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Résumé. 2014 Les propriétés statiques et dynamiques de réseaux neuronaux avec interactions entre
plusieurs neurones sont étudiées analytiquement et numériquement. La capacité de stockage de
ces réseaux est la même que celle des réseaux avec interactions entre paires de neurones, ce qui
implique que ces réseaux ne stockent pas l’information de manière plus efficace. La taille des
bassins d’attractions est calculée exactement à partir d’une solution de la dynamique du réseau
totalement connecté. Ceci montre que les réseaux avec interactions entre plus de deux neurones
sont plus efficaces pour la reconnaissance des patterns que les réseaux avec interactions entre
paires de neurones.

Abstract. - The static and dynamical properties of neural networks having many-neuron
interactions are studied analytically and numerically. The storage capacity of such networks is
found to be unchanged from that of the more widely studied case of two-neuron interactions
implying that these networks store information no more efficiently. The size of the basins of
attraction in the many-neuron case is calculated exactly from a solution of the network dynamics
at full connectivity and reveals that networks with many-neuron interactions are better at pattern
discrimination than the simpler networks with only two-neuron interactions.
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Introduction.

The static structure of the simplest single layer neural networks is described by N two-state
neurons, Si’ and a real-valued, N x N coupling matrix, Tij, which contains information about
the architecture of the network as well as determines the stable states. The two-dimensional
character of the coupling matrix follows from the assumption that the neurons have only two-
neuron interactions. However, it was realized quite early [1] that this assumption is not
tenable for biological networks. Biological networks have a propensity for many-neuron
interactions, although the reasons for this are far from clear. Several authors [1, 2, 3] have

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01990005102014500

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:01990005102014500


146

pointed out the increased storage capacity of networks using multibody interactions and Baldi
and Venkatesh [3] have estimated that this storage capacity increases like 0 (N A) for

networks having (A + 1 )-neuron interactions. For the case of two-neuron interactions it is

known from the work of Venkatesh [4] and Gardner [5] that the maximum number of

uncorrelated patterns, P, which can be stored without error, increases as P = 2 N. If one

defines the storage capacity, a, as :

then the maximum storage capacity for networks having two-neuron interactions is

a = 2. Hence, the important question to be asked about networks with many-neuron
interactions is whether this storage capacity is increased, decreased or remains the same. In
other words, do many-neuron connections store information more or less efficiently than two-
neuron connections ? The results to be derived here will show that the maximum obtainable
value of a is a = 2 for all values of k -- 1.

In addition to their static properties, neural networks are also defined by their dynamical
properties. The most common dynamics studied, for two-neuron interactions, is defined, at
zero temperature (i.e. in the absence of noise) via the equation :

For strongly connected networks with only two-body interactions, the only dynamical
property known analytically is the first step in this time evolution [6]. However, many other
properties, such as the size of the basins of attraction are known from computer simulations
[7-9, 15]. A natural generalization of the dynamics to the multi-body case is defined by :

It turns out that multi-body dynamics are somewhat easier to study than two-body dynamics
because of a decrease in the number of macroscopic variables needed to describe a given state
of the network. Because of this decrease an ansatz can be made regarding the dynamics which
allows certain parameters of the time evolution to be calculated exactly. These parameters, as
will be shown, are in excellent agreement with computer simulations.
The plan of the paper is then as follows. In the next section the many-neuron networks will

be defined in more detail and the static properties will be calculated analytically via a
generalization of the method first employed by Gardner [5]. Then the first time step will be
calculated analytically and compared to previous results. A conjecture will made at this point
regarding the analytic form of the exact solution to the dynamical evolution. Next, after
presenting a learning rule suitable for all values of À, numerical results will be discussed which
support the validity of the foregoing analytical arguements.

Static properties.

The properties of a neural network will depend, of course, upon the network architecture.
For many-neuron interacting networks a fully connected architecture has some symmetries
not present in the two-neuron case. This is illustrated schematically in figure 1 for the simple
case of three-neuron interactions with directed synapses. Obviously, Tijk is invariant with
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Fig. 1. - A schematic diagram of a three-neuron interaction.

respect to interchanges of the indices j and k, i.e., physically there exists only one three-
neuron « synapse » labelled i-j-k. For a general, (À + 1 )-neuron interaction the synaptic
matrix Tijl ...j,B will be invariant under interchange of any of the jl to jk indicies. This should be
reflected in the calculation of the local field by summing only over the independent elements
of the synaptic matrix, i.e., the sum in equation (1.3) should be further restricted to run over
all jl 1 : j 2 ... : j À in addition to the normal restriction of running over jl, j2, ...,

j03BB ~ i.
With these extra symmetries, it is evident from equation (1.3) that the stable states of the

system (denoted by e) will be defined as those states with local stability greater than zero :

for every neuron i. Where, g E {l, ..., P }, eN’ is defined as :

which is simply the square root of the number of independent elements in the sum and

E denotes the restricted sum over only the independent elements of the synaptic matrix as
J

described above.
In order to fix the scale for the couplings a suitable generalization of the two-neuron

interaction case to the many-neuron interaction case is :

For À = 1, this is seen to reduce to the usual normalization [5] and as is the case there, it can
be shown that this is not a real restriction on the network rather it is a description of the
networks which emerge when constructed from some of the known learning rules (see
Sect. 3). Experience with À = 1 networks has also shown the need to adjust the stability
condition in equation (2.1) from £M:::. 0 to Cr::&#x3E; K (where K is a positive constant which is
taken for convience to be independent of 1£ and i), so as to produce stable states with non-
negligible basins of attraction.
With the networks so defined, the calculation of the maximum storage capacity is done à la

Gardner [5], i.e., the typical fractional volume of the coupling space which satisfies (2.1) and
(2.3) at a given storage capacity is calculated and the maximum storage capacity is then
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defined by the vanishing of this volume. The fractional volume is simply : VT = fl Vi, where
i

Vi is given by :

with,

The typical fractional volume is then to be found by averaging VT over all realizations of the
stored patterns. Since VT factorizes over the index i, the assumption of self averaging with
respect to i should be valid. Therefore, write, In VT = 1 In Vi and perform the quenched
i i

average on In VT, i.e., on each subsystem In Vi. This average can be done via the replica
method :

For the definition of Vi given above, the calculation of the quenched average reduces to
evaluating the following expression :

Using the standard integral representation of the e function, this equation becomes :

where the integrals over the x-variables are restricted to the range [K, 00] and the other
integrals remain unrestricted. In order to calculate the average over the patterns, we rewrite
the exponential as :

The sum over the patterns acts only on the terms in the square brackets and when
expanding these brackets out for À = 1 they vanish identically. For À &#x3E; 1, all of those terms
vanish in which et does not occur an even number of times, hence, the lowest order
contribution to this sum is :
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Since the patterns are random and uncorrelated, a priori one expects that the Tij, ... j,B will also
be uncorrelated. Hence, with on the order of NÀ(À+l)/2 terms in the above sum and

eN’ (À + 1)/2 - N À (À + 1)/2, these sums are of the order N- À (À + 1)/4. For large N these terms are
negligible and one is left with :

Therefore, to lowest order in 1/N, the quenched average has the form :

If the variable, q a6, @ is now introduced ;

then equation (2.11) becomes identical to that found by Gardner for the case of two-neuron
interactions. Hence, the rest of the analysis proceeds identically to her calculation and the
interested reader is referred to her original paper for the details. The main result, obtained at
the replica symmetric point, which can be shown to be stable, is that the storage capacity
grows at saturation, i. e. , the maximum allowed a for a given K, as :

When K = 0 the patterns are minimally stable and the storage capacity has its maximum value
of a = 2. This proves that networks having many-neuron interactions store information no
more efficiently than networks having only two-neuron interactions. They do store much
more information than two-neuron connections, with the number of storable patterns growing
as N À 1 À !, however, they require of the same order of magnitude more connections to reach
this higher level of storage.

Dynamic properties.

The dynamical behaviour of these models is at least as important as the storage properties for
application purposes. In order to function as an associative memory, the stable states must be
able to attract almost all states within a « reasonable » Hamming distance, i.e., the distance
must not be so large that states having spurious correlations with the stored state are
attracted, but it also must not be so small that only states which are almost identical to the
stored state are attracted. The determination of this distance is a very difficult problem
analytically. For strongly connected networks with two-neuron interactions, only the first step
of the time evolution is known exactly [6], although the attraction basins have been studied by
computer simulations [7-9].
To gain a simple understanding of dynamics for À &#x3E; 1, first compute the probability,

P (m (1) m (0)), that a state of the network at time, t = 1, has overlap, m (1 ), (m (t ) -
(1/N) 03A3 03BEi Si(t)) with some one of stored states, given that it had overlap m(0) with the

i
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same stored state at time t = 0 and random overlap with all of the other stable states. This
probability is given by :

The evaluation of this probability proceeds along the lines of Kepler and Abbott’s [6] work for
the two-neuron interaction network and with the use of the same arguement as in section 2 for

computing the sum over configurations, hence, omitting the details, the result is quite simply :

where is defined in equation (2.1). If the distribution of the £i’s is known, then (3.2) gives an
explicit equation for m (1 ). However, the only restriction on the Ci’s is : £i &#x3E; rc Vi, which is
independent of À ; hence, they should have the same distribution as for À = 1 [10]. (It is very
easy to check this via a replica calculation similar to that of Sect. 2.) Thus, with probability
one, m (1 ) becomes :

For À = 1, the calculation of m (2) is very difficult because it depends not only upon
m(1) but also upon the parameter, p (1):= L [m p, (1)]2, which measures the projection of the

03BC

state of the network onto the subspace spanned by the stored states. (At the first time step this
parameter does not enter explicitly since the initial state of the network has been assumed to
have macroscopic overlap with only one stored pattern and random overlap with all of the
other stored patterns.) The calculation of the time evolution of p (t) appears to be an
intractable problem [11]. When À &#x3E; 1, however, a similar variable, pk (t) 03B1 [M 2 1

03BC

does not play such a fundamental role because the complete configuration space is always
spanned by the set of stored patterns (provided of course that a ~ 0 and in the limit
Nu oo), so that P À is independent of time. The effect of this time independence can be seen
by considering the basins of attraction around the stored states.
A convenient measure of the « size » of the basins of attraction around a given stored state

can be computed from equation (3.3). This measure is often called the radius o f attraction and
it is denoted by R [15], with R being defined as : R -1- mu, and mu is the unstable fixed
point of (3.3) at a given value of K (and as a consequence of Eq. (2.13) an equivalent value of
a). R is plotted in figure 2 as a function of a for several values of À. If m (0 ) &#x3E; mu, then the
network will iterate toward the stable fixed point, m = 1. If on the other hand,
m (0 )  mu the network will iterate toward the stable fixed point m = 0. When À = 1, it has
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been noticed that the system may iterate in the first few time steps toward the fixed point
m = 1 and then at latter times reverse direction and flow toward m = 0 [12]. Once, the system
starts flowing toward m = 0 however, it has not been observed to reverse itself. (For the
related case of feed-forward networks one can solve the dynamics exactly and prove
rigorously that such an effect does indeed exist [13].) Thus, it can be conjectured, and is
supported by the data (see next Sect.), that figure 2 gives the upper bound for the radius of
attraction when À = 1. The reversal of the network’s direction of flow has previously been
related to the time evolution of p (t ) [11]. Since, for Je &#x3E; 1, p À should be independent of time,
it can be conjectured that no such reversal takes place and that the fixed points of equation
(3.3) determine the radius of attraction exactly. In the next section, numerical simulations will
show this in fact to be the case.

Fig. 2. - R = 1 - mc, where mc are the fixed points of equation (3.3), vs. a for several values of À.

There is another qualitative difference between the flow diagram for À = 1 and
À &#x3E; 1, namely the nature of the transition to R = 1. For À = 1, equation (3.3) predicts a
second order transition to R = 1 at the value of rc defined by :

or a = 0.419. While, for À &#x3E; 1, equation (3.3) predicts a first order jump to R = 1 at

a = 0. The size of this jump increases as À increases and goes to 1 as A - oo. In other words,
as A - oo, R --&#x3E; 0 for all a &#x3E; 0 and R = 1 at a = 0.
For the dynamical properties then, there are quantitative as well as qualitative differences

between networks with only two-neuron interactions and networks with many-neuron
interactions. In the following section these predicted differences will be validated via
numerical simulations.
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Numerical simulations.

A learning algorithm to generate networks satisfying the constraints of section two for many-
neuron interacting networks is easily constructed from a generalization of the learning rules
developed for two-neuron interacting networks [5, 8, 14]. Although any of the proposed
learning rules can be generalized, the generalization here is based upon the learning rule
developed by the Edinburgh group. Starting with the first pattern and moving sequentially
through all the patterns (and in a sequential or parallel manner through the neurons), define
an « error mask » as :

then update the coupling matrix as :

After all the patterns have been checked in this manner the procedure is repeated until the
stability condition is satisfied for every pattern on every neuron. This learning algorithm can
be shown to converge to a solution of the stability conditions provided such a solution exists.
The proof makes no essential departures from that given in reference [5] for the case of two-
neuron interaction and so will not be repeated here.
For finite size networks, one must compensate for the deviation of a, from that given by

equation (2.13). This is done by looking for the value of K N at which the learning time tends to
infinity. K N will be somewhat less than the Ke predicted by equation (2.13), but the finite size
system will have properties which are very close to those of the infinite volume system [9].
As a test of the foregoing analytical calculations, m (1 ) was measured as a function of

m (0 ) for a = 0.20 and a = 0.4 at À = 2 and a network size of N = 64. As seen in figures 3a
and 3b the results agree quite nicely with the analytic predictions. As m (0 ) becomes small the
interference from the other stored states increases (a priori one expects interference to set in
around m(O) -- 0(11 -N,/N-» and the agreement with the theoretical calculations is predictably
worse. Now, in the previous section it was conjectured that the radius of attraction could be
calculated from equation (3.3) for À &#x3E; 1. To show that this is indeed the case a definition of R
is needed which takes the finite size of the network into account.
A working definition of the radius of attraction R is ; 1 - mc, where mc is the value of the

overlap such that as N - oo almost all of the states havin m &#x3E; mc will evolve toward
m = 1. For finite size systems, R is reduced due to the 0 (1 / ~N) overlap between the stored

/ 1 M, B
states. Hence, a better definition of R is [15] : R = 1 - Mav , where m is the average[ ] 

B 1 - m 
av g

- av

overlap of the given state with all of the other stored states and the bracket indicates an
average over all stored states and all starting configurations. (As N ---&#x3E; oo, the mc defined here
tends to the mu defined in the previous section and Ma, tends toward zero.)
The results obtained when calculating R using this prescription are plotted in figure 4. (The

results for À = 1 [9] are also plotted for comparison.) As can be seen, the fixed points of
equation (3.3) agree very well with the numerical simulations for the radius of attraction when
h = 2. (Note also that for À = 1, equation (3.3) becomes a very good predictor of R for large
a where p (t) is much more restricted.)
Although it would certainly be desirable to have results for larger values of À, such

simulations become increasingly costly for fully connected networks near saturation, i.e.,
P -- O(NA/À!), in terms of both computer time, growing like O(N2A+l/(À!)2), and
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Fig. 3. - a) mo vs. ml at a = 0.20. The solid line is a plot of equation (3.3). b) mo vs.

ml at a = 0.40. The solid line is a plot of equation (3.3). All the data was taken on a network with
N = 64 neurons.

memory, growing like 0 (N AI À !). Hence, these simulations must await the next generation of
parallel computers.

Discussion.

It has been shown that networks with many-neuron interactions do not store information
more efficiently than networks with only two-neuron interactions, and in fact the storage
capacity is given exactly by the same Gardner formula. This leads one to speculate on the
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Fig. 4. - The radius of attraction for À = 1 (0) and À = 2 (El). For À = 1 the network size was
N = 100 while for À = 2, the network size was N = 64. Also shown are the theoretical predictions.

global nature of the limiting value of a = 2. Although the storage capacity of the original
Hop field model can be improved upon by deleting connections [16], or by using Ising (± 1)
variables for the synapses [17], or by using restricted range interactions [18], none of these
approaches leads to increasing a above 2 as long as random uncorrelated patterns are used. It
would be interesting to know if a is limited simply by the two state nature of the spin variables
or by some more fundamental mechanism. Of course, one can consider correlated patterns in
which case the storage capacity defined above goes to infinity as all of the patterns become
perfectly correlated ; however, if one then looks at the quantity : in formationlsynaptic
coupling, this decreases as the correlation between the patterns intreases [5], implying once
again some fundamental limit to the information storage capacity of neural networks.
On the other hand, many-neuron interacting networks do have a different dynamical

behaviour as indicated by equation (3.3). This solution of the dynamics indicates that many-
neuron interacting neural networks are far better at pattern discrimination than two-neuron
interacting networks, i.e., when operating at a given radius of attraction many-neuron
interacting networks are able to store more patterns than the simple two-neuron interacting
networks. For example, a reasonable radius of attraction for the purpose of associative
memory is R = 0.20 (10 % wrong spins). Operating at this value of R, networks with two-
neuron interactions can store approximately 0.52 N patterns, while a network with three-
neuron interactions can store approximately 0.35 (N 2/2!) patterns and a network with four-
neuron interactions can store 0.18 (N 3/3!) patterns. Hence, the real power of networks with
many-neuron interactions will become apparent in applications where it is necessary to obtain
a predetermined level of discrimination between large numbers of patterns. (For real world
applications this will be important only if the cost of making many-neuron interactions is not
sighificantly more than that for making two-neuron interactions. Such is certainly the case in
neurobiology and may help explain nature’s propensity for many-neuron connections.)
Another feature of the dynamics obvious from equation (3.3) is the extremely poor

behaviour of the network as the limit a = 2 is approached. R approaches zero exponentially
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fast thus making the network useless for most associative memory applications independent of
the value of A. Instead of working at large a then, these results imply that it would be better to
go to a larger value of À and then work at a smaller value of a.

Finally, it should be added that the calculations presentéd above can be extended to include
networks of mixed type, i.e., networks having for example two-body and three-body
interactions, etc., and to networks having less than full connectivity. In such cases, the

efficiency of information storage is unchanged from that above, but the dynamics undergoes
predictable changes depending upon the exact architecture one is considering.
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