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Résumé. 2014 On met en évidence une matrice synaptique qui stocke efficacement les patterns
organisés en catégories non corrélées dans les réseaux neuronaux à attracteurs et les perceptrons.
La capacité de stockage limite augmente avec le recouvrement m d’un pattern avec sa catégorie
ancestrale, et diverge lorsque m tend vers 1. La distribution de probabilité des paramètres de
stabilité locaux est étudiée, et conduit à une analyse complète des performances d’un perceptron
en fonction de sa matrice synaptique, ainsi qu’à une compréhension qualitative du comportement
du réseau neuronal correspondant. L’analyse de l’attracteur du réseau est complétée à l’aide de la
mécanique statistique. La motivation d’une telle construction est de rendre possible l’étude d’un
modèle de prosopagnosie : le passage du rappel individuel à celui de catégories lors de lésions,
c’est-à-dire d’une détérioration aléatoire des efficacités synaptiques. Les propriétés de rappel du
modèle en fonction de la matrice synaptique proposée sont étudiées en détail. Enfin nous

comparons notre matrice synaptique à une matrice générique dont tous les paramètres de stabilité
sont positifs.

Abstract. 2014 We display a synaptic matrix that can efficiently store, in attractor neural networks
(ANN) and perceptrons, patterns organized in uncorrelated classes. We find a storage capacity
limit increasing with m, the overlap of a pattern with its class ancestor, and diverging as
m ~ 1. The probability distribution of the local stability parameters is studied, leading to a
complete analysis of the performance of a perceptron with this synaptic matrix, and to a
qualitative understanding of the behavior of the corresponding ANN. The analysis of the retrieval
attractor of the ANN is completed via statistical mechanics. The motivation for the construction
of this matrix was to make possible a study of a model for prosopagnosia, i.e. the shift from
individual to class recall, under lesion, i.e. a random deterioration of the synaptic efficacies. The
retrieval properties of the model with the proposed synaptic matrix, affected by random synaptic
dilution are studied in detail. Finally we compare our synaptic matrix with a generic matrix which
has all positive stability parameters.

J. Phys. France 51 (1990) 387-408 1er MARS 1990,
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1. Introduction.

Following the discovery by Gardner [1] that there exist synaptic matrices which would store
sparsely coded (magnetized) pattems in neural networks with capacity that exceeds that of
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uncorrelated patterns, and diverges as the correlation between the patterns tends to one [2],
several proposals for explicit realization of such matrices have been put forth. The aim has
been to find a modified synaptic prescription of the original Hopfield model [3] for which the
Gaussian noise, that affects the local stability of the stored patterns, decreases as the
correlation between patterns invreases [4, 5], while the signal is controlled by an appropriate
threshold [6]. Such constructions filled the gap between the Gardner results and previous
work on the storage of magnetized patterns [7-9] which predicted a storage capacity
decreasing with the magnetization. In an independent developement it has been shown [10],
using Gardner’s method, that the limit of capacity of a network storing patterns organized in a
finite number of uncorrelated classes, is the same as in the case of a single class of sparsely
coded (biased) patterns.
On the other hand, the attempt [11] to extend the high storage prescription [4-6] to multiple

classes has turned out to be limited to classes of higly correlated ancestors. Here we generalize
the work of reference [6] to find a synaptic prescription which can be store uncorrelated
classes of patterns. Each of the classes is represented by an N-bit ancestor or prototype. These
ancestors are uncorreleted. The individuals in a given class are generated by a random
branching process in which they are chosen randomly with a fixed level of correlation with the
ancestor. This is carried out in section 2 where we reformulate the synaptic matrix of
reference [6] so as to make it gauge invariant. The gauge invariant single class dynamics is
easily extended to multiple uncorrelated classes, giving a Gaussian distribution of the local
stability parameters identical to that of a single class [6]. Consequently, the capacity diverges
as in the optimal storage of Gardner, when the difference between individuals and their
corresponding prototypes tends to zero (limit of full correlation). It is shown that while the
natural extension of the synaptic matrix is asymmetrical, a symmetrical version can also be
constructed. Section 2 concludes showing that the proposed synaptic prescription applies to
the storage of patterns in an ANN (attractor neural network), as well as to the implementation
of an associative rule for a perceptron. In the latter case the network is expected to associate
correctly a set of input patterns to a set of output patterns. Both the input and the output
patterns are grouped in corresponding classes, i.e. if two inputs belong to the same class, the
corresponding outputs belong to the same class. Inside the corresponding classes the
association is unspecified. The task of the perceptron is to associate with all individuals in an
input class the representative of one output class.

In section 3 and 4 we analyze the probability distribution of the local stability parameters
both for a perceptron and for an ANN. For perceptrons, the probability distribution of the
local stability parameters fully characterizes the properties of the output state when a given
pattern is presented as input [12].

It is interesting to analyze the behavior of networks with this synaptic prescription when
they undergo deterioration, for instance by random destruction of a fixed fraction of the
synapses. For one individual pattern belonging to a particular class it is useful to distinguish
those sites that are common with the class prototype (which we call plus sites) and those in
which the individual pattern differs from the class (minus sites). It was pointed out [14] that in
Gardner’s measure almost every network that stores correlated patterns will spontaneously
show a level of robustness which is higher in the plus sites then in the minus sites. This is a
probabilistic statement and as such it depends on the a priori probability distribution
assumed. But a particular synaptic matrix, the pseudo-inverse for example, may lead to a
network which is highly untypical with respect to the probability measure. In section 5 we
show that when the number of plus sites incorrectly retrieved is of the same order of that of
the minus sites, then following a random lesion the probability of making an error at a minus
site is greater then the corresponding probability for a plus site.
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For ANN’s this probability distribution determines the state of the network after one step
of parallel iteration, and gives a rough estimate on the attractors of the dynamics [12, 13].
Other methods must be employed to produce a full description of the attractors. In the case of
symmetrical synapses, statistical mechanics can be used. This is done in section 6 where the
analysis confirms and clarifies the picture that emerges from the analysis of the stability
parameters.

In section 7, we study the effect of symmetric dilution of the synaptic matrix on the
attractors of an ANN. Just like in the perceptron, or for the first step parallel dynamics of an
ANN, the lesion affects the attractor asymmetrically at the plus and the minus sites. For low
levels of dilution the individual patterns can be still retrieved, although, the probability of
making an error at a plus site increases more rapidly then the corresponding probability at a
minus site. As the dilution level increases, the attractors of individuals are completely
destabilized, while those of class prototypes remain fixed points of the dynamics.

Finally in section 8 we compare our synaptic matrix to a generic one in the Gardner volume.
For that matrix the stability parameters at every site are positive when the network is in a
stored pattern, i.e. there are no retrieval errors in absence of fast noise. We find that this

overlap does not depend on the parameter which is introduced to reduce the slow noise. We
show that in the limit of full correlation our synaptic matrix is the axis of the cone in which the
Gardner volume is embedded (1).

2. The model.

2.1 REFORMULATION OF HIGH STORAGE IN A SINGLE CLASS. - In a model storing a single
class p = a N magnetized patterns (ai") , the patterns are chosen with the probability law

m is the magnetization, or access activity, of each pattern in the limit N --+ oo . The model is
formulated in terms of a Hamiltonian

with Si ’ = ± 1 and 
-1 p

The parameters U and c, are then varied to maximize the storage capacity which is an

increasing function of m, and in the limit mu 1, the capacity diverges as the theoretical limit
found by Gardner [1].
As usual, the trend of the result can be detected from a signal to noise calculation for the

stability of the stored pattems. Details are filled in by a statistical mechanics computation,
which is possible due to the symmetry of the Jij’s. To generalize the model we focus our
attention on the signal and the noise parts of the stability parameters at each site of the stored
patterns -

(1) When this work was completed we received a brief report of Ioffe, Kuhn and Van Hemmen,
proposing a similar synaptic structure.
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where

is the local field.
The first step in the generalization of the model to uncorrelated classes is to store a class of

patterns whose ancestor is different from the state of all l’s Le. to store patterns
ur = a i" ai with an arbitrary ancestor oi = ± 1. Note that due to the presence of c and U in
(2.5) the stability parameters L1r in formula (2.4) are not invariant under the gauge
transformation (Mattis transformation) [15]

where oj = ± 1 are arbitrary. Hence it is not possible to pass from the storage of the
ferromagnetic patterns { ur} to the storage of a single class of patterns {uf} =
{ ur U j} by gauge transforming the synaptic matrix. This is also the main obstacle to the
storage of uncorrelated classes.
The model is therefore reformulated to ensure that L1r and its probability distribution be

gauge invariant. We can rewrite (2.4) in the form

if we take

In other words, U and c are absorbed in the definition of Ji’j : from PSPs or thresholds they
become synaptic efficacies. The non-local term that has appeared in (2.8) could not be
evoided when storing multiple classes. It will play an essential role in reducing the slow noise
due to the storage of an extensive number of patterns, taking advantage of the correlations
between the patterns with a class. The distribution of the J1r is the same as in the original
model, as can be seen by substituting (2.8) in (2.7) and using the fact that 1 af = m. If in

i

(2.6) one substitues Ji’j for Jij the stability parameters are now gauge invariant. We can,
therefore, pass from one class to another by a mere gauge transformation [15].
Note that while the distribution of the stability parameters in the model of reference [6] and

that of the reformulated model are the same, the dynamical properties of the two models can
be different. This can be seen observing that the original model is formulated in terms of a
Hamiltonian, which disappears in the reformulation because Ji¡ + JJ;.

2.2 HIGH STORAGE IN MULTIPLE UNCORRELATED CLASSES. - Next we proceed to formulate
a synaptic matrix that stores p = a N patterns {grV} organized in classes. There are

Pc classes, defined by the uncorrelated prototype patterns or ancestors {g r}, chosen with
probability
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A pattem in class g is defined in relation to its ancestor (§f) by a stochastic branching
process [8] :

The number of classes p, = (aN)" with 0 -- y  1 and the number of pattems per class

(aN)’-B To store the {rV}’s we use

In the sums, the indices g and À, each takes the value, 1, ..., p,, v takes the values 1, ...,

plp,, and k, the values 1, ..., N.
The first two terms on the r.h.s. of (2.11) are just those that appear in reference [8, 9]. To

understand the effect of the third term, let us note that if the number of classes

p, «r. N, the matrix Pij = 1/N Y acts as the projector in the space spanned by the
A

(§f) . The third term in (2.11) can, therefore, be written as

Which subtracts from the lij that projection of the vectors {( g (JI - mg ()} in the space

spanned by the class prototypes. As such, as we will see, it is very effective in subtracting from
the stability parameters of the individual patterns that part of noise that comes from this
projection.

Admittedly, this term gives rise to a non-locality of the synaptic matrix. Yet this may not be
such a serious drawback, since it may be possible to generate it by a local iterative procedure.

It should be pointed out that a local algorithm, such as the « perceptron leaming
algorithm », gives rise to matrices which can not be expressed as local expression in terms of
the patterns.
The matrix (2.11) is not symmetric. It is, however, possible to symmetrize it without

changing in a relevant way the distribution of the stability parameters. A symmetrical version
of (2.11 ) is

Now the model is again Hamiltonian, with H = - L Iij Si Sj and it can be investigated by
«/

statical mechanics.

2.3 THE HETERO-ASSOCIATION PERCEPTRON VIEW. 2013 Before proceeding to show that this
synaptic prescription actually stores the extensive set of ei" , let us point out that (2.11 ) can
be considered as a weight arrangement for an auto-association rule in a perceptron with N
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input units and N output units. It is natural to extend the prescription (2.11) to the case in
which the output patterns are not necessarily the same as the input patterns. We associate a
set of input patterns {u r V} j = 1, ..., N, organized in uncorrelated classes, to a set of output
patterns 1 i = 1, ..., N’ belonging to corresponding classes. N and N’ are, respectively,

. the numbers of input and output units.
The generation of input and output patterns is done by independent branching processes

similar to (2.10), from input and output ancestors UM and 1 respectively. For a
perceptron, in contrast to an ANN, the overlaps of the input patterns with their input
prototypes, min, and the corresponding overlaps of the output patterns with the output
prototypes, mout, are independent variables [10].
The association is performed through the usual noiseless response function

In the case of auto-association N = N’, m;n = mout, ur" = eé" for all i, IL, v. Equation (2.13)
can be viewed as the first step of the parallel dynamics of an ANN.
The extention of (2.11) to the hetero-association perceptron can be written as

The overall factors in equations (2.11), (2.12) and (2.14) have been chosen so that

This will tum out to be useful in section 8. The prescriptions (2.11), (2.12) and (2.14) can be
generalized to a full ultrametric hierarchy of patterns. The presentation of this more involved
case will be given elsewhere.

3. The distribution of the local stability parameters.

In this section we analyze separately the probability distribution of the stability parameters
when the network is in a state which is an individual pattern or in a state which is an ancestor,
with the synaptic matrix (2.14). The perceptron will have N input units and N’ output units,
and will store p = a N patterns equally divided in a number pc = (a N )’Y, of classes

(yl). The corresponding analysis for the first step parallel dynamics in an ANN is

recovered by setting min = mout = m in all formulae. We do not analyze in detail the case of
the symmetric matrix (2.12), which is very similar, except to indicate when formulae undergo
essential modifications.
As we stressed in the introduction, it is useful to distinguish in a pattern {grJl} the sites in

which g = grJl gr = 1 (plus sites) and the sites in which g = grJl gr = - 1 (minus sites). The
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probability distribution of g is (from (2.10))

i.e. the fraction of § sites is (1 + mout)/2 of the total.
Let us consider the stability parameter à, of one of the stored patterns (e.g. pattern

(§/) ) at a § site.
Using (2.14) and N uJ uJl = m;" we obtain

J

The first term in (3.2) is the expected value of àe. The second term is a Gaussian noise with
zero mean and variance (1 - 2 Cmin + m.) which has a minimum equal to 1 - m for
c = Min [6]. The third and fourth terms in (3.2) sum terms in Jij different from

{ U jll, ej’ . They do not contribute at all. They have zero mean and do not fluctuate in the
limit N --&#x3E; 00. This can be seen, for example, from the expectation

since Pc = (aN)".
In the case of the symmetrical prescription (2.12) for ANN (i.e. min = mout = m,

urv = grV) an extra term appears in âe, i. e.

In the limit N --+ oo this term becomes

namely it is effectively a shift of U by a quantity - a. Such a shift is irrelevant, since U is a
parameter to be optimized. It should be stressed that even if the asymmetrical and the
symmetrical prescriptions (2.11) and (2.12) lead to the same distribution of the stability
parameters, the dynamical properties of the two models may be different.
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The ratio between the expected value of àe (signal) and its standard deviation (noise) is

This shows that in the limit mout -+ 1 a can diverge roughly as 1 / (1 - mout ) and that unless
U = 1 the plus and the minus sites have different degrees of stability. We will see in the next
section, studying the tail of the distribution of the Ae [15], that the maximization of the storage
capacity will be obtained for U :&#x3E; 1. This implies that the plus sites will be more stable then the
minus sites. Further insight can be gained by studying the tail of the probability distribution
[14], as we will see in the next section.
The stability parameter at a site i of a prototype (ancestor) pattern is given by

As in the case of dg the third and the fourth terms inâ, have zero mean and do not fluctuate in
the limit N - oo . The second term is a Gaussian variable of zero mean, which vanishes if

C = mine ·

The choice c = m;n is optimal because it minimizes the noise both in àe and in

,àc [6, 11]. In particular, Ac does not fluctuate at all and is

In fact, A, plays the role of the parameter M introduced by Gardner [1]. We will see below
that optimizing U for a = a G, where a G is the Gardner bound on storage capacity [1], implies
a = M for mout -+ 1. With the synaptic matrix (2.14), the r.h.s. of (3.6) becomes

where we have set min = mo"t = m, as is required for an ANN. This corresponds to shifting
U by - a and does not have any effect when U is optimized.
The above analysis does not hold in the limit cases min = 0, i.e. when all input pattern are

independent and there are no classes. It also does not hold when min = 1, i.e. when all
individuals are equal to their class prototype and there are no individuals.
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4. Performance.

From the analysis of the above section, the probability distribution of âg is :

where we have chosen c = m; as in references [6, 11].
To study the performance of the network we introduce the probability Ee of an error in a

e site, i.e. a site of descendent with relative sign e to the same site in its ancestor. From (4.1)

where Note that Ee is independent of min
el je w à ,,,

(except for min = 0 and min = 1 where (4.2) does not hold). Consequently, the discussion in
this section can be carried out for fixed (arbitrary) min. Eg represents the number of errors in
the e sites divided by the number of e sites. The contribution of these sites to the total average
error is

and the total average error E is given by

Clearly, as E decreases the network retrieves the stored information more effectively. The
performance of the network is optimized if U is chosen to minimize E. Differentiating (4.2)
respect to U one finds :

For this value of U the error in the plus sites and the error in the minus sites are of the same
order of magnitude. In fact,

Since Up, :::. 1, it can be seen from equation (4.2) that

which is a consequence of the fact that the expected value of the stability parameter is greater
at the plus sites then at the minus sites, the noise at both types of sites being equal.

In figures 1 and 2 we plot E+, E_ and E vs. mout for a = 8 a G with ig = 0.9 and
/3 =0.1, respectively. E+ and E are decreasing functions of mout. E- is a concave function,
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Fig. 1. - E+, E_ and E as functions of mout for et = 0 - 9 X et G. E, and E are decreasing functions of
mout. E- has a maximum which can lie very close to the value mout = 1.

Fig. 2. - E, , E_ and E as functions of mout for a = 0.1 x aG. The maximum of E_ is lower then in

figure 1 and lies at a lower value of mout. In this case, the range of m.ut for which the model can retrieve
correctly the individual pattern is wider.
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equal to E for mout = 0 and tendint to zero for mout --+ 1. It has a maximum, that shifts to the
right for increasing values of 8. Note that for f3 = 0.9, the value of the maximum is very high,
it lies very close to mout = 1. Clearly, a good discrimination of an individual pattern from its
class prototype is obtained if, in addition to E «r. 1/2, also E- « 1/2. It is, therefore, necessary
that the argument of the error function in E_, be positive, which is satisfied if
U -- 2. When mout --+ 1, it is possible to determine the asymptotic behavior of Ee, equation
(4.2), and of the storage capacity. In this limit, as all the output patterns tend to their output
prototypes, the task for the network reduces to the classification of input patterns, and it is
possible to reduce the error to zero, since the number of classes is not extensive.
To see this note that since E is given by (4.4), to have E --&#x3E; 0 it is sufficient that

E+ --+ 0, regardless to the value of E_. E+ will vanish when

At each input pattern in a given class, has to be associated the prototype of the corresponding
output class. This is an easy task [10], and can be performed for an arbitrary large number of
pattems. But it is more relevant, to require that even in the limit m.ut --+ 1 the individuals be
distinguished from the class prototypes ; i.e. to require that E- --+ 0. Then, using (4.2), we
must have

This is particularly relevant in an ANN, where E. - 0 guarantees that the p stored patterns
em’ be fixed points of the dynamics.
Using the value (4.5) for U, and writing a as

we find that condition (4.9) is fulfilled for any /3 in the interval 0 : /3  1. Substituting (4.10)
in (4.5) we find

It is interesting to compare .dc, given by (3.6), with Gardner’s parameter M = L r Jij ur
j

where Jij is a matrix in the Gardner volume. One obtains, from (4.11) and the saddle point
équation in [1],

This shows that, in the limit mout --+ 1, in which « approaches the Gardner bound, the stability
parameters of the class representatives approach the value taken by the optimal matrices that
store the given pattems. In section 8 we will see that the distance between the matrix (2.14)
and a generic matrix in the Gardner volume tends to zero in this limit.
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The asymptotic form of Eg, equation (4.2) is given, as mout --+ 1, by

which vanishes with a 3-dependent power as m., --+ 1, apart from logaritmic corrections. For
high values of f3 (== 1 ), the decay of E_ to zero is very slow. Formula (4.13) applies in a very
narrow range below mout = 1, because the power in the exponent becomes very small. This
can be seen in figure 1, for f3 = 0.9, where E_ has a maximum for mout = 0.98, and only then
decreases to zero.

When Q ± 1, equation (4.13) is still valid for E+ , while E_ = 1/2 for f3 = 1 and

E_ = 1 for j8 :&#x3E; 1. We see that for 0 = 1 (a = a G and à, = M) there is a transition, in which
the network looses its ability to recall individuals, but can still recall classes.

5. Noisy patterns and lesions.

Next we study the performance of the network when the input is a pattern with random errors
or when the synaptic matrix is lesioned by a random dilution of synapses. If the input pattern

{Uj} has an overlap a with one of the stored pattern, e.g. {u]1} i.e. 11N uJl o-j = a ,
i

then the same arguments that led to formula (4.2) give

with

The error Eg is defined with respect to the desired output el’. The resulting overlap of the
output with e 11 is [12]

The analogous equation was derived in references [12, 13] to determine the « basins of
attraction » of the stored patterns. Note that for a in the interval (0, 1), 6 is a decreasing
function of min. This means that for greater min the basins of attraction of the stored patterns
are smaller.

Expressions (5.1)-(5.3) apply also to the case of random dilution of synapses, with
a2 replaced by p, the probability of survival of a synapse. In other words, if

with
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then (5.1) holds with

.

The presentation of a noisy pattern as well as the dilution of the synapses are, therefore,
equivalent to an increase of a by a factor 1/ BFb (keeping U fixed).
The derivative of Ee with respect to b at 8 = 1 gives the increment of the error due to an

infinitesimal lesion

As long as U  2, where it should be to allow recall of individual patterns, the error increment
in the minus sites is greater then that in the plus sites. As was mentioned in the Introduction,
this difference in the increments occurs for almost all synaptic matrices in the volume which
optimizes the storage of the patterns [14]. There, it is a consequence of the fact that the

expected value of the stability parameters at the plus sites is greater then at the minus sites. In
other words, more information is lost in those sites that code the difference of individuals with
respect to their class (i.e. sites at which a pattern differs from its class representative
prototype) than at those sites that confirm the class. This effect can be interpreted as
prosopagnosia once a quantitative criterion is given to establish what is the maximum amount
of error in the munis sites for which one can distinguish individuals, and what is the maximum
amount of error in the plus sites for which one can have class recall. It is clear that a very small
value of 8 has a marginal effect on the performance of the network, while a large
8 destoys all the informations stored (agnosia). Somewhere in between there is the region of
prosopagnosia, in which the classes are recalled, but it is impossible to distinguish the
individuals inside a class.
On the other hand, if the input is a pattern which has an overlap a with one of the ancestors

and is otherwise uncorrelated with any of the individuals, then the error fraction of the
output, with respect to the corresponding output prototype, is given by

Consequently, for any set of parameters ( a , min, mout, a ) we can make E, arbitrarily small by
taking

Of course, if U is optimized to have the minimum E, the classes are efficiently retrieved only
for a (1 - m 2 ) «.c 1 .

6. Statistical mechanics of the symmetrical model.

We have seen that up to a redefinition of U, the distribution of the stability parameters does
not change if the symmetrical or asymmetrical version of the model is chosen. The analysis of
the distribution of the A’s, that is complete in itself for a perceptron, can only give a tentative
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[12, 13] picture of what happens in an ANN. For the symmetrical matrix (2.12) the model is
governed by the Hamiltonian H = - L Iij Si Sj. A complete analysis of the retrieval states of

«;

the dynamics can be obtained studying the statistical mechanics of the system [17]. In the
following we restrict the discussion to the cases in which the overlap with a single individual
pattern (e.g. (§)) ) and/or the overlap with a single class prototype ( ( §)) ) is condensed.
The free energy density of the system is found by a mean field theory, using the replica

method to average over the quenched patterns [17]. If replica symmetry holds, then

where (3 is the inverse temperature and the double angular brackets imply an average over the
distribution of e. The meaning of the parameters in (6.1) is the following : th is the mean
temporal overlap with the retrieved class prototype,

M is the normalized mean temporal overlap with et"’ - mel£, i.e.

r is the normalized square of the uncondensed overlaps,

q is the Edwards-Anderson [18] order parameter,

and C is the susceptibility,

The angular brackets stand for thermal, or temporal, average, and Dy is a normalized

Gaussian measure for the slow noise.
The parameters (6.2)-(6.6) satisfy a set of saddle point equations. In the limit

J3 --+ oo these equations can be written as :
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where

From the definitions of m and M, equations (6.2) and (6.3), and from their saddle point
values (6.7) and (6.8), respectively, the probability Ee of making an error in a g site is :

When m - 1 below a Ce M -+ 1 C --+ 0 rh --+ m and equation (6.12) reduces to equation (4.2)
for the first step, as expected.
The numerical solutions of the saddle point equations can be used to find the storage

capacity and the corresponding value of the retrieval quality for classes and for individuals,
m and M, respectively. In figure 3 we plot Uc vs. m, which is an increasing function of m, and
diverges for m -+ 1, as expected. In figure 4 M and rh are plotted. The shape of

M as a function of m can be understood observing that

Fig. 3. - The storage capacity of the model vs. m. Qualitatively the shape of the curve is similar to that
of optimal storage, reference [1].
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Fig. 4. M and m vs. m for a = a C. Note that rh grows almost linearly and for all value of m one has

th - m. M has a minimum at m = 0.78, as a consequence of the optimization of U.

and that E_ has a maximum for m :::. 0, as can be seen from figure 5. The maximum of
E_ in figure 5 has the same origin as those of figures 1 and 2, it is due to the optimization of
U. It is convenient, in order to maximize the storage capacity, to have relatively high values of
E_ , and correspondingly, low values of M. It must be noted also that unlike the first step case,
E also has a maximum as a function of m. Note the qualitative accord of figure 5 with figures 1
and 2.

Fig. 5. - E+, E- and E vs. m for a = crc. The maximum in E- corresponds to the minimum in
M.
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Of course the states in which a class, but no individual, is retrieved (th :0 0, M = 0) are also
relevant fixed points. In this case, for any value of a and m,

while

confirming that the classes are stored with no errors. This can be understood since we have
constructed synaptic matrix so as to have no noise on the class prototypes.

7. Symmetrical dilution of synaptic matrix.

We now proceed to study the effect on the attractors of a lesion of the synaptic matrix. In
order to keep the system Hamiltonian we consider a symmetric dilution of the synaptic matrix
according (4.4), (4.5).

It has been proven that such a kind of dilution is equivalent to the introduction in the
Hamiltonian of an SK spin-glass interaction among neurons [19],

with l;j independent Gaussian variables with zero mean and variance 1/Na (1 - p )/p. In the
replica symmetric theory, this effective interaction adds to the free energy a term of the form
[20]

The effect of this term in the saddle point equations, is to modify equation (6.10) to read :

A first effect of the dilution on the attractor is analogous to the effect on the perceptron. The
noise induced by the lesion affects asymmetrically the plus sites and the minus sites of the
individual attractors. Repeating the argument of section 5, one finds that the increment in
E_ is greater then the corresponding increment in E+. A more important effect, regards the
desappearance of the individual attractors. The capacity limit for the recall of individuals is
lowered by the new term is r, as can be realized observing that a c is a decreasing function of
the noise r. Furthermore, due to the dependence of the additional noise (7.1) on a, another
critical value of a appears, to be denoted by acl, at which the class prototypes cease to be
attractors. This is a point of ferromagnet-spin glass phase transition. Neverthless, for a small
noise level, a CI &#x3E; a c. There is a whole region a c - a  aCI in which the network is in a state
of prosopagnosia. The individual information is completely lost, while the information about
the classes is still stored in the network. Only for very high dammage, the network looses
completely all information, falling into a state of agnosia.

8. Comparison with optimal storage.

In section 4, we have found that in the limit m.ut --+ 1 the storage capacity of a network with
the matrix (2.14) approaches the Gardner bound and in addition, the error goes to zero and
2lc tends to the Gardner saddle point value of M. Hence in this limit, the matrix (2.14) shares
many feature with the matrices in the Gardner volume. In this section we compare explicitly
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the matrix Jij (2.14) with a generic matrix that stores the given patterns with no errors, i.e. a
matrix within the volume of £l’s that satisfy [1]

Specifically, we compute the overlap

averaged over the Gardner volume. Q can also be interpreted as the angle cosine between the
matrix (2.14) and a generic matrix that satisfies (8.1).
The probability distribution corresponding to the constraints (8.1) is

The quantity Q is self-averaging with respect to the measure (8.3) and does not depend on the
particular sample of patterns stored. Substituting (2.14) in (8.3) we obtain

Since M = L gr liT ur is a quantity that does not fluctuate we can write the second and the
j

third terms in (8.4), respectively, as

and

respectively. These two terms are of order p,,IN and do not contribute to Q when
N - oo. So the terms proportional to U and c in the Jij’s, that are essential for the storage, are
here totally irrelevant. This fact become less surprising when one observes that the terms with
U and c in Ji,’s are of order VPc/N, relative to the leading term
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which is of order 1/ JN. Developing the leading term of (8.4) we obtain

Hence, in order to compute Q, all that is needed is the probability distribution of the
stability parameters

at the plus and the minus sites. In fact, if we denote this function in the e sites by
Fg (,à 9 *) then

where the angular brackets stand for the average over the distribution (3.1) of e i. e. expliciting
the average over g

The distribution Fe (A*) was computed in reference [14] as a function of the order parameter
M and the parameter q = E lija lijb, , where the distinct matrices j a lijb satisfy equation

i

(8.1 ) . It is :

where, for a given a «-- a,, q and M satisfy the Gardner saddle point equations [1]. One
therefore finds :
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Q is consequently, independent of m. because, as was shown in [10], V m. 10 M does not1-m
depend on min" For q = 1, i.e. a = ac (8.13) reduces to

which tends to 1 in the limit mout -+ 1. From (8.14) one can see that for all m..t :0 1, one has
6  1, i.e. the angle formed by matrix (2.14) and the Gardner volume is different from zero.
In figure 6, Q is plotted for fixed values of q. Q is an increasing function of mout and one sees
that as mout increases, the distance of matrix (2.14) from the Gardner volume decreases. This
can be intuitively understood observing that the retrieval properties of the matrix (2.14) are
more and more similar to that of the optimal matrices as mout approaches the 1.

Fig. 6. - Q vs. mo"t for q = 1 and q = 0.8. For fixed q, Q is an increasing function of

m.., showing that the distance of matrix (1.14) from the Gardner volume decreases with mo"t.

Actually, for a generic q, as m.,,,t --&#x3E; 1 (8.13) reduces to

This implies that

i.e. lij is the axis of a cone in which the lij are uniformly distributed.
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Conclusion.

In this paper we have considered a synaptic matrix that stores efficiently uncorrelated classes
of pattern. The storage capacity limit behaves qualitatively as in the case of optimal storage :
it is an increasing function of the correlation of the individuals with their class prototypes, and
diverges in the limit of full correlation. We have obtained this result by modifying the synaptic
matrix of reference [8, 9].

In the framework of this model the leaming of a new pattern, after O (N ) have already
been memorized, can be imagined as occurring in two steps. The new pattern is compared
with the memorized classes, and the difference with the representative of the class with which
it overlaps class is stored in a Hebbian-like outer product. In addition the projection of this
difference on the space spanned by the classes prototypes is subtracted. This reduces the

Gaussian noise on the stability parameters of the patterns stored.
Then, together with the individual patterns, the classes prototypes are stored so as to have

greater stability then the individual pattern. This is necessary to minimize the number of
errors when an individual pattern is retrieved. It then follows that the plus sites are more
stable then the minus sites in accord with what happens in the Gardner case. Prosopagnosia
appears at this point. It is modeled by the fact that a lesion in the network structure destroys
first the information about individuals then the information about classes. Only at much
higher level of disruption the information about classes is destroyed, mimicking agnosia.
We have studied the matrix both in the context of ANN’s and perceptrons, and have argued

that as far as memory errors are concerned the two become equivalent when one identifies the
errors in the perceptron output with those present in the configuration of the attractor.
The retrieval of information in perceptron, is fully characterised by the probability

distribution of the local stability parameters of individuals and class prototypes. For ANN’s
we have considered a symmetric matrix and an asymmetric one. At the level of the probability
distribution of the stability parameters, the two matrices have the same properties. However,
there would normally be dynamical differences. The symmetric matrix has been studied in
detail by statistical mechanics, which confirms the picture obtained from the analysis of the
stability parameters.
We did not simulate extensively the dynamics of the ANN. We performed simulations on

the zero temperature dynamics of neural networks up to 100 neurons with these synaptic
matrices. Both the symmetric and the asymmetric model have a storage capacity consistent
with the results of section 6. We observed that, as expected, beyond the limit of storage
capacity, initial states highly correlated with one individual pattern evolves to the correspond-
ing class prototype.
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