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Résumé. 2014 Nous développons la méthode des défauts topologiques à un réseau carré

bidimensionnel: la réorganisation topologique obtenue par cassure de liaisons puis création de
nouvelles liaisons entre cations, conduit à un système désordonné type AB2 après insertion des
anions. Deux modèles ont été obtenus à partir de défauts topologiques élémentaires de nature
différente en tenant compte des contraintes géométriques imposées au cours de leur empilement.
Les valeurs de la densité et de l’énergie élastique calculées après relaxation sont plus faibles pour
le modèle présentant un nombre plus important de cycles impairs : par ailleurs, des pics de traces
cristallines sont observables sur la fonction d’interférence, alors que le second modèle, possédant
une majorité de cycles pairs, est typiquement amorphe. Nous présentons la configuration
magnétique de l’état fondamental calculée en supposant que toutes les interactions sont

antiferromagnétiques et ne dépendent uniquement de l’angle de superéchange ABA.

Abstract. 2014 The topological defect method, consisting of modifying the topology of a crystalline
supercell by breaking and reforming bonds between cations, is applied to a two-dimensional
square lattice to simulate four-coordinated AB2 systems after introduction of anions. Two distinct
elementary defects are used to generate two highly-disordered networks with geometric
constraints imposed on the topological defects. After relaxation, the lower density and lower
elastic energy are found for the network with a majority of odd-membered rings which retains
vestiges of crystalline peaks in the scattering function S(q) ; the other network, with a majority of
even-membered rings is entirely non-crystalline. Finally, the A-spin configuration in the magnetic
ground state, is calculated assuming antiferromagnetic interactions that depend only on the ABA
superexchange angle.
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Introduction.

The physics of disordered systems has been receiving growing attention during the past two
decades. Considerable effort has been devoted to developing structural models, characterizing
their topological disorder and evaluating their physical properties. Some concepts have been
adapted from crystallography to describe the structure of amorphous materials (amorphog-
raphy [1]). The idea of frustration [2], used to explain the magnetic behaviour of disordered
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systems with antiferromagnetic interactions, was already present in certain crystalline lattices.
Such concepts were usually introduced at first for two-dimensional (2-D) systems and then
extended to three-dimensions (3-D).

Relatively little attention has been paid to 2-D disordered systems. Besides offering an
excellent approach to an understanding of the properties of 3-D disordered systems, they
provide a means of interpreting the mechanisms of grain growth in polycrystalline or sintered
materials (see Weaire et al. [3], physisorption and chemisorption (for a review, see [4]).
To our knowledge, the simplified 2-D Bernal liquid was the first 2-D disordered network

discussed in the literature [5] : it was advanced to model the order-disorder transition and
consisted of a close-packed assembly of regular or quasi-regular polygons (triangles and
squares). An extension of this model, called « the triangular square lattice » was recently
discussed in thermodynamic terms [6] ; then a frustrated topology was applied to the problem
of amorphous antiferromagnetism assuming Ising [7] and Heisenberg [8] magnetic moments.
In an other approach, a 2-D random network, adapted to vitreous silica, was handbuilt by
generating arrays of triangles equivalent to extended Zachariasen schematics [9]. Topologi-
cally disordered hexagonal networks were obtained by systematically introducing topological
defects into a 2-D lattice while respecting boundary conditions [10] : the method consists of
breaking and reconnecting bonds, the coordination being kept constant. The author
concludes in this paper that the ring statistics converge to fixed values independently of the
network size.

In their approach, Weaire and Kermode focused their attention on the evolution of 2-D
soap froths [3]. Two processes were introduced to simulate the topological rearrangement of
the cells contained in the network so as to reproduce the time evolution of a soap film : one
consists of creating a bond and the other of destroying a small cell, the coordination still being
kept equal to 3. Their model reproduces well the features observed in soap froth itself, as well
as grain growth or plastic deformation in metals [11].
These studies show the interest in understanding the amorphography of 2-D disordered

systems. They can also be considered as a first approach to studying real 3-D amorphous
materials.

Recently, Wooten and Weaire [12] have developed the topological defect method for
generating amorphous tetrahedral structures for a-Si or a-Ge. The procedure involves
successive introduction of defects into a large crystalline supercell, each defect resulting in a
local rearrangement of the topology, the coordination remaining unaltered.
Our aim is to develop the method for octahedral structures. We have previously analysed

two handbuilt structural models [13] and a computed one [14] representing the AB3 random
network composed of comer-sharing AB6 octahedra. The algorithm for generating the
computer model is based on three physical criteria : (i) 6-fold A and 2-fold B coordination,
(ii) steric encumbrance of the atoms A and B and (iii) geometrically frustrated topology with
the presence of both odd- and even-membered A rings. The latter is indicated by the magnetic
behaviour of amorphous FeF3, where the antiferromagnetic Fe-F-Fe superexchange interac-
tions are frustrated [15]. 

In this paper, we apply the topological defect method to a 2-D square lattice, thereby
generating a planar non-crystalline network. The structure, topology and properties are then
discussed. Extension to 3-D will be reported elsewhere [16].

The topological defect method.

We begin with a crystalline square superlattice containing the A positions which was taken to
represent the 2-D cation network ; the B anions are placed mid-way between nearest
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neighbour A cations. Only four-membered rings are present in such a network. The

topological defect method consists in modifying the topology of the starting configuration by
breaking some cation-cation bonds and then reforming new cation-cation bonds which respect
the coordination. The local rearrangement involved after introduction of two types of defect
are illustrated in figure 1. The first topological defect (Fig. la) consists in rotating the intemal
square ring defined by cations A, B, C and D as follows : the BE, CF, DG and AH bonds are
broken and then the AE, BF, CG and DH bonds are connected. The second one (Fig. lb)
consists in breaking BC and AD bonds and then reconnecting AC and BD bonds. Defect (1)
may be considered as a dislocation quadrupole and defect (2) as a dislocation dipole. The final
arrangement in both cases exhibits three and five-membered rings : a six-membered ring can
result from the judicious juxtaposition of two topological defects. Furthermore,. the
topological environment created by one type of defect can be obtained by juxtaposing several
of the other ones, and vice versa.

Fig. 1. - Local rearrangement induced by the two types of topological defects discussed in the text.

The locations of the topological defects are chosen randomly by the computer program.
Some of the topological defects may be moved to optimize the homogeneity of the disorder.
No dangling bonds or double bonds between two cation nearest neighbours are allowed.
Some rules relying on geometrical considerations to exclude unrealistic situations were
established as explained in next section.
When a topological defect is generated near the outer edge of the square superlattice, the

neighbourhood is obtained by consideration of periodic boundary conditions.
The final A-site topology is achieved when no more defects that satisfy the rules can be

introduced. At this stage, the anions are inserted by placing the B-atoms mid-way between
two cation nearest neighbours. Then, a procedure of structural relaxation using an harmonic
potential (analogous to that used in [14]) is extended to the whole model, in conjonction with
periodic boundary conditions. The topology is unchanged by such a relaxation procedure.
Finally, different physical parameters are deduced from the relaxed structural network :
density, radial distribution functions, interference functions, distortion parameters, ring
statistics, angular distribution functions, magnetization and spin correlation function (as-
suming an interaction scheme and allocating a magnetic moments to A ions only).

The geometric problem.

To maintain an analogy with non-crystalline solids where chemical constraints like atomic
radius and chemical bond nature exist, the atomic arrangement of the 2-D disordered
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structure is not completely random ; a certain regularity is imposed by the local atomic
arrangement : consequently, some geometric constraints due to this short-range order have to
be taken into account when superimposing the topological defects. The problem, in other
words, is how to fill a plane with somewhat distorted polygons, the 4 : 2 coordination being
everywhere maintained.

In the present study, the following quantitative limits were established, guided by the
structural data observed on the three polymorphic crystalline phases of FeF3 [17] and those on
the amorphous forms [18]. First, the type of polygon is limited to triangle, square, pentagon
or hexagon. In addition, the polygons have to be convex and weakly distorted : a concave or a
highly-distorted polygon would be equivalent to unrealistic large-angle distortions in the local
structure. Then we analysed the different possibilities of filling a plane with polygons so as to
establish the rules to be applied in order to avoid unrealistic stituations when superimposing
the topological defects : 35 cases are found and only the more favorable ones are listed in
table I. The lower and upper limits on the sum of the four ideal angles AAA around one A
atom were estimated as follows : first by taking the ratio of A and B ionic radii, one obtain a
lower limit for the angle ABA (135°) is appropriate for Fe 31 and F- ), and then by considering
the lower and upper values of the AB distance experimentally observed (1.95 (3) Â) found for
a-FeF3 [18]. From these data, two extreme values were defined equal to 330° and 385°
between which the distortions can be consistent with the structural observed data on the

amorphous ferric fluorides. The sum of the four real AAA angles is, of course, 360°.

Table I. Geometric situations encountered in a two-dimensional case.

(*) X is the sum of the four ideal angles assuming regular rings through the A cations.
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The two 2-D models.

The starting supercell was a square lattice containing 50 x 50 A sites, which should be large
enough to be representative of the amorphous state. The distances between two first-nearest
neighbours was taken as a. Then the method was applied to generate two models, 1 and 2,
using only the defects a and b respectively presented in figure 1. The final topology of the two
models is illustrated in figures 2 and 3 : 214 a-type and 269 b-type defects were successfully
introduced. One can first remark that no « unrealistic » situation is observable in either

model, in agreement with the limits proposed in table I.
In figures 4 and 5, the A-site topology of the two models is presented after carrying out the

relaxation procedure on whole system (2 500 A cations and 5 000 B anions) taking into
account the periodic boundary conditions. The distance AB was initially taken equal to
a/2 (dAB = 1.95 Â).

Structural analysis of the 2 models.

The ring statistics presented in table II show that the two models are topologically rather
different. No six-membered rings were allowed in the second network. The first model
contains 64 % of odd-membered rings while the second one contains 44 %. In addition, the
elastic energy of the second model is found to be four times higher than that of the first one,
after applying the structural relaxation procedure in both cases. At this stage, we conclude
that the model with six-membered rings is more realistic.

Table II. - Ring statistics for the two-dimensional models compared to a no-defect squared
lattice.

The structural characteristics of the two relaxed models are reported in table III. Here it
would appear that the two models are very similar, although the AA, AB and BB peaks are
broader for the second model. Note also that the density calculated for the model 1 is lower
than that of the crystalline phase, while the density of the model 2 is higher ; such changes are
directly related to the nature of the topological defects.

In other respects, by looking at the radial distribution functions (RDF) (see for example the
AA partial RDF and the total RDF presented in Figs. 6 and 7 respectively), one can conclude
that the two models are structurally very different : the first structure model looks like that of
a distorted crystalline lattice while the second one exhibits the typical signs of an amorphous
structure.

The interference functions S (q ) for the no-defect square lattice and for the two models 1
and 2 are shown in figure 8, where it may be seen that vestiges of crystalline Bragg peaks
remain in model 1, but they are absent in model 2. Only model 2, based on the dislocation
dipole defect, is truely « amorphous ».
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Fig. 2. - Representative view of the square model 1 before applying the structural relaxation

procedure.

Fig. 3. - Representative view of the square model 2 before applying the structural relaxation

procedure.
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Fig. 4. - Representative view of the square model 1 after applying the structural relaxation procedure.

Fig. 5. - Representative view of the square model 2 after applying the structural relaxation procedure.
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Table III. - Structural characteristics of the two-dimensional models compared to the no-
defect square lattice (a = 3.90 Â ).

(*) « and {3 are the distortion parameters of the AB2 units

are the equilibrium distance between A and B and two first-nearest B atoms respectively.

Fig. 6. Fig. 7. Fig. 8.

Fig. 6. - AA radial distribution functions of a no-defect square lattice (a), of model 1 (b) and of model
2 (c).

Fig. 7. - Total radial distribution functions of a no-defect square lattice (a), of model 1 (b) and of model
2 (c).

Fig. 8. - Interference functions of a no-defect square lattice (a), of model 1 (b) and of model 2 (c).

Magnetic behaviour.

The calculation of the magnetic structure consists of determining the magnetic moment
directions after minimizing the energy for classical spins. The initial state with directions of
the A site magnetic moments oriented in the plane was randomly generated by the computer
for the two models. An XY spin interaction was considered between the 4 nearest neighbours
as following,
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Fig. 9. - Representative view of the magnetic structure of model 1 after applying the magnetic
relaxation procedure (a) ; details are given on (b).
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Fig. 10. - Representative view of the magnetic structure of model 2 after applying the magnetic
relaxation procedure (a) ; details are given on (b).
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where Jij represents the integral exchange coupling (negative in the case of antiferromagnetic
interactions) which is related to the superexchange angle ABA but assumed independent of
the distance between first-nearest neighbours AA. The magnetic structure is then relaxed by
minimizing the magnetic energy according a gradient method which was previously developed
for crystalline fluorides [19] : each spin is examined individually and rotated according to the
torque due to its magnetic neighbours at each iteration ; in addition the periodic boundary
conditions were also taken into account.
The final magnetic configurations are presented in figures 9 and 10 respectively and the

magnetic characteristics are reported in table IV. The frustration degree can be estimated
from the magnetic energy per spin which appears to be very similar in both cases although
their topologies are rather different (see the percentage of odd-membered rings in Tab. IV).
In addition, the spin correlation functions were estimated for both models and compared to
that of a no-defect antiferromagnetic square lattice, as shown in figure 11.

Table IV. - Magnetic characteristics o f the two-dimensional models compared to the no-defect
squared lattice.

Fig. 11. - Spin correlation functions of a no-defect square lattice (a), of model 1 (b) and of model 2 (c).
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The shape of the spin correlation function calculated for the first model confirms that it
looks like a distorted crystalline lattice. In both cases, the difference between the A-A radial
distribution function (presented in Fig. 6) and the spin correlation function shows that the
magnetic moments are isotropically distributed in the plane and indicates an antiferromagnetic
coupling between first-nearest magnetic moments.

Conclusions.

The application of the topological defect method to the 2-D square lattice shows that the
superimposition of topological defects may lead packing difficulties with physically reasonable
atomic sizes. The two 2-D models obtained by generating two types of topological defect
subject to plausible geometric constraints are structurally and topologically rather different ;
one retains traces of crystalline order, while the other does not but they exhibit similar
magnetic behaviour : the magnetic moments are isotropically distributed in the plane.
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