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Résumé. 2014 Nous étudions théoriquement l’étalement d’un liquide non volatil sur un cylindre
solide. Après avoir établi comment se formait un ménisque macroscopique, nous nous attachons
plus particulièrement à la dynamique de la formation de films microscopiques dus aux interactions
de longue portée de type van der Waals.

Abstract. 2014 We present a theoretical investigation of the spreading of a non-volatile liquid on a
solid cylinder. We first derive the laws for the dynamics of the formation of the meniscus and we
then focus particularly on the growth of microscopic films due to long range interactions between
solid and liquid.
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1. Introduction.

It is impossible to coat a fiber with a macroscopic film of liquid : the cylindrical coating breaks
into a periodic array of droplets in order to minimize its interfacial energy. This is the well
known Rayleigh instability [1].

If long range forces are taken into account, it becomes possible to stabilize films on fibers
[2] (or in capillary tubes [3]) when these films are very thin (usually in the 100 A range). The
statics of wetting of curved surfaces has been well described, both experimentally and
theoretically [2, 4-6]. The aim of this paper is to understand the dynamics of spontaneous
spreading of a wetting, non-volatile liquid in two different situations :

i) the spreading of a very large drop on an horizontal cylinder ;
ii) the ascension of a liquid onto a vertical cylinder from a reservoir. We have already

experimentally studied this situation [7].
This study is limited to the case of « dry wetting » [8] : we shall assume throughout this

paper that the liquid is non-volatile and thus is not in equilibrium with its vapor, which allows
us to consider spreading parameters larger than zero.

(*) UA 1319 du CNRS.
(**) UA 792 du CNRS.
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We shall give numerical estimates for all quantities which can be measured.
We first review some main results on the statics of wetting.

2. Statics.

2.1 SPREADING ON A PLANAR SURFACE. - The main parameter which determines the
evolution of a non-volatile liquid deposited on a solid is the spreading parameter
S = ysv - YSL - y, where ysv is the solid/vacuum (or air) interfacial tension, ysL is the

solid/liquid one and y is the interfacial tension between liquid and vacuum (or air).
Depending on the sign of S, the drop will spread out spontaneously (S &#x3E; 0 ) or only partially
wet a surface (S : 0 ), in which case it has a finite contact angle 9e given by the Young
equation :

For S , 0, the liquid spreads out and forms a thin film on the solid : the long range
interactions then need to be taken into account. For non retarded van der Waals interactions,
the energy W(e) per unit area of a film of thickness e is :

ASLV is the effective Hamaker constant describing the interaction of solid (S) and vacuum (V)
(or air) separated by liquid (L). For perfect wetting conditions, ASLV is negative and a
molecular length a can be introduced for convenience [8] :

We estimate a to be 3 À in what follows (this value is typical of a polymeric fiber/organic
solvent system).
The energy f of a thin film of area A is :

Minimizing this energy while keeping the volume Ae constant yields :

where II (e ) is the pressure associated with the long range energy :

and is the so-called disjoining pressure introduced by Derjaguin [9]. The effect of such long
range forces is to thicken the film (since W(e) - 0 when e - oo).

For S &#x3E; 0, the thickness of the film is [10] :
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2.2 SPREADING ON A CYLINDER : SHEATH-DROP TRANSITION [2]. - For fibers, the situation
is quite different because of the curvature of the interfaces. Let us compare the two following
situations : a liquid droplet of volume f2 on a fiber of radius b (Fig. la) and a liquid sheath of
the same volume and of thickness e (e « b) (Fig.1b). The energy per unit volume

f d of the drop is dominated by the surface energy of the free liquid surface :

Fig. 1. - a) Unspread drop on a fiber. b) Spread film on a fiber.

The free energy f of the liquid film of length L is :

where R = ir L (e2 + 2 eb ) and where the wetted surface area is 2 irbl. The first two terms
also show the competition between S (which tends to spread the film) and W(e) (whose effect
is to thicken the film) ; the third term is due to the effect of curvature since the outside surface
(liquid/air interface) is larger than the inner one (solid/liquid interface). The energy difference
f (f = f f - f a ) as a function of e is pictured in figure 2. For S larger than a threshold
Sc, f can be negative. The droplet then spreads out and forms a liquid sheath of thickness
e given by the minimum of f. The threshold is given by f = 0 and af = 0, with the result :y 

ae

Fig. 2. - Energy difference (per unit volume) between drop and film for different spreading
parameters.
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where Sc is strictly positive. The spreading transition occurs for S &#x3E; Sc instead of

s &#x3E; 0, as was the case for a planar surface.

and the thickness of the sheath is ec = a 213 b1l3 (ec =100 Â ).
For S &#x3E; S,, the minimization yields :

This expression for e is the same as for planar surfaces. This latter thickness implies very
small amounts of liquid and so usually a « reservoir » drop will coexist with a wetting film, the
thickness of which can be simply determined from the equality of the pressures inside the drop
(of radius R) Pd and inside the film P f :

which gives a thickness of :

for the film in equilibrium with a reservoir.

2.3 ASCENSION OF A LIQUID ALONG A CYLINDER (Fig. 3). - Now we assume that the fiber is
vertical and is partially dipped in a large reservoir of liquid. At the bottom of the fiber there is
a macroscopic meniscus, and if S &#x3E; S, a microscopic film will develop. The thickness
e of the liquid is now a function of h, the height above the reservoir.
The free energy of the system is :

The first two terms are associated with interfacial energies, the third one with the long-range
interactions and the last one with gravity (p is the density of the liquid, and g the gravitational
acceleration). This is a general equation and describes two regimes : the macroscopic
meniscus and, in case of spreading (S &#x3E; Sc), the microscopic film above the meniscus.
- Meniscus. - The long range term is negligible in (15) and we restrict attention to the

case of very thin fibers whose radius b is assumed to be much smaller than the capillary length
K_1.

and therefore gravity can also be neglected. By minimizing (15), we obtain :
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Fig. 3. - Equilibrium state of the « vertical spreading » situation.

which describes the equilibrium at the liquid surface between the interfacial tensions. This

equation can be solved exactly

catenary profile described by

and it is found that the meniscus adopts a

where ho is an integration constant. For S = 0 (i.e. a zero contact angle between solid and
liquid), the meniscus climbs to a height ho with zero thickness. Notice that this profile implies
that the liquid surface is perturbed at an infinite distance from the fiber, a result for having
neglected the effects of gravity. We can estimate ho by introducing a higher cut-off for the
thickness e. If we assume that the meniscus has a maximum thickness of K -1, we find :

The height ho is then equal to the radius of the fiber times a factor of order 6. The profile of
the meniscus (18) can also be obtained from the Laplace equation which says that the total
curvature of the meniscus is equal to zero if gravity is neglected.

For S = S,,, the thickness at h = h is 3 e (e is given by (14)) and the meniscus ends up with0 2 p

a microscopic film.
For negative S, the meniscus ends up with a contact angle 0 e at height h. defined by :
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- Microscopic film [2] (S , Sc). - Above the meniscus, a microscopic film should spread
spontaneously.

In this case, the curvature  1 and we assume again that e  b. For S &#x3E; S,, we

have seen that for a horizontal fiber, the thickness of the static film was e = a2J3 bl/3. If the
fiber is vertical, the thickness of the microscopic film will depend on the height
h above the reservoir, and the profile can be easily deduced from the pressure equilibrium
condition :

and :

Gravity has no influence for . The thickness slowly decreases from

(h = 0 in the above equation) to e = es (minimum thickness) for h = H :

Substituting for typical values, we find H = 60 m, a very long height indeed.
- Crossover between meniscus and film (S -- S,). - In the crossover région, we can

-2

neglect gravity as h0« k After minimization of (15), one integration gives :b

We can use this equation to determine the angle 9 = cl e1 for S = Sc in the crossover regionah

where h = ho and e = 3 eç. We obtain :2

2.4 STABILITY OF WETTING FILMS [11]. - As stated in the introduction, it is well known that
cylindrical films are usually unstable to any axisymmetrical fluctuations and will break into an
array of droplets [1]. Nevertheless, microscopic films do exist because they are stabilized by
van der Waals interactions. It is easy to compute the threshold value eo above which the film

will break : if P is the pressure inside the film, the condition for stability is apf &#x3E; 0 [12]ae

giving :

For e,  e  eo, films are metastable.
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3. Building of the meniscus.

At t = 0, the fiber is put into contact with a reservoir of liquid (Fig. 4a). We shall focus in this
part on the the meniscus (Fig. 4b). The analysis applies for both horizontal and vertical
spreading since the lengths involved are much smaller than the capillary length K -1.
The liquid meets the solid with a dynamic contact angle 6d which obeys Tanner’s law [13] :

where U is the average velocity of the macroscopic contact line located at h = hd
and V * = Y is a velocity characteristic of the liquid (11 is the liquid viscosity)

- 

11

(V * = 2 000 cm.s-1).
We suppose that pressures in the liquid equilibrate quickly so that the profile is given at any

time by the profile (20) with angle 9 d :

Near equilibrium 1 ho - h d 1  b, 0 d « 1 and (28) becomes :

Combining (27) and (29), we obtain :

The asymptotic law for 9 d near equilibrium is thus :

For S &#x3E; Sc (wetting fluids), the characteristic time for the rise of the meniscus is obtained by
setting (25) which gives

For non wetting liquids, the contact angle will reach its final value ee for t = t 8e2
(t(J;2= 10-5 s for (Je =10°).

4. Dynamics of the microscopic film.

4.1 BASIC EQUATIONS [14]. - Let us first examine the two basic equations which determine
the profile e (h, t) of the film (h is the distance from the outer of the drop (horizontal
spreading) or the height from the reservoir (ascension)). In the lubrication approximation,
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Fig. 4. - Ascension of a liquid on a vertical fiber. a) Initial state (t = 0 ). b) The meniscus develops
(t  tp  tm ). c) The meniscus now pushes ahead a precursor film and a dynamic tongue diffuses on the
fiber (tp  td  t  tm). d) The meniscus is fully established : the precursor film has thus disappear. The
dynamic tongue still diffuses (t = tm ). e) The static profile sets up. For t  tc, the boundary between the
static film and the diffusive tongue also follows a diffusive motion but for t :&#x3E; tc, it will « accelerate » to
meet the tip of the diffusive tongue. f) t = tc : the boundary between the static and dynamic film has
reached the tip of the dynamic film ; this is the final equilibrium in figure 3.
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the mean velocity of the liquid front U(h, t ) is related to the pressure gradient
ap (assuming Poiseuille flow) by :ah

The pressure P inside the film is deduced from the free energy f by where

f2 is the volume of wetting liquid per unit length along the fiber. We thus obtain :

For horizontal spreading, g = 0.
The second equation is the mass conservation :

Using these equations, we now present chronologically all the events that should occur
during the spreading phenomenon.

4.2 PRECURSOR FILM. - During its ascension along the fiber, the meniscus pushes ahead a
microscopic film (the so-called precursor film) which dissipates the energy S [14]. The
gradient of the pressure to be used in the lubrication equation (33) reads :

Since the height of the meniscus is small compared to the capillary length K -1, the last term
can be neglected. On the other hand, the first term, which is the gradient of the Laplace
pressure, can also be ignored because the thickness of the precursor film is smaller than the
threshold value eo for the Rayleigh instability to set in. So (32) reduces to :

the solution of which is

where hl is a time-dependent integration constant which is determined by matching the slope
of the above profile with the slope of the macroscopic meniscus given by (28). At the
matching point (e*, h1*), we get :

and the integration constant hl is :
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This precursor film will exist only if e &#x3E; es and the length À of this film will be :

where t has been introduced in the previous section.
This film will appear as soon as et &#x3E; es, i.e. at a time tp given by :

4.3 DIFFUSIVE TONGUE : DEATH OF THE PRECURSOR FILM (Fig. 4c). - The precursor film is
preceded by a diffusive film which is thinner and whose profile is given by combining (33) and
(35) :

This film spreads ahead of the meniscus and its precursor film ; the driving force for this film is
the disjoining pressure which « pumps » liquid out from the reservoir. The reasons for

neglecting the Laplace and gravitational pressures are the same ones as exposed in the last
section. A solution of (43) reads :

The cross-over between the precursor film and this diffusive profile is derived by matching
(38) and (44) at the point (e 2 *, h2 ) :

The diffusive profile will appear as soon as e2 &#x3E; es, i.e. at the time td given by : 
’

The viscous dissipation associated with the building of the meniscus occurs in the precursor
film, so the film will die away with the establishment of the static meniscus, i.e. at time

tm given by (32). At this moment, a static film (i.e. the final profile) should start to develop.

4.4 DEVELOPMENT OF THE STATIC FILM (Fig. 4e).
4.4.1 Horizontal spreading. - The situation is pictured in figure 5. The equation for the
profile is still (43), but now, we need to impose a new boundary condition :
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Fig. 5. - Horizontal spreading : a static film of thickness e, meets a dynamic (and diffusive) tongue off
length ht at h = hs (which also follows a diffusion law but with a smaller diffusion coefficient).

We re-define the origin of height h by this boundary condition. The solution of such a
differential equation is :

The static film ends for h = hs :

while the diffusive tongue ends for h = ht, e = es :

We have thus shown that the static sheath of thickness ec spreads out of the meniscus with a
simple diffusion law :

with the diffusion coefficient given by :

The static film will take the place of the dynamic tongue whose tip also follows a diffusion
equation but with a larger diffusion coefficient :

This analysis applies for a large reservoir or a large drop with negligible Laplace inner
pressure. For small drops, the Laplace pressure will slightly thicken the microscopic film and
accelerate the spreading.

In our experiments [7], we have also found a diffusive progression of the film but with a
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diffusion coefficient that is 104 larger ! The reason was that, as is very often, there were axial
grooves along the fibers which conveyed the liquid by capillarity.
4.4.2 Upward creep : gravity effects. - If we include the effects of gravity, the differential
equation which describes the profile becomes : 

This equation has no analytical solution and we are thus led to look for a self-similar solution
[15] in the form of :

(54) which leads to :

where the function cp has to meet the dimensionless differential equation :

with The former analysis for the case of horizontal spreading leads us to expect

two regimes :
a) at small height (u small) the static film is already established : viscous terms are

negligible and (57) becomes

with the boundary condition : (h = 0, e = ec). Equation (58) can be integrated to give :

with

Equation (59) is of course identical to equation (22) : it describes the static profile.
b) at large height, a similar analysis leads to the dynamical profile given by (44) (this film is

thinner and thus not subject to gravity) :

The cross-over between the static film and the diffusive tongue depends on û : the profiles
(59) and (60) match for :
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We call tc the time defined by Fi = 1 :

This time defines the timescale and height for which gravity becomes important. Up to

gravity is negligible : for short time (t  tc, i.e. u  a), the matching

point is given by (49) (g = 0 or horizontal spreading).
When t &#x3E; tc, the solution of (61) is u =1, i.e. :

The static film no longer follows a diffusion law and creeps faster than the diffusive dynamic
film. Finally, both films meet for h = H (23), the final height of the static film. This occurs for

(recall that the dynamic film always spreads with a diffusion law). The final equilibrium,
therefore, will be reached at very long time (te = a few thousands of years) but remember
that we are studying flow in an annular pipe of thickness only a few A, and moreover that this
flow obeys a diffusion law. Obviously, only the first stages of the spreading can be
experimentally observed.

5. Conclusion.

This theory is very similar to that of Joanny and de Gennes for planar surfaces [15]. For very
thin films (here the precursor film and the dynamic tongue), curvature effects due to the fiber
can be ignored, and so the results are the same. For thicker films (meniscus and microscopic
static films), these curvature effects have to be considered.
The meniscus on a fiber, contrarily to the case of planar surfaces, has zero total curvature

and climbs up to height of order b (fiber radius), small compared to K -1 (height of the
meniscus for a vertical planar surface). Hence, the building of the meniscus is quite quicker
(by a factor of K -1/b of order 100). It could be experimentally studied by using very viscous
liquids.
The thickness of the microscopic static film is also related to the radius b, in both situations

(i.e. vertical or horizontal fibers). As for planar surfaces, the spreading of microscopic films
presents an interesting cascade of regimes, but the timescales are different here. Another
special feature of fibers has to be emphasized : for a vertical fiber, gravity effects can be
ignored for h (height of the tip of the film above the reservoir) smaller than K - 2/b (the latter
quantity can be order 10 cm). Since the progression of the microscopic film is very slow, the
no-gravity description should be enough for many practical situations.
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