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Résumé. 2014 On considère les conditions de perte de stability d’une interface sphérique. Une
interface arbitraire est caractérisé par des facteurs tels que tension de surface, le premier et le
deuxième moments, les modules d’élasticité. Dans un état déformé, on suppose que les conditions
d’équilibre à l’interface interne sont respectées. On obtient des expressions générales pour les
critères de stabilité qui mettent en rapport les paramètres du système et la différence de pression
entre phases homogènes séparées par l’interface. On considère les cas particuliers de membranes
qui ne se dilatent pas et d’une interface ayant un petit module de dilatation.

Abstract. 2014 Conditions are considered for the loss of stability of a spherical interface. An
arbitrary interface is characterized by the force factors, such as surface tension, first and second
moments, moduli of elasticity and cutting forces. In a deformed state the conditions of internal
interface equilibrium are assumed to be satisfied. General expressions are obtained for the
stability criterion which relate the system parameters and the pressure drop between homo-
geneous phases separated by the interface. Particular cases are considered of a non-expansible
membrane and an interface with a small expansion modulus of elasticity.
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Introduction.

In recent years researchers have become quite active in a traditionally explored field of
chemistry, thermodynamics of interfaces. This concerns the study of systems such as

microemulsions, water solutions of amphiphilic substances, and biological membranes. The
classical approach to the description of interfaces developed by Gibbs [1] and followed by
others [2-8] involves the concept of force factors, namely the Gibbs surface tension and two
moments, Ci and C2. The interface shape is described in terms of the Gibbs dividing surface,
a normal to which in every point coincides with the density gradients of the system
components (as well as other thermodynamics quantities). According to this approach, the
variations of the Helmholtz free energy of a piece of an interface may be described as

where T is the absolute temperature ; g is the chemical potential of the i-th component ;
SS and nsi are the excesses of entropy and the amount of the i-th component, determined with
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respect to the Gibbs dividing surface ; A is the area of the considered piece of interface ;
J is the sum of principal curvatures hereafter referred to as the mean curvature ;
K is the product of principal curvatures to be referred to as the Gaussian curvature. Let us
emphasize that extensive quantities in expression (1) have the meaning of differential

quantities describing a piece of interface.
The force factors were postulated by Gibbs. However, within an approach involving

assumptions of local thermodynamics, the force factors may be expressed in terms of the
components of a microscopic pressure tensor [2, 3, 6-11]. In this case the interface is regarded
as a continuous layer, with the pressure tensor being specified in every point.

In describing classical capillary systems in which the surface tension yG is high, the
dependence of the force factors on deformation may be neglected. The systems belonging to
another class (interfaces with the surfactant-containing microemulsions ; films of amphiphilic
substances making up such structures as e.g. lipid mesophases and biological membranes)
have a very low surface tension [12]. For the description of such systems in terms of

thermodynamics the dependence of the force factors of an interface on its geometrical
characteristics is significant. This means that an interface should be regarded as an elastic
system characterized by the moduli of elasticity [10] :

extension-compression modulus of elasticity :

first modulus of bending elasticity :

second modulus of bending elasticity :

moduli of elasticity for the mixed deformations :

Moduli of elasticity may be expressed through the force factors as

On the basis of the relationships between the force factors and geometrical characteristics
the spontaneous geometrical characteristics of an interface may be determined, viz. the

spontaneous area AS, the spontaneous mean curvature JS, and the spontaneous Gaussian
curvature Ks, all for the zero values of the force factors [10].
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The description in terms of thermodynamics and mechanics presented in the above-
mentioned references makes it possible to study the shape and stability of structures produced
within the multi-phase systems. Experimental findings revealed a variety of such structures
and confirmed the feasibility of their transformations into each other. The most illustrative
examples are lipid-water mixtures and biological membranes. Lipids form bilayers in water,
with the bilayer surfaces being formed by polar heads of lipid molécules, and the inner volume
occupied by hydrocarbon tails. Unilamellar spherical vesicles, multi-lamellar spherical
liposomes, and flat lamellar systems are the most wide-spread structures formed by the lipid
bilayers. In systems with a low water content, lipids also form normal and inverted micelles,
and normal and inverted cylinders within a hexagonal lattice (HII-phase). When temperature,
water content, or other external factors change, a phase transition occurs, followed by
changes in the shape of lipid structures [13]. A biological membrane whose bulk is the lipid
bilayer forms the cell envelope and largely dictates the cell shape [14]. An erythrocyte is

mechanically the most interesting cell. Depending on the conditions, an erythrocyte is capable
of assuming the shape of a biconcave discs (dyscocyte), a sphere (spherocyte), a cup

(stomatocyte), a sphere with spicules (echinocyte), etc. [14].
Characteristic shapes of the structures formed by interfaces correspond to the system’s

equilibrium state. When equilibrium is no longer stable, the shape changes. There are reports
[15, 16] of the studies of interface stability. One paper [15] discusses the stability of an
interface with force factors and no elasticity, i.e. the moduli of elasticity are equal to zero.
Reference [16] is concemed with an opposite case where variations in free energy are wholly
associated with the bending elasticity Ejj which responds to the variations of the total

curvature.

This paper considers the stability of a spherical interface shape. The contributions of all the
force factors and moduli of elasticity to the stability criteria are taken into account.

Statement of the problem.

Let the interface be spherical with the radius ro. There is a drop of hydrostatic pressure at the
interface between the bulk phase and the interior volume of the vesicle. The thermodynamic
properties of the interface are determined by the force factors, namely the surface tension
Vo and the first and the second moments Cl and C2.

Variations of the free energy of a piece of interface of an area A in the process of isothermal
deformation with a constant amount of components may be described as

where the functions Î’G(A,J, K), C1(A,J, K) and C2(A,J,K) allow for a potential
redistribution of the components ; all the geometrical characteristics describe the dividing
surface. Variations of the force factors during deformation are, by definition, expressed in
terms of the interface moduli of elasticity [10].

where yl, Co and Co are the initial values of the force factors.
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Let us consider the interface in the state of internal mechanical equilibrium. The condition
of equilibrium force a piece of interface with respect to lateral displacements [9] is expressed
as

In equations (6) and (7) the operators 81ax and a/ay denote differentiation in a system of
coordinates whose axes (x, y ) are in a plane which is tangential to the considered interface
and coincide with the direction of the principal curvatures ; cx and cy are the principal
curvatures, Qx and Qy are the values of the cutting forces which are applied to the edges of the
surface element and are perpendicular to the axes x and y. Equilibrium equations describing
rotation may be written as

The equilibrium equations (6)-(9) were obtained on the basis of [9] assuming the membrane
thickness h to be much less than the radius of curvature ro. In equations (6)-(9) the terms of a
higher order than (h/ro)2 were disregarded.

Let us consider a minor deformation of a spherical interface. This deformation may be
assumed to be axially symmetrical, and the interface shape may be described by the function
(Fig. 1) as

Fig. 1. - Axial symmetrical deformation of a spherical interface.
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where r is the length of the radius vector drawn from the center of the sphere to a point on the
dividing surface in the deformed state ; cp is the meridional angles is the arbitrary angle
function and À is the deformation amplitude.
The curvatures and the element of the area of the dividing surface in the state of

deformation may be presented, to an accuracy of the second-order terms with respect to
À, as

Let us assume that the deformed interface maintains an equilibrium and, in particular, the
equation of lateral equilibrium (6) is satisfied. The objective of the investigation includes the
study of the stability of a spherical interface to such deformations.

Stability criteria.

The thermodynamic stability of a spherically shaped interface is determined by the amount of
work to be applied to the interface and its environment at a minor deformation. Zero work
estimated in the first order of magnitude of deformation yields the condition of equilibrium
between the interface and the bulk phases. The contribution made by the deformation of the
second order of magnitude determines the stability of the equilibrium state. If the second

order contribution is negative, equilibrium is unstable. _

To determine the stability criterion, work must be calculated to an accuracy of the second
order terms of deformation magnitude. By virtue of equations (1), (3)-(5) an elementary work
applied to the deformed part of an interface and required for its further deformation is equal
to

The last term in equation (14) is the work applied to the bulk phases, whereas

AP is equal to the difference between pressure values for the sphere interior and

environment.

On the basis of the equation of lateral equilibrium (6) as well as equations (7)-(9), (3)-(5),
(11)-(13), the relative expansion of an interface may be found (Appendix A) with an
adequate accuracy yielding the solution
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The expression for the deformation work obtained by integrating (14) over the deformation
value and interface area may be presented, with an account for (11)-(13), (15), in the first
order with respect to À as

When W1 is zero at an arbitrary e an equilibrium equation may be written :

which is a generalized Laplace equation for a spherical surface [9].
The second order work with respect to À determines the stability of the spherical interface

equilibrium and may be described (Appendix B) as

The work WII to be applied to the environment and the spherical interface to deform the
latter is determined by the type of the deformation 03BE (~ ) and by the interface parameters,
such as the force factors associated with the initial state yl , Co and Co, the moduli of elasticity
EJJ, EA-41 EKK, EAJ, EAK and EjK, and the pressure drop between the internal and extemal
bulk phases.
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It is convenient, and in most cases possible, to estimate the deformation e * (p ) at which the
system loses stability « for the first time ». Estimation of § * is based on an assumption that
there are values of the interface parameters for which the amount of work WH required to
implement the deformation e * may be negative. For any other type of deformation

e :0 e *, however, the same values of the interface parameters result in a positive
WII ; in effect, the system is unstable only with respect to § *.
The criterion for a loss of stability introduces a link between the force factors, the moduli of

elasticity, and the pressure drop OP , at which the spherical interface loses stability with
respect to § * .
Equation (18) appears to be too cumbersome for analysis ; let us consider extreme cases.

NON-EXPANSIBLE INTERFACE. - Let us consider an interface with a large extension-

compression modulus of elasticity (EAA --+ (0). Such systems are represented by e.g. thin
insoluble films and bilayer lipid membranes which do not exchange material with any
reservoir during deformation. In this case the last term in equation (18) substantially exceeds
all the other terms for an arbitrary form of deformation e and is positive. Therefore the
deformation g * at which stability is lost « for the first time » should comply with the zero
value of this term

This class of deformations will be analysed in this section. In this case equation (18) may be
reduced to a simplified form where the surface tension y 0 is eliminated by using a generalized
Laplace equation (17)

The analysis of equation (20) reveals a relationship between the force factors and the interface
moduli of elasticity for which the spherical shape becomes unstable. The deformation at
which stability is lost « for the first time » is associated with a maximum characteristic

wavelength of the perturbation imposed on the spherical interface. The longest-wave
perturbation which satisfies equation (19) may be written as

The criterion of stability loss to deformation (21) can be expressed in terms of a pressure
drop OP equal to the difference between the pressure values for the bulk phase inside the
sphere P in and for the exterior bulk phase P out, OP = Pin - P out. The spherical shape loses
stability if the pressure drop is less than the critical value
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where

The value of the critical pressure drop APcr which designates the boundary between the
states of stable and unstable equilibrium of a spherical interface depends, in compliance with
equation (22), on the moments Co and Co. As defined in references [8, 9], a positive value of
the first moment Co is related to a tendency of a part of the interface to reduce the total
curvature or to cave in the sphere. Similarly, at a positive value of the second moment
Co 2 that part of the interface tends to reduce the Gaussian curvature. The relationship between
the critical value of the pressure drop âP cr and the moments is shown in figure 2. The
unshaded area above the straight line represents a stable equilibrium of the spherical
interface, whereas the shaded area below represents an unstable equilibrium of the system.
Stability is lost in the points on the straight line.

Qualitatively, figure 2 suggests that for the fixed moments Co and Co, an increase in
pressure inside the interface-formed sphere can bring the system to a stable equilibrium.
Conversely, a decrease in the ambient pressure results in the destabilization of the spherical
shape. With the value of AP specified, at a greater Co (the interface tends to cave in) and a
greater Co 2 (a tendency to reduce the Gaussian curvature) the spherical shape may lose
stability. The lesser and negative values of the moments stabilize the system.

Let us comment on the interceptions of the straight line and the axes (Fig. 2). If a sphere
with radius ro yields a spontaneous interface shape at Co 1 = 0 and Co 2 = 0, the shape becomes
unstable when there is a negative pressure drop equal to

If there is no pressure drop between two homogeneous phases, AP = 0, the spherical
interface is found to be unstable when the moments are large enough

Let us consider an even more specific case where the moments of a spherical interface may
be linearly related to spontaneous curvatures [10]

In this case the criterion of the loss of stability relates the pressure drop, moduli of elasticity,
and spontaneous curvatures as

The relationship between the critical pressure drop âP cr and the spontaneous curvatures
Js and Ks is shown in figure 3. The unshaded area stands for a stable state, and the shaded
area, for an unstable state of the spherical interface. At a specified value of âP cr a reduction
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Fig. 2. - Stability criterion for a spherical non-expansible interface expressed in terms of the pressure
drop and moments : AP is the pressure drop between the bulk phase inside the sphère and
environment ; C01 and Co 2 are the first and second moments respectively ; the shaded area designates the
absence of a spherical shape.

Fig. 3. - Stability criterion for a spherical non-expansible interface : relationship between the pressure
drop OP , spontaneous total curvature Js, and spontaneous Gaussian curvature K.,. The factors
a and Q are expressed on the basis of the interface moduli of elasticity, as a =-2Ejj + 2JK ;

1 ....... 
ro ( ro /

of spontaneous curvatures destabilizes the system. If the spontaneous state of the interface is

flat, Js = 0, KS = 0, the critical pressure value below which stability is lost is

According to equation (27), for a spherical interface with a zero spontaneous curvature of a
sufficiently large radius (when the last two terms in the right-hand side may be neglected) the
critical pressure drop is positive, i.e. the spherical shape may lose stability despite the
pressure being higher inside than outside the sphere.
The stability criterion for a spherical interface may be expressed in terms of the Gibbs

surface tension and the moments. A spherical shape corresponds to an equilibrium state of
the system, thus the generalized Laplace equation (17) holds. Using this equation as a
relationship between AP and yG, we obtain a spherical shape which loses stability if the Gibbs
surface tension is less than the critical value

found as
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The criterion of the loss of stability of a spherical shape of a non-expansible interface,
expressed in terms of the Gibbs surface tension, is shown in figure 4. The shaded area stands
for the absence of a stable equilibrium. Figure 4 shows, in particular, that at low and negative
values of the moments

the spherical shape is unstable even at some negative values of the surface tension

y G. The spherical interface for which the moments are fairly large, .

loses stability even for positive values of the surface tension.
One case of an interface with a large elongation modulus of elasticity is a bilayer lipid

membrane, which consists of two monolayers of lipid molecules. A spherical vesicle is a most
often met membrane structure. A membrane is selectively permeable for water. Due to this
the transmembrane pressure drop in the vesicles is osmotic. The force factors in the vesicle
membrane, in particular the moments Co and Co, are related to both the structure of the lipid
molecules forming monolayers and the interactions of monolayers (for more details, see [11]).
The most frequent cause of the occurrence of moments in a bilayer lipid membrane is a non-
optimum ratio of the numbers of molecules in the external and intemal monolayers. For the
moments to be absent in the membrane of a spherical vesicle, there must be fewer molecules
in the internal monolayer than in the external one [11]. In this case, according to equation
(23), a spherical vesicle remains stable even if the osmotic pressure inside is lower than

outside (however, still being within the limits defined by Eq. (23)). If the number of
molecules in the internal monolayer is equal to or greater than the respective number in the
external monolayer, the positive values of C° and C° occur in the vesicle membrane [11]. In
this case, as shown above, the spherical shape loses stability even for positive values of the
transmembrane osmotic pressure drop. The loss of stability should obviously result in the
membrane caving in and, possibly, in the phenomena resembling the endocytosis of live cells.
To maintain a stable spherical shape in this situation, the concentration of an osmotically
active substance inside the vesicle must be high enough to enable the pressure drop to exceed
the critical value (27).

Fig. 4. - Stability criterion for a spherical non-expansible interface expressed in terms of the Gibbs
surface tension y0g and the moments Co and Co. Shaded area designates the absence of stability.



569

An interface with a small extension-compression modulus of elasticity.

Let us consider an interface whose extension-compression modulus of elasticity is small

(EAA --&#x3E; 0). This is the case of interfaces which are capable of exchanging components with
the environment in the process of deformation (an extreme case of such a system is an
interface of two pure liquids). In this case there is a weak dependence of the values of all force
factors on the area A of a part of the interface. Using equation (2) which relates the moduli of
elasticity with the force factors and neglecting the area derivatives of yG, Ci and

C2, equation (18) may be rewritten as

As in the case of a non-expansible interface, the stability of a spherical shape is « for the first
time » lost to a deformation which has a maximum wavelength. In the case of the deformation
specified as § = 03BC + (1/3 + cos 2 cp) the constant term determines the variation of the
interface area ; the contribution of 1/3 + cos 2 cp is for the bending deformation at a constant
area. In the case under consideration the work of an exterior source applied to a spherical
interface in equilibrium and to the environment during deformation is equal to

Equation (29) shows that there are more chances for the loss of stability of a spherical shape
of an expansible interface (EAA -+ 0) than in the above case of a non-expansible interface
(EAA -+ 00 ).
An expansible interface may lose stability in two ways. The first is similar to the above case

of a non-expansible interface. In the case of deformation at g = 0 for the pressure drop
àP (between the bulk phase inside the sphere and its environment) whose value is less than
the critical one 0394Pcr(1)

the spherical shape of an expansible interface loses stability. The deformation for which
stability is lost in this case amounts, as in the case of a non-expansible interface, to a flexure
with the maintenance of the area (to an accuracy of the terms of the second-order
infinitesimal for the deformation amplitude À).
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For an expansible interface there is another way to lose stability, by virtue of the last term
in the right-hand side of equation (29). If the coefficient by IL 2 is positive, then deformation,
with the constant IL being large enough, requires negative work to be done ; thus the system
proves to be unstable to this deformation. Consequently, in the case of an expansible
interface the system is characterized by one more critical pressure value Ap cr(2) equal to

If the pressure inside the sphere is high enough,

the sphere loses stability for a deformation whose constant component 03BC satisfies the

inequality

provided that the numerator in (31) is greater than zero. If the numerator is negative, stability
is lost for deformations with any values of 03BC.
The deformation for which the system loses stability entails an increase in the interface

area, which actually amounts to a sphere bulging.
The criterion (30) of the loss of stability of an expansible spherical interface is illustrated in

figure 5. The shaded area stands for the absence of a stable equilibrium of a spherical shape.
Both ways in which the stability of an expansible spherical interface may be lost are

illustrated in figure 6. The unstable equilibrium of the system is represented by the unshaded
area. The bulging-destabilized states are shown by vertically shaded area. The unstability to a

Fig. 5. - Stability criterion for a bulging deformation of a spherical interface. For notation, see figure 2.
Shaded area designates the absence of a stable equilibrium.

Fig. 6. - Complete stability criterion for a spherical expansible interface. For notation, see figure 2.
Unshaded area designates stable equilibrium. Shading designates the absence of stability : vertical, to
expansion ; horizontal, to flexure ; crossed, to both types of deformation.
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flexural deformation with no changes in the area is represented by horizontal shading. Finally,
the area shaded both vertically and horizontally denotes the states in which the expansible
spherical interface is unstable to both types of deformation.
An example of the systems discussed in this section is a drop of oil (or another liquid which

does not mix with water) in water. For all the above effects to be possible, the internal volume
of the drop must be able to exchange substances with the reservoir maintaining a constant
pressure within the drop.

Discussion.

The paper discusses the conditions of thermodynamic stability of a spherical interface. The
problem is solved by using the Gibbs approach to thermodynamics of interfaces extended to
the case of elastic interfaces. Stability was studied for deformations that do not disturb the
conditions of the internal interface equilibrium.

Equilibrium and stability criteria are defined with respect to axially symmetric pertur-
bations. Such a loss of generality is compensated by the opportunity of analytical solution of
the problem.
The investigation generalizes the available approaches to the study of the stability of

structures formed by interfaces [15, 16]. In reference [15] the problem was solved within the
Gibbs theory of capillarity for an elasticity-free interface of an arbitrary shape. Analysis
reveals that for an interface whose moduli of elasticity and cutting components of the
microscopic pressure tensor are zero, the equilibrium equation for the lateral direction holds
only for the deformations involving a shift of every interface piece without an additional
flexure. For this reason, the stability criteria were found only for that class of deformations
[15].
The results of the present investigation include an analogue of the stability criterion for a

spherical interface [15], viz. an inequality obtained for a membrane with a small elongation
modulus (EAA ---&#x3E; 0) at which the spherical shape is unstable if AP &#x3E; Ap (2) (30).

Reference [16] discussed another extreme case, that of a non-expansible interface whose
mechanical properties are described by using only the first-bending modulus of elasticity
Ejj. The authors [16] did not use the Gibbs approach ; they proceeded from a phenomenologi-
cal formula for elastic bending energy which was originally derived and discussed by Helfrich
[17]. The interface was assumed [16] to be completely non-expansible and the conditions of a
lateral equilibrium during deformation was not discussed. Besides, the authors [16] did not
study the response of the equilibrium condition to the elasticity-related factors for the
deformations including changes in the Gaussian curvature, and to the factors related to the
cutting components of a microscopic pressure tensor. The findings of the present investigation
suggest that the spherical shape of a non-expansible interface (EAA --&#x3E; 00 ) may lose stability if
the pressure drop between the homogeneous phases is less than the critical value

dP cr obtained by equation (22). A particular case of expression (22) is

where Ci 1 was assumed to be related by equation (25) to the spontaneous total curvature
Js ; besides, all the factors in the Gaussian curvature and cutting components of a microscopic
pressure tensor were neglected.

In the present investigation we took into account the full set of elasticity moduli and
spontaneous geometrical characteristics of the membrane. The results of such a consideration
give additional information about the dependence of instability criteria on the vesicle radius.
It can be important for experimental investigations of the problem.
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Appendix A.

Calculation of a relative expansion of a part of interface.

An equilibrium equation for the lateral interface displacement may be presented in the form
of equation (6). Substituting in equation (6) an expression for the force factors where only the
first order terms of the magnitude of deformation remain, it is possible, with an account for
equations (3)-(5), (8)-(9) and (11)-(13), to integrate this expression, resulting in

- - - - - 1

To find the constant in the right-hand side of equation (Al), let us integrate (Al) over the
area of a non-deformed sphere, which yields

const.

The substitution of (A2) into (A1) and solution of the resulting equation for dA yieldsA

equation (15).

Appendix B.

Calculation of the work of interface deformation.

The work of interface deformation found by integrating equation (14) can be conveniently
calculated by parts.
The elongation deformation work is

The use of equations (11)-(13), (15) results in

where V and m are defined in the text.
The integration of equation (Bl) over the angle dcp from 0 to 7r and over the deformation

8 À from 0 to À yields the following expression for the elongation deformation work
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The work of the first-bending deformation is calculated in a similar way as

Integration of (B3) results in the expression

And finally the work of the second flexure is

Integration yields

The total of equations (B2), (B4) and (B6) presents a complet expression for the work of
interface deformation.
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