability of a planar solidification front is

given by the linear stability analysis [7] and is actually observed when the bifurcation is

supercritical [9]. Under diffusion control, this is always the case for alloys whose segregation
coefficient is greater than 0.45 [10,11], among which lead-thallium alloys for which

K is slightly higher than unity. Besides these calculations using amplitude expansions,
computations [12] have been developed in order to predict the nonlinear structures close to
the threshold.

All these analyses do not consider convection in the liquid phase which is quite common on
the ground, in particular at low growth velocities. Concerning thermosolutal instability, a lot
of work has, since the pioneering study of Coriell et al. [13], been dedicated to the

understanding of the coupling between the convective and morphological branches [14, 15].
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With f3 minus the coefficient of solutal expansion, g the acceleration of gravity,
n the kinematic viscosity and

solutal convection is characterized by the Rayleigh number

and by the wavelength A sc at the onset.
The main result is that there is only a negligible interplay due to the large difference in the

critical wavelengths A sc and k ms of respectively the pure hydrodynamic and morphological
instabilities (~. sc &#x3E; ~ Ms )~ It follows that, in practice, it is still possible to define a velocity
threshold for morphological instability (of Mullins-Sekerka type) even when the experiments
are performed in the presence of solutal convection in the melt. Indeed, while being
modulated at the convective scale A sc, the solid-liquid interface remains locally planar at the
scale k Ms. The stabilizing effect of outer convection on the solutal instability was investigated
by Hennenberg et al. in a boundary layer approach [16]. Sidewalls are taken into account by
McFadden et al. [17] and by Guerin et al. [18]. It should be noticed that, in practical
situations, solutal convection occurs in a medium which is highly confined from the side [19]
whereas the phase boundary is laterally infinite for the morphological patterns.

2. Experiments.

2.1 EXPERIMENTAL PROCEDURE. - Lead-thallium alloys are solidified upwards in the

Bridgman set up which was previously used [20]. The samples are grown in a boron nitride
crucible of 0.95 cm inner diameter and 12.5 cm long. The thermal conductivity of boron
nitride is close to that of the metallic alloy, which favors the flatness of the isotherms close to
the wall.

Fig. 2. - Diagram of solutal convection in the liquid phase superimposed on the basic diagram
v -1 versus A for morphological instability of a planar solidification front. Experimental points : (0) no
microstructure ; (o) elongated cells ; (0) cells ; (D) dendrites.

Experiments are carried out for a thallium concentration Coo = 30 wt%, in a temperature
gradient GL = 40 °C/cm or thereabout, for growth velocities V ranging from 0.15 to 2 cm/h.
These experiments are plotted on the classical diagram for morphological instability, which
gives v -1 1 versus A [21], upon which the domain of convective instability is superposed
(Fig. 2). After some transformations of equation (5) with RS = Rs, c, where Rs, c is the critical
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Rayleigh number for hydrodynamic instability, the onset vsc of solutal convection is rewritten

where KL and Ks are the thermal conductivities of liquid and solid. The theoretical limits are
calculated for the values of the thermophysical properties of the Pb-Tl alloys given in table I.
All the data points are in the region of solutal convection, which modulates the solid-liquid
interface on the macroscopic scale of the crucible [19, 22], so that the study of the effect of
fluid flow on the interfacial microstructure is meaningful. The convective level can be
characterized by the ratio Rs/Rs,c. As Rs, ~ = 12.4 for K = 1.1 (see Tab. I in Ref. [15]), this
ratio decreases from 3 x 105 to 130 with increasing velocity. This is due to the fact that the
gradient Gc, the strength for instability which is proportional to is 1, acts on a width which is
of the order of is but enters to the 4th power into the definition of Rs.

Table I. - Thermophysical properties of Pb-30 wt% TI alloys.

When half solidified, each Pb-Tl sample is quenched to retain the shape of the solid-liquid
interface whose determination, both on the macroscopic level, in order to catch the effect of
solutal rolls [19] and on the scale of the morphological pattern, is not a straightforward task.
We have thus developed a method of repeated polishings followed by chemical etchings on a
thick slice which contains the solid-liquid region. Within this zone, the microsegregation of
thallium is high enough for the etching to be very sensitive so that we are able to get closely-
spaced micrographs. With this procedure, the macroscopic shape of the solidification front is
deduced from the contour lines seen at each step and a precise knowledge of the cellular (or
dendritic) array is obtained from the microstructure which is revealed place after place on
completing the process.
The primary spacing A is determined and defects are analyzed by the Wigner-Seitz method,

which for instance has been otherwise used to study disorder in B6nard-Marangoni
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.

Fig. 3. - Wigner-Seitz reconstruction of a cell. Full circles correspond to cell centers.

Fig. 4. - V = 1. 10 cm/h. a) Cellular array (chemical etching on a transverse section). b) Array
reconstruction ( ~) square (0) pentagon (9) heptagon ( ~ ) octagon.

convection and nematic-shear flow instabilities [23]. First, black-and-white prints at high
enough magnification are taken from the negatives, i.e. with a cellular spacing about 1 cm.
On these prints, the positions of the cell centers are digitized by manual plotting on a HP 9114
graphic tablet, the accuracy of which is ±0.6 mm. The nearest neighbours of each cell are
then identified without ambiguity through a Wigner-Seitz reconstruction for which one draws
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the segments joining the cell center to its neighbours within 2 to 3 times the presumed
periodicity. Next, the segment mid-perpendiculars are drawn. The « reconstructed » cell is

finally taken as the smallest polygon which can be defined by these mid-perpendiculars
(Fig. 3). The 2D-cellular array is thus reconstituted cell by cell (Fig. 4) which allows the
subsequent study of the defects.
A code evaluates all the intercellular distances (distances from a cell center to the centers of

the first neighbours) whose average over about 300 cells is taken as the center-to-center

distance r. The cells form an imperfect honeycomb which will be characterized by the primary
spacing A = r w5/2, the percentage of defects ds and correlation functions.

2.2 MICROSTRUCTURAL TRANSITIONS. - For the three lower growth velocities (V = 0.15,
0.25 and 0.5 cm/h) no trace of morphological instability (no microstructure at the scale
A ms) has been evidenced in any place on the undulated solidification front (open circles in
Fig. 2).

Fig. 5. - Elongated cells V = 0.65 cm/h.

Elongated cells are observed for V = 0.65 cm/h (Fig. 5). These cells do not form an array
but rather a labyrinth of wavy channels, similar to what is commonly observed in other
instabilities, e.g. in ferrofluids [24]. From observations on a number of binary alloys (see e.g.
Refs. [25, 26]), it is known that such a structure indicates that we are just above the onset of
morphological instability, which we thus estimate at V~ = 0.60 ± 0.05 cm/h. As the segre-
gation coefficient is close to unity, this limit is weakly shifted towards lower V by convection.
From the Mullins-Sekerka criterion GDK/mV ~ C ~ (K - 1 ) = S [21], where

GL --,= 2 KL GL/ (KL + KS ) and the stability function S = 0.7 from figure 2, a value K ~ 1.2
can be deduced which is only 8 % higher than what can be estimated from Hansen’s diagram
[27]. Nevertheless, this difference results in a ~ (K - 1 )/ (K - 1) = 1 so that the magnitude of
the destabilizing influence of solutal convection on the threshold cannot be estimated as it is
buried in the uncertainty on K - 1.
A direct measurement on the elongated cells gives a width of 140 f-Lm which is about forty
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per cent of the critical wavelength k ms for K = 1.1, which is given by the Mullins-Sekerka
theory, and V~ = 0.6 cm/h ,

This value is an upper estimate since the critical velocity is higher under diffusion control. As
the bifurcation is supercritical for Pb-30 % Tl alloys, this discrepancy can be attributed to the
effect of convection which is known to decrease the periodicity [28, 29].
The elongated cells exist only over a narrow interval and give way to hexagonal cells at

V , 1.15 Vc. Imperfect hexagonal arrays of cells are observed for velocities ranging from
0.75 to 1.1 cm/h (Fig. 6a). The structures grow parallel to the direction of pulling, whatever
the crystallographic orientation of the solid. The cellular to dentritic transition occurs at

Fig. 6. - a) Cells V = 1.10 cm/h. b) Dendrites V = 2.00 cm/h.
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V = 2 V ~. Dendrites grow in a [100] direction, at an angle with the vertical. When the [100]
direction is close enough to the vertical, the Wigner-Seitz method can still be used to

reconstruct the dendritic array and determine the periodicity A (Fig. 6b).

3. Array characteristics.

3.1 PRIMARY SPACING. - Despite solutal convection in the melt, only a negligible variation
of the primary spacing is observed on a transverse section. Nevertheless, for a safe

comparison between the different samples, the periodicity A is always measured in the central
part of the section, where the macroscopic modulation of the front is weak and nearly
axisymmetric [19]. As far as the primary spacing is concerned, cells and dendrites belong to
the same regime for the range of velocities considered in this study (Fig. 7). A least-square
fitting through these data points gives a variation which is almost linear

Fig. 7. - Variation of the primary spacing A with V/V~.

Equation (8) is similar to what is obtained by a least-square fitting through the data points
of Miyata et al. on Al-Cu alloys [30] which, like the present Pb-Tl alloys, were grown with
convection in the fluid phase. Besides, it results from a comparative study of dendritic growth
of Al-Cu alloys grown at 1 g and under microgravity that the primary spacing decreases with
V under diffusive transport in the melt whereas A shows an opposite behaviour when the
transport is mainly convective [18]. We thus consider that it is likely that, besides the
reduction of the periodicity, convection rules out the regime and thus imposes the scaling law
for A for both cells and dendrites.
These results should be compared to experiments carried out under pure diffusive transport

in the melt, e.g. to succinonitrile-acetone alloys grown in Hele-Shaw cells for which [4]

for the dendritic regime, for which no significant difference in behaviour has to our

knowledge been ever evidenced between 2D and 3D samples solidified in the absence of
convection (see e.g. Refs. [31, 32]). Moreover, the dendritic transition occurs at the

maximum value of A so that cells and dendrites then belong to different regimes.
Let us notice that this comparison cannot be extended to any shape parameter. Indeed, the

diffusive law for the tip radius R seems to be valid in the whole dendritic range for Al-Cu
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alloys (see Fig. 4 of Ref. [30]), even in the region where convection scales the primary
spacing. This suggests that there might be different behaviours with respect to convection for
the aray and the tip regions whose lengthscales are A and R respectively.
There is a paucity of theoretical analyses of the influence of the fluid flow on periodicity.

The boundary-layer analysis of Rouzaud and Favier of the morphological stability of the
solidification interface under convective conditions [33] cannot be used because we have no
diffusive boundary layer and are too far from the threshold. Dupouy et al. have derived a
relation for the case of convection in a porous dendritic array [28]

~ _ v o.s , (10)

This law is not verified by the present experiments probably because the array is not

actually porous, with deep and large interdendritic liquid channels. Indeed, the width of the
two-phase region is about 100 ~m which is of the order of the primary spacing A.

3.2 MICROSTRUCTURAL ORDER.

3.2.1 Defects. - The nature and number of defects which are present in a cellular or
dendritic array are easily obtained from the Wigner-Seitz reconstruction (Fig. 4). Polygons
having from 4 to 8 sides are identified. All but those with 6 sides are considered as defects.
Pentagons and heptagons are far more numerous and the most common defect is the

pentagon-heptagon pair which, when isolated, is analog to an edge dislocation in a

honeycomb, to which a Burgers vector b can be associated (Fig. 8). Actually, grain
boundaries are seen which consist of a succession of pentagon-heptagon pairs.

Fig. 8. - Basic pentagon-heptagon pair forming a dislocation in the array. The Burger’s circuit and
associated vector b are indicated.

For cellular growth, the percentages of the different types of polygons (Tab. II) correspond
to the average values over five Wigner-Seitz reconstructions, one for the very central part of
the transverse section and four in the adjacent annulus, at ninety degrees from one another.
Therefore, the standard deviation associated with each value is representative of the global
uncertainty due to the manual plotting of the cell centers and to the inhomogeneity of the 3D-
array on the macroscopic scale, which is essentially linked to convection. From the figures in
table II, it follows that both uncertainties are small enough for a pertinent discussion of the
trends for hexagons and pentagons and heptagons. For dendrites, two protruding solid areas
are observed which are associated with the two principal convective rolls [19]. Consequently,
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Table II. - Defect analysis.

the values are taken from the reconstruction of only the solid area of larger extent, which
appears first and is more homogeneous.
The main result is that the percentage ds of defects is very important and apparently

depends neither on convection, (since it does not depend on Rayleigh number which varies
significantly with V ) , nor on the level u . Such high ds are a first indication of the « liquid »
character of the patterns. Indeed, the response of the patterns to a typical method of analysis
of the configurations obtained from 2D-melting simulations is qualitatively similar to that of a
2D-liquid. The regular honeycomb which would exist for a « 2D-solid » array is actually
« melted » by the defects, from which the aspect of the translational and orientational
correction functions will follow, as it will be seen in the next section.

For B6nard-Marangoni convection a different behaviour is observed [22]. Indeed, the
patterns are well organized near the onset and disorder progressively increases with distance
to the instability threshold. Nevertheless, it should be noticed that ds is very sensitive to the
experimental procedure which is used to establish the structures and that great care has to be
taken in order to achieve a low ds just above the threshold [34]. Our results are for standard
experiments of directional solidification so that it is still an open question whether an
optimized procedure, which would lead to lower ds, is feasible or not.

In other words, it would be worth to know the time dependence of ds. If there is some

analogy with B6nard-Marangoni convection, ds is likely to slowly decrease with time by the
transient elimination of defects by pair annihilation and on the periphery, down to a limit
value characteristic of v . Yet, such a process would be very difficult to follow on a massive
metallic sample of limited length. Moreover, the more blurred the cellular walls in the

directionally solidified part, the farther one proceeds from the quench.

3.2.2 Correlation junctions. - The order of the array is characterized by translational and
orientational correlation functions [23, 35]

and
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which are defined over all the cells. These functions respectively involve a translational order

parameter

and an order parameter for bond orientation [23]

P G (r) is the local Fourier component of cell-center density at a reciprocal lattice vector G
and u is the displacement of a cell from its regular position r. The factor 6 in equation (12b)
stems from the hexagonal symmetry of the lattice and 0 is an angle relative to an arbitrary
axis.

Typical correlation functions are shown in figure 9 for the beginning and end of the cellular
range, which reflect the absence of translational order and orientational order for both cases.
For short-range order of the patterns, as for a 2D-liquid, the envelopes of G (r ) -1 decay to
zero as exp (- r/~ ) where ~ is the correlation length. The orientational correlation function
G6 (r ) can be fitted by an exponential law G6(r) -7- exp (- a r ), whereas it would be constant
for a cellular array with long-range order, i.e. alike a 2D-solid.

Fig. 9. - Orientational correlation function G6 (r ) and translational correlation function G (r ).

In order to estimate the error bars in the determination of ~ and a , which result from the

imprecision in the evaluation of G6 (r ) and G (r ), several fits have been done by changing the
number of points involved in the computation. The resulting values for ~ and a respectively
are ~ = 0.55 + 0.20, a = 1.4 ± 0.1 for V = 0.75 cm/h and ~ = 1.1 ± 0.1, a = 1.45 ± 0.15 for
V = 1 cm/h. These values are of the same order of magnitude as those determined by Occelli
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et al. for a B6nard-Marangoni array with ds = 25 ~, ~ - 0.56 and a = 0.4 [23]. Once again,
the short correlation lengths ~ and high damping factors a , which are presently obtained for
cells, simply reflect the strong disorder of the honeycombs formed in directional solidification.

4. Conclusion.

Characteristics of cellular and dendritic arrays are determined on lead-30 wt% thallium alloys
grown with solutal-driven convection in the liquid phase. For the first time in directional
solidification, a Wigner-Seitz reconstruction is performed which, besides an accurate

determination of the primary spacing, enables the analysis of the defects and of the order of
the arrays. The major results are :

(i) a regime is evidenced in which the variation of the periodicity A with the growth velocity
is dominated by convection. Cells and dendrites then obey the same relationship, which is
opposed to what is observed for solidification under diffusive transport in the melt ;

(ii) the basic defects are polygons with less, or more, than six sides. Pentagon-heptagon
pairs usually form chains which are equivalent to grain boundaries. The percentage of defects
is high so that the array can be considered as « melted » ;

(iii) the translational and orientational correlation functions are typical of only a short-
range order.
The present observations illustrate the gap between current theoretical approaches, which

consider a unique spacing, and the real experimental situation. The last two points indicate
that the cellular arrays are far from being perfect honeycombs, which might be a clue to the
understanding of pattern selection. Indeed, it cannot be excluded that the defects play a role
in the dynamics of the adjustement of the average primary spacing to a steady-state value.
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