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On the scattering of Bloch-waves at a surface
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(Reçu le 14 juin 1989, révisé le 16 octobre 1989, accepté le 9 novembre 1989)

Résumé. 2014 On établit quelques propriétés générales de la diffusion des ondes de Bloch par une
surface. On énonce tout d’abord une condition nécessaire pour l’apparition d’un état de surface
dans une bande interdite : elle stipule que le groupe d’espace doit contenir la rotation de 180°
autour de la direction normale à la surface ou que le substrat doit avoir un centre de symétrie. On
établit ensuite une loi de conservation de la matrice de diffusion des ondes de Bloch par la

surface. On discute sa signification physique en relation avec celle du théorème optique.
Finalement on montre que le champ d’onde diffusé au voisinage de la surface dépend d’une
condition initiale portant sur l’onde de Bloch incidente. On compare, sur un exemple spécifique,
la signification physique de trois conditions différentes, utilisées couramment dans les calculs.

Abstract. 2014 Some general properties of three-dimensional Bloch-waves scattered by a surface are
derived. An existence condition, for a surface two-dimensional Bloch state to arise in a forbidden
gap, is first given : it requires either the space group to contain the rotation by 03C0 around the

surface normal direction or the substrate to have an inversion centre. A conservation law of the
scattering matrix of bulk Bloch-waves at the surface is then worked out. Its physical significance is
discussed together with that of the optical theorem. Finally the scattered wave-field in the
neighbourhood of the surface is shown to depend upon an initial condition bearing on the incident
Bloch-wave. The physical relevances of three different conditions, used in current calculations,
are compared for a specific example.
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1. Introduction.

The eigenstates of a crystal, owing to the three dimensional (3D) periodicity of the lattice, can
be expressed as Bloch functions [1]. This statement holds equally for electrons, phonons,
plasmons, magnons and so on. A Bloch-wave is characterised by an energy E and a wave-
vector q. This latter is confined inside the 3D Brillouin zone. The dispersion law

E(q), defined for any q within the Brillouin zone, is a characteristic property of the crystal.
The spectrum of E-values consists of bulk bands separated by forbidden gaps. The energy
E varies continuously within a band, whereas there is no real q for a bulk excitation at any
E value inside a gap. However a Bloch function with complex q can be associated with any
E in the gap.
By cutting a 3D crystal along a plane, a semi-infinite crystal, limited on the vacuum side by

a surface plane, is produced. This semi-infinite crystal has still 2D periodicity along the
surface. However the loss of periodicity in the direction, not contained in the surface plane,
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has two consequences [2, 3], both being of paramount importance as regards chemical and
physical processes taking place at a surface :

i) surface states may arise in the gaps ;
ii) the bulk 3D Bloch-waves are scattered by the surface. The purpose of this work is to

present and to discuss several new properties of the surface states and bulk Bloch wave
scattering at the surface.
The surface does not necessarily sustain surface states. Little effort has so far been made to

go beyond the conclusions of Gurman and Pendry [4]. Nevertheless Stonely’s discussion [5] of
the possible occurrence of a Rayleigh branch within the framework of elasticity theory is
worth mentioning. A necessary requirement for the existence of a surface state will be
presented here.
The properties of the scattering matrix which describes the shape of the scattered

wavefunction far away from the scattering region have been studied in detail for the scattering
by a localised potential [6]. A celebrated conservation law, known as the optical theorem, has
even been worked out for this case. We shall extend here this discussion to the case of 3D

Bloch-waves scattered at a surface.
Whenever a 3D Bloch-wave is scattered at a surface, the scattering wave-function in the

vicinity of the surface has been shown elsewhere [7] to depend on the incoming partial wave.
This was called the initial condition of scattering in reference [7]. Here we resume this
discussion by clearly identifying the relevant initial condition in the cases of Green’s function
and slab calculation. Furthermore we introduce a third initial condition and we calculate the

scattering solutions corresponding to these three initial conditions of scattering in a specific
case. As the result, as expected, is found to depend on the choice of the initial condition, a
discussion is given of which condition among the three ones is likely to account at best for the
scattering of thermally excited 3D Bloch-waves at the surface of a real semi-infinite crystal.
The article is organised as follows : in section 2, 2D Bloch-waves are defined with respect to

3D Bloch-waves and useful properties for our purpose are recalled ; section 3 presents a
necessary condition for the existence of a surface state ; section 4 deals with the properties of
the scattering matrix of 3D Bloch-waves ; in section 5 three different initial conditions of
scattering are compared and their physical implications are analysed.

All properties to be shown here result merely from the Bloch-like character of the
eigenstates of the 3D periodic crystal, and are consequently valid generally for any type of
Bloch-like excitation. However for the sake of specificity it has proven to be convenient to
consider electrons in sections 2, 3 and 4, and phonons in section 5.

2. Général properties of 2D Bloch functions.

The interface between vacuum and bulk matter is made up of an arbitrarily large number of
relaxed, reconstructed or adsorbed layers, all of which should have a 2D periodicity
commensurate with that of the 2D lattice. These layers are hereafter referred to as the surface
slab. Beyond this surface slab in bulk matter the crystal is 3D periodic and is characterised by
the unit cell spanned by the vectors ai, a2, a3. Any position vector r is defined by its three
components xl, x2, X3 taken in an orthogonal coordinate frame. The surface plane is spanned
by the ai, a2 vectors whereas the x3 direction along a3 is normal to the surface.

Any electronic eigenstate E, q &#x3E; of the 3D crystal can be regarded [1] as a Bloch wave of
energy E and wavevector q, defined itself by its projections qs, q3, onto the surface and
normal to it respectively. The vector qs remains confined inside the 2D Brillouin zone. The
wave function E, q &#x3E; is equal to eiq, ,u (r) where the function u (r ) has the periodicity of the
3D lattice.
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The eigenstates of the semi-infinite crystal are 2D Bloch functions, equal to e qE, *r f(r)
where f has the periodicity of the 2D lattice. The function f (r ) is obtained by solving the
Bloch equation [1] :

where à f and Af denote respectively the Laplacian and gradient operators acting on
f (r), h and the electron mass are taken equal to unity and V (r) is the real 2D periodic
potential of the semi-infinite crystal. Equation (2.1) can be rewritten as :

where D (E, qs ) is a linear operator. It is inferred from equation (2.1) to have the property :

where the superscript + means complex conjugate.
Let us now recall from reference [8] the properties of f (r), if the space-group of the semi-

infinite crystal is assumed to contain the surface inversion c defined by :

Letting c act on equation (2.2), while taking advantage of equation (2.3), implies :

By comparing equations (2.2) and (2.5), it is inferred that f ’ (cr) is solution of equation (2.1)
too. Consequently if fi is a solution of equation (2.1), there is another solution

fi, so that :

As the function eiq3. X3 U (r) originating from the Bloch-function 1 E, q) is a solution of

equation (2.1) in bulk matter, equation (2.6) entails that there is in general a pair of functions
ui (r) and uj (r) with the same E and qs, but with q3 ; i = - q’ 3j and ut (cr ) = uj(r).

Finally let us consider the g component of the 2D Fourier transform of f (r ) :

where g is a vector of the 2D reciprocal lattice and the integration in equation (2.7) is

performed over the 2D unit cell (ai, a2). It is deduced from equation (2.6) that

f; (g) = fj (g) for any g. This property underlies the following section.

3. Existence condition for the surface state.

We consider here the solution f of equation (2.1) at an energy E falling in a forbidden gap. As
3D periodicity is retrieved on the bulk matter side x3 &#x3E; 0, f in this region consists of a linear
combination of an infinite [9, 10] number of evanescent 3D Bloch-waves :
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where the complex component q3 . of the 3D wavevector qm is such that 1 el q3. - X3 I 1 for
X3 &#x3E; 0, and Rm is the weighting coefficient attached to the m-th partial evanescent wave

el ’q3. - X3 u,,(r). The dispersion relation q3 m (E ) is a property of the complex bulk band
structure and is henceforth assumed to be known as well as the 3D periodic functions
Um (r). These latter are degenerate, in so far as they have the same energy E and same
projection q,. Thus they differ only by their component q3 m .
On the vacuum side x3 «-- 0 which includes also the surface slab, the solution f of

equation (2.1) can be written [11] as a linear combination :

where the function vn are degenerate in the same way as the functions um (r ) hereabove and
the a n are weighting coefficients. The functions vn are uniquely determined [11] by the
requirements that they be 2D periodic along the surface and vanish exponentially far from the
surface in vacuum.
As both functions um (r ) and vn (r ) are assumed to be known, the only unknowns are the

coefficients R’ m and a n. They can be found by requiring that f and a f /ax3 be continuous at
X3 = 0 where the interface separating the bulk matter from the surface slab is located. It

proves to be convenient [11] to express these two conditions on the 2D Fourier transforms of
the um and vn functions, as defined in equation (2.7) :

Once written for every g of the 2D reciprocal lattice, equations (3.3) make up a linear
homogeneous system of equations :

where the unknown components of x are the R’ and a n coefficients. Equation (3.4) is

equivalent to finding the real E roots of the determinant of Dg. As the matrix elements of
Dg are in general complex, equation (3.4) amounts to equating to zero both the real and
imaginary parts of its determinant. This system of two equations with only one unknown, the
real energy E, has thus in general no solution, except when the determinant of

Dg is real or purely imaginary. This will happen in general only if the space-group contain the
c operation, so that equation (2.6) holds. Indeed this leads to a Dg matrix consisting of pairs of
columns, corresponding to fi (g) and fj (g) and hence complex conjugate of each other. As a
consequence the determinant of Dg is either real or purely imaginary. Hence the property of
the semi-infinite crystal that its space group contains the c operation is our desired

prerequisite for the surface to sustain a surface state. As shown in reference [8], if the space-
group of the semi-infinite crystal does not contain c but rather a mirror plane, surface states
may arise only for those qs normal to the mirror plane. Consequently if the space group does
not contain either the c operation or any mirror plane, a surface state cannot arise except for
qs = 0, that is at the centre of the 2D Brillouin zone, because the solution f of equation (2.1 )
is real there.
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Nevertheless if we consider a finite slab rather than a semi-infinite crystal, surface inversion
is not necessary for the occurrence of surface states. An inversion centre in the middle of the
slab actually suffices. As a proof of this statement, we apply first the inversion to

equation (2.1) which leads to the result that, if f (r ) is a solution, f ’ (- r) is a solution too,
since the eigenstates of a slab are non-degenerate. Now the matching equations (3.3) must be
written twice, that is at the two boundaries of the slab. Once this is done, the

D, matrix turns out again to consist of pairs of columns, complex conjugate of each other,
which was seen above to be required for a surface state to arise. Since the expansion in
equation (3.1) contains only evanescent components, it makes no difference while solving
equation (2.1), whether we consider a semi-infinite crystal or a finite slab, provided the slab is
thick enough (note that this argument is not valid for travelling waves which do not vanish
even at infinite distances). Then our desired prerequisite is equivalent to the statement that
the substrate (but not necessarily the surface slab) has an inversion centre, which includes in
particular all Bravais lattices.

In summary, it has been shown that a semi-infinite crystal generally cannot have a surface
state, except at the 2D Brillouin zone centre, unless either it has the surface inversion

symmetry defined by equation (2.4), or its substrate has an inversion centre.

4. Properties of the scattering matrix.

Since the surface breaks the periodicity along a3, it also scatters every incident Bloch-wave

1 E, qi&#x3E; with qi = (qs, q3 i). The scattered field in the x3 : 0 region is still given by equation
(3.2), as for the surface state. Conversely on the x3 :&#x3E; 0 side, it reads

The q3 m, u,, and Re mi are defined as in equation (3.1). The functions ui and uj correspond
respectively to the incident 3D Bloch-wave E, q,, q3 i &#x3E; and the outgoing ones E, qs, - L73 j &#x3E;
each of them having the weight R!,. Incoming 3D Bloch-waves are distinguished, in this work,
from outgoing ones by their respective group velocities aE/aq3 displaying opposite signs. The
integer nt (E, qs ) is the number of pairs of degenerate 3D travelling Bloch-waves

E, qs, ± q3 j &#x3E; . Expressions in equation (3.1) and equation (4.1) differ in two respects :
i) there is an incoming partial wave E, qs, &#x3E; q3 i &#x3E; in equation (4.1) while there is none for

the surface state in equation (3.1) ;
ii) the initial condition of scattering [7] is defined by the choice of Q3 i. As there are

nt possible values for Q3i’ the fi defined by equation (4.1) make up a nt-degenerate manifold,
whereas the surface state of equation (3.1) is non-degenerate.
The (n, x nt ) matrix R of element Rji is realised to be a scattering matrix, as it maps the

incoming asymptote of f i , 1 E, qs, 5 173 i &#x3E; onto nt of its outgoing ones E, qs, - q3 i &#x3E; . Moreover
if the 2D space group contains the surface inversion, defined by equation (2.4), R’ has the
following property, as shown in reference [7] :

where 1 is the (nt x nt ) unit matrix, and the subscript + means complex conjugate.
We present now a new property of R’ which is valid in general [12] :
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where (Rt)ij = (Rj;)+, and ÕE/Õq3 is a diagonal (nt x nt) matrix, defined by

(ÕE/Õq3)jj = ÕE/Õq3F The demonstration of the identity (4.3) is given in the appendix. An
application of equation (4.3) leads to the conservation law, the meaning of which is discussed
elsewhere [13] :

As working out equation (4.3) requires only that the potential of the Schrôdinger equation be
real, equation (4.3) is also valid for the scattering of spherical waves by a finite range potential
embedded in vacuum. In this latter case aelaq is proportional to the unit matrix, which
entails, according to equation (4.3), that Rt is a unitary matrix and the statement in equation
(4.4) is merely equivalent to the optical theorem. The fact that equation (4.2) also holds for
this case, combined with Rt being unitary enables us to retrieve the result [6] that

R is also symmetric. It is noteworthy that R is unitary and symmetric only if the Hamiltonian,
outside the scattering region, is diagonal in a basis of spherical waves and the scattered field is
indeed expanded in spherical waves (but not in planes waves !). However in contrast to the
proofs of equations (4.2) and (4.3) given in textbooks [6], our demonstration does not resort
at all to such arguments as the conservation of the total flux of particles and the time-inversion
symmetry. Moreover we recall [7] in a compact form a by-product of equation (4.2) which has
been apparently overlooked in the textbooks :

where the matrices a and R e are defined by their elements aji and Rfi ; the matrices
ii and R’ are defined with respect to a and R e by their elements equal to ii ji = a mi and

Rii = Rj§; respectively ; the indices j and m are related by vj(r) = (vm(cr»’ and

Uj (r) = (um (cr ) )+ . Finally it should be noticed that, at the surface of a semi-infinite crystal,
aElaq3 is not proportional to the unit matrix, which entails that nt of the fi defined by
equation (4.1) are not orthogonal.

5. Significance of the initial condition of scattering.

We want now to point out how influential the initial condition of scattering is in assessing the
value of the 2D Bloch function inside the surface slab. To this purpose, we consider unrelaxed

Ni(100) with a lattice dynamical model assumed to consist of central forces between nearest
neighbours everywhere including the surface slab. We first recall [14] the definition of the
partial spectral density p w :

where w designates here the vibrational amplitude parallel to the surface in the first layer,
Cù is the bulk phonon frequency and the i-sum is carried out over all 2D phonons of frequency
w;, i.e. the vibrational eigenstates of the semi-infinite crystal. We focus on the even modes in
the (010) direction at a point Q of the 2D Brillouin zone distant by ?r/(2 J2 a) from the
centre (a = 2.49 Â stands for the Ni lattice parameter). The 3D phonon dispersion normal to
the surface at Q is given in figure 1.



465

Fig. 1. - Bulk phonon dispersion law w (q3) in Ni for q = (ir /4 a, 7r/4 a, q3). The phonons are even
with respect to the mirror plane (010). Only that part of the dispersion curves useful for the discussion of
the results in figure 3 has been represented. The Van Hove singularities are denoted Cù 1 ,

w 2 and W3.

Within the forbidden gaps (nt = 0) and the nt = 1 bulk frequency domains, the initial
condition of scattering is unique because there is either no incoming 3D Bloch-wave
(nt = 0 ) or a single one (nt = 1 ). In both cases the corresponding scattered 2D Bloch state is
not degenerate. Inversely there are two of them in the nt = 2 regions. We shall calculate the
spectral density p w with three different initial conditions of scattering :

i) condition 1 has been discussed in the previous section. The 2D phonon comprises a single
incoming 3D wave. Incoming and outgoing 3D phonons are distinguished by the opposite
signs of their respective group velocity aco /aq3. A typical scattered field is depicted in

figure 2a ;
ii) condition II differs from condition 1 by the criterion used to distinguish incoming from

outgoing 3D phonons. Here the sign of the phase velocity q3 is taken instead of that of

OCJJ /oQ3. If q3 and 8W laq3 have the same sign, the scattered field looks as in figure 2a.
However if they are opposite, it looks as in figure 2b. Each set of eigenstates of the kind
depicted in either figure 2a or figure 2b makes up a basis for the nt-manifold. Both sets are
related to each other through a linear transformation which is however not unitary, since none
of the two sets is orthogonal, as noticed in the previous section ;

iii) condition III corresponds to the case of the slab calculation (a thickness of 21 layers is
taken hère). The scattered field then includes nt of the degenerate pairs 1 CJJ, qs, ± Q3 i). Thus
the eigenstates are seen to consist of stationary waves rather than travelling ones as in

conditions 1 and II. For each pair, the respective weights of the incoming and outgoing partial
waves are in general of unequal modulus. Hence the scattered field looks as pictured in
figure 2c. It is of importance for the following discussion to note that there is a definite phase
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Fig. 2. - Sketch of the asymptotic shape of the 2D Bloch-wave with nt = 2 for three different scattering
conditions I, II and III. Incoming and outgoing 3D Bloch-waves, according to the definition of section 4,
are denoted ]q;) and qi&#x3E; respectively.

shift between the two incoming beams in figure 2c. As the scattered state for condition III is
not degenerate, this means that the nt-fold degeneracy is completely lifted between

nt orthogonal eigenstates of slightly different frequencies. All nt of the corresponding
eigenstates look as in figure 2c. Consequently, even though the thickness of the slab is
increased to infinity, they still will merge into a non-degenerate eigenstate of the same type as
in figure 2c. Thus the nt-fold degeneracy is completely overlooked, if condition III is assumed
to calculate the partial spectral density.

In most calculations of the spectral density with Green’s function [15], the orthonormal
basis of non-degenerate eigenstates corresponding to condition III in figure 2c is assumed. At
the outset the crystal is taken to be a finite slab, the thickness of which is subsequently
increased to infinity. The partial density, obtained in the limiting case of infinite thickness, is
accordingly found to agree well with that calculated with the slab method [16]. Nevertheless
there is another procedure to calculate the spectral density with Green’s function [17] : it
takes advantage of the property that the equations of motion can be solved with the unknowns
being the desired partial spectral densities [14]. The initial condition of scattering is
determined by the form assumed for the bulk spectral densities. In principle all conditions,
outlined in figure 2, can be taken with this method. However it is not explicitly stated in
reference [17] which one has been actually chosen.
The calculated results are represented in figure 3. The bulk phonon density of states at fixed

qs

is plotted in the upper part. As expected, it diverges like 1 (JJ - (JJ i 1- 1/2 at each Van Hove
singularity toi. The spectral density p w is given in the lower part of figure 3 for the three initial
conditions mentioned above. In the nt = 0 and 1 domains, all three conditions lead to the
same result since the 2D scattering state is not degenerate, which is equivalent to the
statement that the initial condition of scattering is unique in the nt = 0, 1 regions. Inversely in
the nt = 2 regions, the Pw associated with conditions 1 and II are equal or are not according to
whether the phase and group velocities have the same sign, as for m &#x3E; (JJ3, or have opposite
signs, as for Cù « £0 - (JJ 2. As condition III never coincides with conditions 1 and II in
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Fig. 3. - Plots of the bulk phonon density of states p (CI)) and the partial spectral density
Pw(Cù) for three different conditions. The value of nt is recalled at the top. Vertical dashed lines denote
the Van Hove singularities CI) l’ Cù2 and Cù3. In the upper part, for nt = 2 regions, black triangles and white
circles on the one hand and black circles on the other hand represent respectively the partial densities

nt

aq3 i a 1 and the total one p (co aq3 i / a In the lower part, the spectral density
i = 1

Pw(Cù) has been plotted in black circles, white circles and vertical solid lines for conditions I, II and III,
respectively. The vertical arrow at w represents the contribution of a surface state.

nt &#x3E;- 1 regions (see Fig. 2) the spectral density Pw attached with condition III differs also
markedly from those obtained with conditions 1 and II.
To decide which condition among I, II and III best describes the situation in a real semi-

infinite crystal, a physical picture of the scattering of thermal phonons at a surface is needed.
To that end we first define a surface selvedge, extending from the surface into bulk matter
over a thickness equal to the mean free path of bulk phonons. Whenever any pair of 3D
phonons are created by thermal scattering inside the surface selvedge, there can be no definite
phase relationship on average between them. Such thermal phonons, propagating sub-
sequently towards the surface, are scattered according to the picture in figure 2a. The well
defined phase-shifts between the various incoming and outgoing beams are not lost, until the
outgoing waves have travelled out of the surface selvedge over several mean free paths, so
that thermal equilibrium of the phonon bath is recovered in bulk matter.
The scattering condition III, because of the definite phase shifts between the incoming

beams in figure 2c, is hence seen to be at odds with a basic property of thermal 3D phonons
and can be discarded except for a slab for which the bulk phonon mean free path is equal to
the thickness. Selecting further the relevant physical picture out of conditions I and II will
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await a careful and accurate comparison of the calculated p w within conditions 1 and II with a
measured one. As the measured data always involve an ill-known matrix element, describing
the interaction between the experimental probe and phonons, a meaningful comparison must
take advantage of sharp resonances. As a matter of fact, conditions 1 and II, in

nt &#x3E; 1 regions where the corresponding scattering states do not coincide, will give rise to
resonances occurring at different frequencies [7].

6. Conclusion.

Several properties of the scattering of 3D Bloch-waves at a surface have been borne out :

i) surface states may arise only if the 2D space group contains the rotation by
7T around the surface normal or if the substr4te has the point inversion symmetry ;

ii) a new property of the scattering matrix describing the scattered Bloch-wave field far
from the surface has been worked out. It has enabled us to point out the general significance
of the optical theorem ;

iii) ample light has been shed on the role of the initial condition of scattering. In energy
regions where the number of degenerate pairs nt of travelling bulk Bloch-waves E, qs, ± q3 i)
is equal to 0 (forbidden gap) or 1, the 2D eigenstates are uniquely defined so that all types of
calculation yield the same results as for the surface states and the resonances. On the contrary
in nt &#x3E; 1 regions, the partial spectral densities and the resonances, if any, will depend upon
the form of the 2D eigenstates, taken to do the calculation.
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Appendix.

Let us consider two degenerate 2D Bloch-functions tki i and I/J j which are solutions of the same
Schrôdinger equation :

where the potential V is real. Multiplying equation (Al) and equation (A2) by c/Jt and
c/J i’ respectively, and applying Green’s theorem to the difference results into :

where n is a unit vector normal to the surface S (f2 ) of any closed volume f2.
The volume f2 is taken so as to cross the surface according to the 2D unit cell

(a,, a2 ) and to extend along a3 in both X3 - 0 and X3 &#x3E; 0 regions up to ± x.. The value
Xoo &#x3E;- 0 is chosen large enough, so that «/1 k ( - xoo) = 0 with k = i, j in vacuum, and the

evanescent um (r) in equation (4.1) also vanish at Xoo in the bulk region for both

«/1 i and tpj.
As «/1 i and 1/j are degenerate 2D Bloch functions, they have in particular the same

qs. Consequently the contributions to the integral in equation (A3) calculated on the faces of
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S (f2 ) parallel to a3 vanish strictly. Furthermore since Vi i (- x,,,, ) = 4,j (- x. ) = 0, the integral
of equation (A3) finally reduces to :

where S’(n ) is a 2D unit cell located in the x3 = X. plane and yi and yj are deduced from
equation (4.1) to read :

Then we integrate expression (A4) along a3 over the 3D unit cell, which leads to :

Integral (A6) consists of a sum of integrals of cross-products, proportional to

e’(± q31 T- q3.) Ut aUm/aX3. The integral over x3 of any such term is nothing but the Fourier
transform of ut aUm/aX3 at (± q3t += q3 m ). Since E, qs, q3t) and E, qs, q3m) are 3D Bloch-
functions, ut and aum/ax3 are 3D periodic. Hence the Fourier transform of Ui aU./aX3
vanishes unless (:tq3.:-Pq3l) belongs to the reciprocal lattice. This happens only for

q3m = Q3t, because both are confined inside the 3D Brillouin zone. Consequently
equation (A6) reads :

Im

where Im means imaginary part and Sij is a Kronecker symbol. By noticing [1] that

Im

equation (A7) is finally cast into :

which is rewritten in a closed form in equation (4.3).
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