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Résumé. 2014 La sélection de vitesse due à l’anisotropie de l’énergie de surface dans la croissance
dendritique à deux dimensions est considérée. Dans la limite de petite anisotropie, l’équation
intégro-différentielle du spectre de vitesse se réduit à une équation différentielle. La solution de
cette équation correspondant à la vitesse maximale est stable alors que les autres solutions
présentent des modes instables. Une équation différentielle pour le spectre des taux de croissance
est également dérivée. La vitesse de croissance v se comporte comme 03B13/4 f(p03B11/2) où p est le
nombre de Péclet et 03B1 ~ 1, un petit paramètre d’anisotropie. Pour p03B11/2 ~ 1, la fonction f est
calculée numériquement. Les taux de croissance des modes instables 03A9 se comportent comme
03B1

3/2 
g (p03B1 1/2). Pour p03B1 1/2 

~ 1, g se comporte comme (p03B1 1/2)3 et comme (p03B1 1/2)- 4/5 dans le cas
contraire.
Abstract. 2014 Velocity selection in two-dimensional dendritic growth caused by anisotropy of the
surface energy is considered. In the limit of low anisotropy the integro-differential equation for
the velocity spectrum is reduced to a differential equation. The solution of this equation,
corresponding to the maximal velocity, is stable, whereas the other solutions have unstable
modes. A differential equation for the spectrum of growth rates is also derived. The growth
velocity v ~ 03B13/4. f(p03B1 1/2), where p is the Peclet number, 03B1 ~ 1 is a small anisotropy parameter.
At p03B11/2 ~ 1 the function f is calculated numerically. The growth rates of the unstable modes
03A9 ~ 03B13/2 g (p03B11/2). At p03B11/2 ~ 1 the function g ~ (p03B11/2)3, and in the opposite limit

g ~ (p03B1 1/2)-4/5.
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1. Introduction.

Lately the mechanism of velocity selection in dendritic crystallization has been investigated in
detail. It has been shown that the crucial role in this selection is played by the anisotropy of
the surface energy. The velocity spectrum of a needle crystal is discrete, and the only stable
solution is the one with maximal velocity. An analytical approach to this problem is in the
general case complicated due to the necessity to solve a nonlinear integro-differential
equation. Some progress can be achieved in the low anisotropy limit, when the Ivantsov
parabolic solution for the dendritic front [1] can be taken as a starting point. Then the
anisotropic surface energy acts as a singular perturbation. To calculate the growth velocity
spectrum one should solve an equation near the singular point in the complex plane. Ben-
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Amar and Pomeau have been the first to derive a nonlinear differential equation of this kind
[2]. From dimensional analysis of this equation the following expression was obtained for the
growth velocity

where D is the thermal diffusivity, do is the capillary length, p is the Peclet number, and
a « 1 is a small anisotropy parameter. The Peclet number is determined by undercooling
and, at small dimensionless undercoolings d, we have p = .d2/ ’TT. To derive the above result
for the growth velocity, in papers [2-4] the small Peclet number approximation was formally
employed. Actually this result is valid in a rather broad interval of p’s [5]. The genuine
criterion of validity of equation (1) for the growth velocity follows from estimating the size of
the singular region and is given by the inequality p  a - 1/2 [6]. The opposite limit of large
Peclet numbers can be considered for arbitrary anisotropy a [7, 8]. The limit of small

a « 1 then gives

where /3 - 1. Comparison of limit expressions for the growth velocity shows that their orders
of magnitude are comparable at pa l2 - 1. Thus, it can be conjectured that in a general case at
a « 1 the growth velocity is given by the expression

In section 2 of the present paper we consider the problem of selection of the growth velocity
of a two-dimensional needle crystal at arbitrary Peclet numbers, exploiting only the smallness
of anisotropy a. The equation for the growth velocity spectrum depends only on
pa 1/2. Structurally it is quite similar to that derived previously in reference [2] in the limit of
small Peclet numbers. From this equation follow the limit expressions (1) and (2), whereas at
pa 1/2 -- 1 the function f, entering equation (3), is found numerically. In section 3 we derive an
equation for the growth rates of unstable modes f2 and show that

where

2. Sélection of the dendritic growth velocity

The dynamics of the crystallization front y (x, t ) of a freely growing two-dimensional needle
crystal is governed in the symmetric model, by the equation [9]

In order to consider in what follows the steady-state growth of a needle crystal of an almost
parabolic form with a tip radius p and velocity v, and also to analyze the stability of the steady-
state growth, we have introduced in equation (9) the following dimensionless parameters. All
lengths are measured in units of p, time in units p /v, p = v p /2 D is the Peclet number,

4 = (Tm - To) cp L 1 is the dimensionless undercooling, T fi the melting temperature,
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To the melt temperature far away from the crystallization front (To  Tm ), cp is the specific
heat (thermal parameters of the crystal and melt are assumed to be the same), L is the latent
heat. The second term in the left-hand-side of equation (4) describes the shift of the melting
temperature caused by the curvature of the front K (x, t ) (Gibbs-Thomson effect),

The capillary length d(0) = Y E(0) Tm cp L-2, YE (0) = y ( 0) + d2 y (e)/d 82, y ( e) is the
anisotropic surface energy, tg 0 = dy/dx. Usually for the anisotropy of the capillary length,
the simplest model expression is used,

which corresponds to a four-fold crystal symmetry.
Neglecting the surface energy (do = 0 ) Ivantsov derived a steady-state solution of equation

(4) in the shape of a parabola, moving with a constant velocity [1]

The Peclet number p is then relàted to undercooling by the expression

The anisotropic surface energy acts as a singular perturbation. Consequently, the role of
the small anisotropy parameter a is two-fold. On the one hand, it gives a small correction to
the parabolic front shape which enables one to linearize the integral term in equation (4)
about Ivantsov solution. On the other hand, the size of the singular region near the singular
point is also small at small a. As a result, derivatives of the correction are not small in the
singular region, and the left-hand-side of equation (4) after all simplifications remains
nonlinear [2].
To find the corrected steady-state solution, we represent the front shape as

and linearize the integral term in equation (4) over C. Then we get

where R is the distance between two points on the parabolic front of crystallization. If we
assume that l" 1 « 1, from the left-hand-side of equation (7) it follows that the singular
points of this equation are x = ± i. We consider a close vicinity of the singular point
x = i. In the limit lx - i [  1 we have A (@) = 1 + 2 a 1 (x - i )2. Therefore, the actual size
of the singular region is 1 x - i 1 -- a 1/2  1. In this region the arguments of the exponential
and of the Bessel function in the integrand of equation (7) have different orders of magnitude,
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It follows then, that for pa 1/2 $ 1 the argument of the Bessel function is small. When

pa 
1/2 
» 1 in the region where the exponential is non-negligible, the argument of the Bessel

functions p 1 RI -- p -1/2 « 1. We shall analyze contributions of different terms of the expansion
of the Bessel functions.
We start with the term 1/pR in the expansion of the function Ki. Calculating the integral in
equation (7) with ’(x’) an arbitrary smooth function along the real axis of x’, we find that at
x ;, i the contribution of the term is of order exp (- p 12) and should be neglected when
p &#x3E; 1. The next terms of the expansion contain log R and have quite different analytical
properties. We shall show that at x - i the main contribution to the integral comes from the
branching point of the logarithm at x’ = x. From the expression In (pR ) only In lx - x’ 1
should be retained, since the other factors under the logarithm have no singularity on the real
axis, and their contributions could also be neglected for the reasons given above for the case
of 1/pR-term. We write

The integral with the first term can be directly continued analytically into the upper half of the
complex plane of x with the integration contour maintained on the real axis of
x’. This contribution can also be neglected at x = i for the reasons stated above. The second
term corresponds to the integration contour passing above the point x. The shifting of x into
the upper half-plane leads inavoidably to the deformation of the integration contour (Fig. 1).

Fig. 1. - The integration contours in the x’ complex plane : Ci) for ln (x - x’ - i £ ); C2) for

In (x - x’ + i £). Point x lies in the upper half-plane.

Even for x = i no exponential suppression of this contribution is observed, as it comes mainly
from the vicinity of the branching point at x’ = x. To describe the situation completely we
take a cut going from the point x’ = x vertically down. The values of the logarithm on the
different sides of the cut differ by 2 7Ti. Accordingly, to transform the integral term in
equation (7) we can use the relation

The upper limit of integration in equation (8) is taken to be infinite, which implies the
assumption that f decays rapidly along the imaginary axis. Retaining in the Bessel functions
only the leading In (pR ) terms, and setting
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in the small a limit we get from (7) the equation

Equation (10) is derived under the assumption that p &#x3E; 1, but it is valid at arbitrary p. The
point is that the coefficient of e in the right-hand-side of (10) does not depend on p, whereas
the integral term becomes important only at p &#x3E; 1 due to the smallness of the anisotropy
parameter a.

In the limit pa 1/2 « 1 the integral term in equation (10) can be neglected, then the equation
is reduced to the differential equation, derived in [2]. It means that this differential equation
together with the known scaling relation

are valid in a rather broad interval of Peclet numbers p  a - 1/2. .
In the general case of arbitrary Peclet numbers one must solve the integral-differential

equation (10). Fortunately, the simple structure of the integral term makes it possible to
reduce this equation to a differential equation. Introducing the function

and differentiating twice equation (10), we get a system of differential equations

These equations have no explicit dependence on z, so they are equivalent to a nonlinear
second order differential equation. In order to investigate properties of these equations we
consider their asymptotic behavior at large 1 z 1. In this limit we can, in the first

approximation, neglect the terms with derivatives in equation (12). Then we get

After substitution T = z we consider the linear differential equation (12) in the limit

1 z 1 &#x3E; 1. Solutions of the uniform equation have an asymptotic behaviour

and diverge most rapidly along the rays arg (z) = 0, ± 4 ’TT /7. To ensure an asymptotic
behaviour (13) for the function F we need to kill these divergences along the three rays. To
fulfill the condition of boundedness of F we have two integration constants and the parameter
A, so that À = À (pa 1/2) is the eigenvalue of the problem.
To find the function À (pa 1/2) we have solved the system of equations (12) numerically,

taking F to be real and bounded at large real z and requiring that F be bounded at the ray
arg (z ) = 4 ’TT /7. This solution is then automatically bounded on the ray arg (z ) = - 4 ’TT /7
due to the relation F(z*) = F * (z). In order to solve equations (12) we have used the
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following iterative procedure. At a given T(z) the linear equation for the function

F(z) was solved and the eigenvalue À determined. To kill the solutions, growing at large
Izl, we solve the equation for F(z), going, e.g., from points lying on the rays

arg (z ) = 4 7r/7 and arg (z ) = 0 at 1 z 1 - 7, into the inner region 1 z 1 - 1. The condition of
matching of the solutions, originated from different rays, at some z ( 1 z 1 - 1 ) determines the
spectrum of A. Our numerical calculations confirmed that the results for À do not depend on
the location of the matching point within the inner region. The function F (z ) found in this
way was then used to calculate T (z) from the second of equations (12). The convergence of
this iteration was fairly fast : the value of À becomes stable after 6-7 iteration cycles. Hence,
we write the growth velocity as

where Ao is minimal value of À for a given pa 1/2.

Fig. 2. - Dependence of the function f on pa 1/2. For pa 1/2,&#x3E; 10 the function f varies rather slowly, its
asymptotic behaviour being given by equation (19).

f (y) is plotted in figure 2. Numerically Ào(O) = 0.42. At large y &#x3E; 1, f saturates to a
constant value. This limit was treated in [7, 8]. The asymptotic behaviour of f can be derived
from equations (12) in the following way. From the first of equations (12) one can guess that
at p a 1/2 » 1 the eigenvalue À is of order p2 a. It follows then that almost everywhere in the
complex z plane the derivatives in the first of equations (12) can be neglected. In this
approximation F is given by

The second of equations (12) can then be used to find T as a function of z.
It can be easily verified that at arbitrary À -- p2 a there are two points, where the above

expression for F(r) diverges. We can assume that the eigenvalue of À is determined by the
condition of merging of these points. Hence, we obtain
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To justify the procedure described above and calculate a correction h 1 to the eigenvalue
a = k 0 + À 1, we have to take into account the terms with derivatives in equations (12). The
second of equations (12) in the vicinity of To is written as

In the first of equations (12) we neglect the term with second derivative compared to the term
with first derivative, i.e. we assume that d Fldz2  pa 112 dF /dz (it will be shown below that
dFIdz - (pa 1/2)3/5 F). This corresponds to dropping out the asymptotics F cn exp (p a 1/2 z ),
which diverges at large real z. The resulting first-order equation for F can be transformed with
the use of equation (16) into an equation with the only variable T,

In writing down this equation use has been made of the fact that T:= To and A 1/ A °  1.
Substituting

then gives rise to the dimensionless equation for the spectral parameter 8

From equations (14), (15) and (17) we find the final expression for the growth velocity,

where 130 is the minimal value of the spectral parameter 13 which can be found from the
solution of equation (18). For a distant region of the spectrum, it follows from equation (18)
that 13 n en n 2/5, where n is an integer, n » 1.

In conclusion of this section we note that its main results are 1) the reproduction of
previously obtained asymptotics of the growth velocity in the limit p a 112 &#x3E; 1, and 2) the
calculation of the growth velocity dependence on the Peclet number in the intermediate
region pa 1/2 -- 1 (see Fig. 2). These results were obtained in the limit a « 1 and therefore they
only slightly overlap with existing numerical results. The point is that, in order to determine
the growth velocity by direct solution of equation (4) at real x, one must take into account
singularly small terms with relative magnitude of order of exp (- cla7’8) (at p a 1/2  1), ,
where c is number of order unity. So, when a decreases, one should increase the numerical
accuracy accordingly, which prevents one from reaching the region of small a. That is why the
scaling relation (1) was compared in the literature with numerical results only relevant to the
dependence v en p 2. Our results allow us to go beyond this scaling relation only for

p &#x3E; a -1/2, i.e., at large Peclet numbers. To our knowledge, up to now no numerical results
were obtained for p &#x3E; 1.

3. Stability of the steady-state solutions.

In the preceding section we have derived equation (10) and the equivalent system of
equations (12) which determine the growth velocity of a needle crystal. In a similar way one
can derive an equation which describes the linear stability of this steady-state solution. For
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this purpose we set

The equation for the spectrum of fi can be found by linearization of (4) in en. It has been
pointed above that the steady-state correction (x) is small, but its derivative near the

singular point is not small. Therefore when linearizating equation (4) in en we can also
neglect C (x) as compared to x2/2 in the integral term of equation (4). The integral operator in
the equation for en differs from that in equation (10) by terms linear in fi. One of them

originates from i in equation (4), and the other results from the expansion of the Bessel
function K, near the singular point, if one takes into account that, in the argument of the
Bessel function, p2 is substituted by p (p + 2 il). Omitting details of the derivation of the
integral term, which are similar to the derivation of the integral term in equation (10), and
linearizing in Ca the left-hand-side of equation (10), which contain derivatives, we can write
the equation for en near the singular point (compare to (10))

where

The parameter À and the function T(z) entering equation (21) are determined by the solution
of the steady-state problem (see Eqs. (10) and (12)). Note that equation (21) has been derived
without the conventional quasistationary approximation. This corresponds to discarding the
term with 2 co in (21). It is clear from equation (21) that this is justified only in the limit
pa 1/2 « 1 .

In close analogy with the case of equation (10), the simple structure of the integral term
enables one to reduce equation (21) to a third order differential equation. Let us denote the
right-hand-side of equation (21) by R. Taking the second derivative of this expression we find
that R obeys the equation

Substituting

for the function cp from equations (21) and (23) we obtain the third order equation

where B (z ) is determined by expression (22) via the solution of the steady-state problem. For
1 z [ &#x3E; 1, B(z)--00FF (21/2 Àz3/2)-1, and the three linearly independent solutions of equation (24)
are

The solution we are looking for behaves asymptotically as ’P3. To meet this condition one
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needs, similarly to the steady-state problem, to suppress the exponential growth of

’1’ 1,2 along the rays arg (z ) = 0, ± 4 ’TT /7. With these boundary conditions taken into

account, equation (24) determines the spectrum of increments w and the eigenfunctions cp.

It is known that the steady-state solution with the maximal velocity is stable, whereas
solutions with smaller velocities have unstable modes ( w &#x3E; 0) whose number is equal to the
sequential number of the unstable solution.
From equation (24) it follows that the growth rates a) depend on the parameter

Pa 1/2 . Atpa 1/2 « 1, the growth rates w take some constant values. In this limit the problem of
growth stability in terms of a linear version of the steady-state problem was considered in [10]
(see also [11, 12]). Solving equation (24) numerically together with the nonlinear steady-state
system (12) at p« lr2 = 0 we have made sure that for the steady-state solution with maximal
velocity there are no positive eigenvalues w. For the solution next in terms of velocity one
unstable mode has been found with w = 0.87.

Similarly to equation (14) for the dimensional growth velocity, we can write an expression
for the dimensional growth rates fi. Having in mind that the time was measured in units of
plv, we obtain

The function g (y) is expressed in terms of the function f introduced in equation (14) and of
w (y),

For p a 1/2 « 1, , f cn y 2 and w = const, so that finally, in the small p a 1/2 limit, ,

Consider now the limit p a n2 &#x3E; 1. Simplifications, which are justified in this case, are quite
similar to those introduced in the case of the steady-state problem in the course of the
derivation of equation (18). As in section 2, only T close to To are important,

The order of equation (24) can be reduced by one, as has already been done in the steady-
state problem. After setting

we neglect in the equation for w some small terms, taking for granted that

but noticing that

Exploiting the expansions of B and À, after substitutions

we obtain the following second order equation, which does not contain the parameter
pa 1/2,
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This equation determines the spectrum of growth rates for the steady-state solution,
specified by the value of the spectral parameter f3 and by the shape function x(z) (see
Eq. (18)). In the nearest region of the velocity spectrum, when /3 - 1, W -- 1. In the distant
region of the spectrum, when 13n -- n2/5, , the analysis of equation (30) yields for the most
unstable mode

The dependence of the increment w on the parameter p a 
1/2 is given by relation (29),

w ~ (pa 1/2)1/5. At pa 1/2 &#x3E; 1 the growth velocity as well as the function f (pa 1/2) in equation
(27) become p-independent. For the function g (pa 1/2) describing the dependence of the
growth rate on the Peclet number, we obtain the following asymptotic behaviour

Comparing expressions (28) and (31), one can see that the increment f2 depends on the Peclet
number nonmonotonously, exhibiting a maximum at pa 1/2 -- 1.
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