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Résumé. 2014 La construction d’un réseau moyen avec une modulation bornée pour des pavages

quasipériodiques unidimensionnels est considérée du point de vue de l’espace de dimension
supérieure R2. Les pavages quasipériodiques sont: a) le pavage canonique 1D obtenu par
exemple par la méthode de coupe et projection, b) des pavages engendrés par un algorithme du
cercle pour des valeurs particulières des paramètres définissant le modèle. Dans ce dernier cas, la
construction comble un vide entre la méthode de coupe et projection ou de section et le modèle
de l’algorithme du cercle et apporte une autre preuve de l’ordre quasipériodique : nous

construisons des pavages 2D périodiques appropriés donnant les pavages 1D quasipériodiques par
section. Cette approche géométrique donne aussi une image intuitive du mécanisme de la

disparition du réseau moyen et de l’ordre quasipériodique pour des valeurs génériques des
paramètres du modèle. Les considérations données ici peuvent servir de base à la construction de
réseaux moyens avec modulation bornée, s’ils existent, pour des pavages de dimensions

supérieures.

Abstract. 2014 The construction of an average lattice with bounded modulation, for one

dimensional quasiperiodic tilings, is considered from the viewpoint of the higher dimensional
space R2. The 1D quasiperiodic tilings are : a) the canonical 1D tiling obtained e.g., by the cut
and project method, b) tilings generated by a circle map algorithm, for particular values of the
parameters defining the model. In this last case, the construction bridges a gap between the cut
and project, or section, methods, and the circle map model, and provides an alternative proof of
the quasiperiodic ordering : we build suitable 2D periodic tilings yielding the quasiperiodic ones
by section. This geometrical approach gives also an intuitive image of the mechanism of the
disappearance of the average latice, and of the quasiperiodic ordering, for generic values of the
parameters of the model. The considerations given here may serve as a basis for the construction
of average lattices with bounded modulation, if they exist, of higher dimensional tilings.
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1. Introduction.

One of the characterisations of order in one-dimensional incommensurate structures is
obtained by considering the question of the existence of an average lattice. In some sense, the
existence of an average lattice in a 1D structure gives a measure of its distance to crystalline
order, and may help to classify different aperiodic structures, such as conventional
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incommensurate structures or other more complex ones, with possibly weaker order. Take a
distribution of atoms on a line, for which it is possible to define a mean interatomic distance or
inverse density a ; if the deviation of the position un of the n-th atom with respect to its

average position na is bounded, the structure is said to possess an average lattice [1]. The
bounded deviation is called the modulation. For instance, un may be given by

where g (x ) is a b-periodic function, called the modulation (or hull) function. In this case, the
Fourier spectrum is discrete with resonant wavevectors at integer combinations of
2 ’TT la and 2 ’TT/b. In other words, the structure is quasiperiodic. Examples of 1D structures
which possess an average lattice with bounded modulation are given by : a) the ground states
of the Frenkel-Kontorova model [2], b) the so-called « integrable cases » of a circle map
model [3, 4], c) structures obtained by the cut and project method [5-7] from 2D to 1D, for
suitable values of the width of the strip. In all these cases, the modulation g (x ) is a periodic
function and the resultant structure is quasiperiodic.
On the other hand, in recent works, two examples of structures without average lattice have

been given. These two examples are built from the same quasiperiodic rule, involving a circle
map which generates a binary sequence of 0 and l’s. In the first example [1] (« model 1 », or
« atoms and vacancies model »), atoms and vacancies are associated to the binary sequence.
In the second example [3, 4] (« model 2 », or « circle map tiling »), tiles are associated to the
sequence. For both models, in non integrable cases, i.e., for generic values of the parameters
of the circle map algorithm, the structure does not possess an average lattice. Yet, in the first
example, the structure is quasiperiodic, whereas in the second case, the disappearance of the
average lattice has strong consequences on the Fourier spectrum : the intensity spectrum no
longer contains any Dirac peak and it was claimed in references [3, 4] that this structure, that
may be named « almost quasiperiodic », has a singular continuous Fourier spectrum.
These results show the interplay between two characteristic properties of deterministic

structures, namely : (1) a bounded fluctuation of the atomic positions with respect to their
average lattice ; (2) a quasiperiodic Fourier spectrum.
The aim of this paper is to give a geometrical interpretation of this interplay in a higher

dimensional space, here R2, from which the 1D structure (or tiling) is recovered by a section
method. In order to do so, a natural direction to explore consists in trying to cast the circle
map algorithm in the section method framework. This seems a priori possible, at least for the
integrable cases, since they give rise to quasiperiodic structures. The section method gives a
direct characterisation of the quasiperiodic ordering : quasiperiodic tilings are sections of
periodic ones, just as quasiperiodic functions are sections of periodic functions in several
variables. The discrete nature of the Fourier spectrum of quasiperiodic tilings is a direct

consequence of this fact.
More precisely :
i) we first show, in section 2, how to construct, by section, the average lattice and the

modulation for the canonical 1D tiling. This is of importance, since it is a first step towards the
construction of the average lattices, when they exist, of higher dimensional tilings. In

particular, the construction given here is easily extendable to all codimension one cases, i. e. ,
projection from a N-dimensional space to a (N - 1 )-dimensional one ;

ii) in section 3, this construction is then used, together with a renormalisation procedure,
to find periodic tilings of OB2 that generate, by section, the 1D tilings of model 2 for particular
values of its parameters. We end this section by giving an intuitive geometrical image of the
mechanism of the disappearance of the average lattice for generic values of the parameters of
model 2.
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2. From 1D to 2D and back. Average lattice and modulation.

In this section, we first recall model 2, the circle map tiling. For particular values of its
parameters, this model is equivalent to the projection method from 2D to 1D, and generates a
quasiperiodic tiling which may, as well, be viewed as a standard displacive incommensurate
1D structure, having an average lattice with bounded modulation.
We then show how to construct the average lattice and the modulation of the position of

atoms, of this particular tiling, from the higher dimensional space (R2.

2.1 MODEL 2, A REMINDER. - This model [3, 4], based on a circle map algorithm, generates
a 1D atomic structure or a tiling of the line. The structure is defined by putting atoms on a
line, the abscissa of the nth atom being given by

(uo = 0). The bond lengths Àn are given by the action of a « window » function of width L1 on
the sequence {nw mod 1} ; w and L1 are given numbers between 0 and 1 :

This is illustrated in figure 1. X a (x ) is a 1-periodic function defined by

Int (x) and Frac (x) are the integer and fractional parts of x, respectively. The binary
sequence {Xn = XA (nw )} is thus quasiperiodic.

Fig. 1. - Generation of the binary sequence {Xn}’ and of a tiling, by a circle map. The sector
(0, Li) is the window.
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We have

The interatomic mean distance, or inverse density, of the model is

The modulation of the atomic abscissas with respect to their average lattice (na ) may be
computed as

8n is the fluctuation of Sn, the number of letters 1 after n steps, with respect to its average
value na.
A theorem, due to Kesten [8], asserts that ân is bounded in n, if and only if

where r and s are integers. These cases are called « integrable ». If this condition is not

satisfied, the fluctuation Sn diverges with increasing n. The nature of the divergence depends
on the arithmetical nature of w [9, 10]. This theorem implies that there no longer exists an
average lattice for the structure. As a consequence, it was shown that, for generic non
integrable cases, the Fourier spectrum of the structure is singular continuous [3, 4], which is
the signature of a weaker order than the quasiperiodic one.
For integrable cases, it is possible to compute the fluctuation as

where yr(x) is a r-dependent 1-periodic function [1, 3], therefore a bounded one. The
modulation gn being periodic, the structure is quasiperiodic.
Remark. Model 1 is built on the same sequence {X n} . Atoms and vacancies are put on the

. sites of a 1D lattice according to the rule : to 1 corresponds a vacancy, to 0 an atom. Though
this structure has no average lattice, it is quasiperiodic [1].

2.2 GEOMETRICAL APPROACH IN R2. - One way to look at the 1D structure from the point
of view of the higher dimensional space R2, consists in associating a broken line to the
sequence {Xn}, by replacing 1 (or fi) by e1, and 0 (or Q2) by E2, as shown in figure 2.
si and E2 are the unit vectors of Z2. Hence, a point of the broken line is described by

The average interatomic vector A

gives the average direction of the broken line, denoted Ell. Its slope is
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Fig. 2. 2013 Broken line in Z2 corresponding to the 1D tiling.

where t denotes tan 0. The 1D tiling is recovered by projection of the broken line on
Ell. Indeed, since it is always possible to rescale the lengths fi and Î2 globally, only the ratio
Q2/Q1 is a significant parameter. Then, if one restricts the ratio Q2/Q1 to t, fi may be identified
to c, and Î2 to s, with c = cos 6 , and s = sin 0. If not, it is possible to project the broken line
orthogonally onto a line of slope tan cp such that, now f, 1 should be identified to

cos cp and Î2 to sin cp.
The norm of A is

the mean interatomic distance. A has its extremity on the diagonal Dl, where, for any integer
n,

The nodes of the average lattice of the 1D tiling, in E~, are the intersections of

Ep with the diagonals Dn. The modulation gn has also an interpretation in R2 one may define
a vector Gn = Un - nA from which gn is obtained by projection Pl on E~ .
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This description will be made more precise below. P 1. (Gn), the projection of Gn onto
E_L (1), represents the transversal extension of the broken line :

In particular, in non integrable cases, this perpendicular extension diverges. Note that
equations (2.9)-(2.15) are true for any value of Li.

Let us now restrict our description to the canonical case. This case is defined by the choice
co = Li. One has

and therefore,

This structure, which has an average lattice with periodic modulation, is the same [1, 2] as
the generated by the canonical projection method from 2D to 1D. The corresponding tiling is
hereafter referred to as the canonical tiling. This is illustrated by figure 3. The broken line is
entirely contained in the strip S = En + C where C is the unit square

The correspondence between the parameters of the two structures is given by

This geometrical construction may also be described by a section method [11, 12]. Consider
the periodic set of atomic surfaces (here atomic segments), built by attaching an atomic
surface A to each point § E Z2. The set of points Un of the 1D structure is obtained as the
intersection of Ell by the set of atomic surfaces

In the canonical case, A = - K where

is the profile of the strip.
The periodic set of atomic surfaces may be completed into a 2D tiling [13]. Define the 2D

tiles

These two parallelograms give a partition of a fundamental cell of Z2. The resulting
« oblique » tiling leads to the canonical quasiperiodic tiling of E~ by section. The atomic

(1) El is the kemel of pl. It specifies the direction of the atomic segments. This direction is generated
by (- sin cp, cos cp ) and is held fixed for the various examples we will consider in this paper. This is not
the case for E~ , the physical space, which will vary from case to case. In particular, EL is not necessarily
perpendicular to E~ .
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Fig. 3. - Equivalence of the projection method from 2D to 1D, with the circle map algorithm, when
w =à.

surfaces described above, are the boundaries of the oblique tiling, transversal to

E~, as shown in figure 4.
Let us note that, since the points of the average lattice are the intersections of

EN by Dn, the diagonals are the atomic surfaces generating the average lattice. In this
framework, the modulation gn also has a simple geometrical interpretation. It is the distance
between the point u,, of the structure obtained as a section of the atomic surface A by
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Fig. 4. - Oblique tiling and atomic surface, in the canonical case.

El’, and the point na of the average lattice obtained as a section of Dn (see also Fig. 2). In
other terms, the atomic surface, seen along a diagonal, over a period (here one diagonal of
the unit square), gives a representation of the hull of the modulation, i.e., of the modulation
function g(x) = - (c - s) Frac (x). Indeed, figure 5b may be obtained from figure 5a, by
rescaling AB to 1, and keeping the direction of BC perpendicular to AB, without changing is
length.

This correspondence between the modulation function and the atomic surface may also be
seen by taking the converse point of view : if the points un of the structure are given, and if
one knows that they come from a section method, it is possible to get the shape of the atomic
surface by folding the plane on a torus, namely, the unit square with parallel edges identified.
The parametric equation of the atomic surface A is given by the hull of the set of points
satisfying

For instance, if u,, = na,

since a = 1 / (c + s ). Hence, the equation in the torus of the atomic surface generating the
average lattice is

which is the equation of the diagonal Dl, as expected. If u,, = na - (c - s ) Frac (nw), a
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Fig. 5. - Equivalence between the atomic surface seen along a diagonal, and the modulation function,
for the canonical case.

simple calculation yields the equation of the atomic surface in the torus, for the canonical
tiling

As mentioned in the Introduction, this representation, in the extended space, of the

average lattice and of its modulation, is easily generalised to any codimension one case. We
will now use the framework of this section, to extend the geometrical description given here,
to the general integrable cases of model 2.

3. Geometry in higher dimensional space of the general integrable cases.

This section is devoted to the integrable cases with finite fixed r =1= 1. As already mentioned,
the corresponding tilings are quasiperiodic. It is thus natural to try to describe these structures
in higher dimensional space. In particular, we will build a set of atomic surfaces in

R2 that generate, by section, the 1D structure in Ell space.
In order to do so, we use a renormalisation method introduced in reference [4], and

recalled below. The strategy consists in renormalising the binary sequence {xL1(noo)}. This
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reduces the integrable cases to the canonical case (to’, .d’ = Cù’), for which the framework of
section 2 applies. In some sense, this approach fills in the gap between the projection method
2D --+ 1D and the circle map algorithm of model 2, at least for the integrable cases.
We will end this section by considering the first terms of the sequence {rN} of values of r

leading, when N - oo, to a non integrable case. This will give an intuitive geometrical image
of the mechanism of the disappearance of the average lattice (and of quasiperiodicity) in non
integrable cases.

3.1 RENORMALISATION, A REMINDER. - Renormalisation consists in changing the scale at
which the sequence {X n} , and consequently the structure that it generates, are looked at. It is
an exact decimation procedure acting on {X n} .
We first need to define an intermediate labelling sequence on the unit circle. A sequence of

letters Ln is associated to the sequence of numbers a n = Frac (nCù) by the rule :

Then by choosing

the sequence {X n} is recovered.
A renormalization operation lJl is a product of a combination of four elementary

transformations S, Tl, T2, T3, defined in the table, that changes both the values of
(w , à ) and the sequence {Ln} :

In the last equation, 31 is a condensed notation for a substitution ag on the letters :

The order in which the elementary operations enter in 3t, i. e. , the order of a particular
sequence of renormalisation operations, is uniquely determined by the continuous fraction
expansion of to and by the w-expansion of à [4]. For example, S always maps £0 :::. 1/2 onto
Cd 1/2. In the (w, A) plane, the iteration of the renormalisation transform Jt leads in
general, to an aperiodic orbit. For some values of (co, A), it may be a fixed point or a cycle.
Let us give the results of the application of the renormalisation method to the cases of

interest for this paper.

a) (co ,à = rw - s ). Integrable cases.

S, Ti transform any integrable case into a canonical one (Cd’, Li’ = Cd’) in a finite number of
steps. This is due to the fact that the elementary renormalisation operations change the values
of r and s as
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Table I . - Definition of the elementary renormalisation transformations

The 1 D structure corresponding to this case was studied analytically in references [3, 4]. In
particular, the Fourier spectrum was shown to be singular continuous. This example is given
here, since it corresponds to the asymptotic limit of the finite r cases considered in section 3.2,
below. In particular, the renormalisation operations needed for the finite r cases and that of
the limiting case provided by this example, are the same.
For these values of the parameters, the renormalisation operation

leaves (w,à ) invariant, i. e, R(w,a) = (w , à). This fixed point is repulsive, i. e. , it is
unstable by 3t under a small perturbation, e.g., along the w = const. direction :

Therefore, the infinite sequence {Ln} is invariant by a substitution o-R

{Ln} is a fixed point of U3t. In other terms, this sequence may be built by « inflation rules »,
given by equation (3.8). The substitution matrix M gives the number of letters A, B, C in A’,
B’, C’.
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From the n-th power of M, one finds that the number of letters in Un (A )@ Un (B),
o-nR(C) are F3n+l’ F 3n 2, F3n+2’ respectively, where Fn is the n-th Fibonacci number

defined by

Remark. Using equations (3.5)-(3.6), the action of R on an integrable case reads

c) Approximation of case b) by integrable cases.
The sequence of integers (rN’ SN) which give the best approximants [

is given bey More generally

Hence, the approach to L1 = 1/2 is given by

Remark. Let us note that 3t, given by equation (3.6), satisfies

This property is a consequence of the fact that (T-2, 1/2) is a fixed point, approached most
rapidly by the best approximants [4]. Using equation (3.11), one gets

from which equation (3.12) is obtained.
Since for any finite r, the 1D structure is quasiperiodic, taking successive values of r means,

in some sense, that the limit structure (no longer quasiperiodic, since the Fourier transform
does not contain any Dirac peak) is approached by successive quasiperiodic approximant
structures, much in the same manner that one may approach a quasiperiodic structure by
successive periodic approximants [14]. The geometry in 1R2 of these structures is the subject of
section 3.2.

Remark. The canonical cases (w, Li = Cd) are degenerate, inasmuch as the labelling
sequence has only two letters. When w = T - 2, , {X n} is the Fibonacci sequence. Using the
same renormalisation technique, one obtains the well-known inflation rules. Note that

(w = ’T - 2, Li = (0 )ils a fixed point of a renormalisation transform.
To conclude this section, let us stress that a direct consequence of the renormalisation of

the sequence {X n} is the renormalisation of the 1 D tiling itself. This is done by replacing 1
and O’s of the renormalised sequence (x() by renormalised tiles of lengths e:2 and
Qn, respectively.
3.2 GEOMETRICAL APPROACH IN R2. - As seen above, for integrable cases, the renormalised
sequence {Xn} gives a renormalised tiling with renormalised tiles. We want now to use the
renormalisation scheme directly in 2D. We, describe the general method first, before

illustrating it on specific examples.
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We first reduce an integrable case (lù, Li = rlù - s ) to a canonical one (lù’, Li = lù’), by a
finite number of renormalisation steps. We are thus in position to use the framework of
section 2.2. We introduce renormalised coordinates spanned by the vectors 31 1 and

{32, defined as follows. Replace the letters of the labelling sequence by 0 and l’s according to
equation (3.2), then 1 by E1 and 0 by E2. This yields the finite broken chains :RE1 and
aE2- 131 and 13 2 are the vectors joining the origin to the end of the broken chain

RE1 (resp. :RE2). These vectors generate a sublattice of BZ2 of Z2, where B is the matrix, the
columns of which are the components of 6 and 132. In these renormalised coordinates the 2D
geometry is that of the canonical case. The renormalised oblique tiling built in the coordinates
of 13 1 13 2 is invariant by the lattice of translations BZ2.

Since renormalisation is a decimation, which consists in looking at the structure at scale r,
points are missing in the 1D structure, or atomic surfaces in the oblique tiling. In order to get
the oblique tiling corresponding to scale 1, with the initial tiles c, s in the section, one has to
partition each renormalised tile along Ell, according to the substitution induced by
cr 3t and acting on 13 l’ 8 2. This point will be made clearer by the examples below. Four oblique
tiles are obtained that way. They read

We illustrate the method by taking the case (w = T - 2, L1 = 4 úJ - 1 ). The renormalisation
transform to apply is given by equations (3.6), (3.8). Following the method described above,
the finite broken chains are

and the vectors 8 i have the same expressions with + signs between the vectors.
The invariance lattice BZ2 is given by

1 dent (B)1, the « volume » of the unit cell, (the index of the lattice in Z2) is equal to four.
In figure 6, the fundamental cell of the oblique tiling is made of two oblique tiles, the

renormalised tiles, that may be decomposed into the smaller elementary ones. The order in
which each smaller tile appears inside the renormalised one is given by the substitution
eT 3t of equation (3.8).
From the oblique tiling, one gets the atomic surfaces. Note that

and

Therefore, the periodicity along a diagonal Dn is four, in units of E2 - el (Fig. 6). Again, is
must be noticed that the atomic surface along a diagonal gives a representation of the
modulation function. In particular, the atomic surface is made of three different segments (in
the E.L direction). They correspond to the three segments found in the function

Y4(x), where
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Fig. 6. - 2D geometry of the case (w = T-2,a = 4 w - 1 ). In bold : a fundamental cell for the lattice
93 ; one of the periodic atomic surfaces.

It is indeed known that Frac (nw ) divides the circle in three intervals [8, 15]. The order in
which these segments appear in the atomic surface is the same as in the Y4(X) function,
namely a, b, c, b, where a : b : C = T - 4: T - 3: T- 2. .Y4(x) may be obtained by a deformation of
the atomic surface (Fig. 7).

Remark. Let us mention that, as in section 2, knowing un, we may write the parametric
representation of the atomic surfaces in the torus as

We end this section by studying the asymptotic behaviour of successive approximants to the
limit structure generated by (w = T -2, d = 1/2 ).
The next best approximant is (w = T-2, d = 17 (ù - 6 ). Applying twice the renormalis-

ation operation equation (3.6), reduces this case to a canonical one. The geometrical scheme
in IIBz is similar to the previous case. Figure 8 illustrâtes this case.

Let us consider now a general (rN, sN) case. /31 (resp. 82) is obtained from 3tN el (resp.
aN e2). The invariance lattice is determined by the matrix
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Fig. 7. - The function y4(x). Comparison with figure 6 shows the equivalence between the atomic
surface seen along a diagonal, and the modulation function, for the case ( w = T - 2, a = 4 c - 1 ).
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Fig. 8. - 2D geometry of the case

where M is given by equation (3.9). The « volume » of the unit cell spanned by
f3 1 and f3 2, is given by

Generalising equation (3.19), one has

When N increases, the directions of {31 1 and {32 get progressively nearer and nearer the
bisectrix, since the number of vectors El and E2 composing {31 and {32 are equal in average.

Therefore, the lengths of /3i 1 and 16 2 are well approximated by F3N +2/..j2 and
F3 N + 1 / BF2, respectively. Using equation (3.24), one deduces that the angle between these
vectors goes to zero as T - 3 N. °

To conclude this section, let us stress that the limit 2D structure is very singular. Indeed,
simultaneously, both the lengths of /3, and a 2, and the periodicity of the atomic surfaces along
the diagonals, become infinitely large.
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4. Final remarks.

The description of the integrable cases of the circle map tiling in terms of a section through a
2D structure provides a means to compute the Fourier spectrum of the structure. This may be
done along the same lines as in references [16], [17]. The main difference with the canonical
tilings is the presence of additional structural units in the renormalised tiles. In analogy with
standard crystallography, the Fourier transform of the 2D tiling is the product of the lattice
(BZ2) * reciprocal to BZ2 by a geometric form factor ; the form factor is the Fourier

transform of the set of atomic surfaces

where

In order to get the Fourier spectrum in the physical 1D space, we have to integrate in the
transversal direction. The result is a pure point Fourier transform, with support in the
projection of (BZ2 ) * as for a canonical tiling, but with amplitudes modulated by the form
factor.

It is worth drawing the attention of the reader to the resemblances between aspects of the
work of Frenkel, Henley and Siggia [18], and some considerations given here, e.g., in
section 2.
The existence of average lattices for 2D quasiperiodic tilings is a subject of growing interest

[19, 20].
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