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Résumé. 2014 Nous étudions en perturbation un modèle de liaison forte sur une chaîne

quasipériodique, au voisinage de la chaîne périodique, et cela au moyen d’une nouvelle

numérotation des sites. Les principaux gaps sont bien décrits, alors que les très petits gaps ne sont
bien rendus que pour une faible perturbation. Nous calculons exactement les énergies de la chaîne
linéaire où naissent les gaps, et exhibons une numérotation naturelle qui les ordonne selon l’ordre
décroissant. De plus, ce traitement permet de calculer de façon approchée la densité d’état
électronique intégrée. Enfin, et en application de ces résultats, nous calculons au premier ordre,
l’exposant 03B4 qui décrit la façon dont la mesure du spectre tend vers zéro lorsque la taille de
l’approximant tend vers l’infini. Au premier ordre, cet exposant ne dépend pas du quasicristal
considéré.

Abstract. 2014 A tight binding model on the general 1D quasiperiodic chain is studied in the

framework of perturbation theory, near the corresponding periodic chain, using a new set of
coordinates. The main gaps are well described, whereas the very small ones are correctly given,
only for a very small perturbation. For a given irrational number, the energies where the gaps
appear in the periodic chain spectrum, are exactly derived. Moreover, a labelling for these gaps
which orders them according to their decreasing width is naturally introduced, and an approached
integrated density of states is explicitely written. As an application of this perturbative derivation,
we give the first order expansion of 03B4 the exponant which describes the vanishing of the total band
width B of an approximant, when its size increases : B ~ 1/n03B4. The first order expression for 03B4

does not depend on the considered quasiperiodic chain.
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1. Introduction.

The properties of the Schrôdinger operator with a quasiperiodic potential is of considerable
interest, since the discovery of quasicrystals. The electronic properties of quasiperiodic tilings
in two or three dimensions are not yet well understood. In 1D, which has been the most
intensively studied case [1, 5, 91, the spectrum in the framework of a tight binding model
shows up interesting properties : it has an infinity of gaps and a zero Lebesgue measure.
Moreover, the wave functions, instead of being extended or localized by the disorder, are
lying on an intermediate state, that is, critical. Recently, Levitov [2] has studied the general
1D chain with two hopping constants 1 and p distributed quasiperiodically. He works near
p = 0 and p = + 00, that is when the energy levels are very close to the molecular states.
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Indeed, in both cases, the linear chain splits into an assembly of disconnected molecules. In
this paper, we propose a general perturbative treatment near p = 1, which gives the locus of
the gaps, and describes the main gaps correctly.

2. A new numbering on 1D quasicrystals.

Recently, a new set of coordinates has been introduced for vertices of approximants of 1D
quasicrystals [3]. Consider an irrational number a, and (pe, qe ) a sequence of approximants of
a

In the following we use the notation ne = pe + qe. We call SOC) the linear chain obtained by
associating a 1 to an horizontal bond and a p to a vertical one, for each bond of the broken line
drawn along the edges of a Z2 lattice into the band

This is exactly the well known cut and project method [4]. We take 0  a  1 without any loss
of generality since, S,,,, (1 /a ) is obtained from SOC) (a) by inverting vertical and horizontal
bonds. We define Se in the same way by replacing a by ae in (2). We notice that

Se is a periodic chain whose elementary cell contains pp + qe atoms. The implicit assumption is
that the properties of Se for fa + oo will lead to the Soo properties. It can be shown that the
coordinates of points of Se, in the band (before mapping), can be written as follows

where (at, bp) is a unit basis of 7Lz so that

be defines the unit cell of the approximant periodic structure and ap is called a generator. In a
subsequence of pl + qe sites in Se, we find one and only one Xn, m, labelled with a fixed n. We
give the example of the Fibonacci chain in figure 1. Now we look for the nearest neighbors of
Xn,,,, in this new numbering :

Thus, the two nearest neighbors of Xn, m are the two in the set

for which the first coordinate is between 0 and ne - 1. This two coordinates are

n + Pt [nt] and n + qt[nt] (where [ ] denotes the modulo operation). Let 1 be [0, ne - 1 ). This
last result can be rewritten in the following way.
* if n - Pt E I and n + Pt E I, the site n is surrounded by two 1.
* if n :t pf e 1 and n -:!::. q tel, the site n is surrounded by a 1 and a p.
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Fig. 1. - (a) A Fibonacci chain of 13 sites, in the new numbering. (b) The Hamiltonian for a Fibonacci
chain of 13 sites, in the classic indexation (left), and with the new numbering (right), as introduced in
section 2. We use the notation e = ei k

The case n - q tel and n + q tel is impossible since we took a  1 and choose

« p  1. Thus, this numbering orders the sites according to their local environment which is
the relevant ordering in that case. We show in the next section that these new coordinates will
be very useful to study a tight binding Hamiltonian on Sp.

3. The Hamiltonian.

We define the tight binding model on SOC) by the eigen equation

where ti ~ {1, p } following Soo, and xi = À if the site i is surrounded by a p and a 1,
2013 À otherwise. We show in figure 1 a typical Hamiltonian matrix on Si with the standard
coordinates. Now, we use the result of section 2 to write the Hamiltonian in the new
coordinates. We first introduce a Bloch 1D-vector k since our system has period
np. We have shown that the nearest neighbors of the site i are the two sites among
i :tPt, i ± qe, whose label lies between 1 and 17t. After some elementary manipulations, we
obtain the following form for Jet, the Hamiltonian matrix on Se:

which is a multidiagonal matrix. If we define hi, j as the matrix elements of JCI, this reads
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JCe is much more symmetric than the equivalent matrix in the classical numbering, one can call
the geometric ordering (Fig. 1). For the calculation, we have applied the Bloch theorem after
noticing that Xo, m’ which is the first atom of the considered cell interacts with Xq p,m _ q p, and

Xpp, m _ pe,, which is the last atom of the preceding cell. Thus, k is the Bloch vector which lies in
the range k E [0, 7T]. Since Xe has a priori, ne eigenvalues for a fixed k, the spectrum of
Se is of the form

and consists in ne bands which may overlap (Fig. 3). The bands edges are given by
El which are in the set {Ej (:t 1 ), j r= [1, ne ]} , that is, for k = 0 and k = 7T (in general, we do
not have El = Ej(:t 1), with the same label j). Indeed, the secular equation
det (Jee - EJ ) = 0, can be written Pe(E) = cos k. So, the bands are given by the condition
| P e (E) | 1 and their edges by 1 P e (E) 1 = 1. In order to apply the perturbation theory to
Xe, we rewrite the Hamiltonian as

where Je!O) is the Hamiltonian at À = 0, p = 1. àl and A’ are the matrices defined by

the other coefficients being equal to zero. 
z

4. The spectrum of a 1D quasicrystal.

In this section we are interested in the derivation of Ei (p, k ) for A # 0 and p :0 1. We first
give Ei (p, À ) to the first order in (1 - p ) and À, before studying the validity of the method.
We first recall the classical result at À = 0 and p = 1 :

* k = 0 : we obtain the ne-polygonal chain. JC, is then a cyclic matrix whose eigenvalues
are Ej = 2 cos (2 j’7TPt/nt), which are degenerate of order 2 (except for j = 0 and

j = ne/2, if nt is even), whose eigenvectors at site m read : Ij,:t &#x3E; m = e:t2iTrmj/nt/ fit.
* k = ’7T: the energy levels are given by El = 2 cos (2 ’7T (jPt + 1/2 )/nt) and have the

opposite sign of the preceding ones for ne odd.
So, in the following, in order to have compact formulae, we take ne odd. If

a is irrational, when ne goes to infinity, we expect the result for ne and ne + 1 to be the same.
In the case a E Q with small p and q, and p + q even, we cannot make that assumption.
Anyway, the calculations which follows can be done with ne even, by studying separately the
cases k = 0 and k = ’7T. Before studying the perturbed chain, we show in figure 3 the band
structure for the periodic linear chain, which is obtained by folding ne times the well known
graph of the dispersion relation, namely E (k ) = 2 cos k.
Now, we study the case 0 « 1 k 1 « 1 and 1 - pu 1 « 1. We use the perturbation method for

degenerated states. In the eigenspace associated to Ej, straightforward calculations give for
k = 0.
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For ê = :i:: 1. Now, for each energy (except for E = ± 2), we have to diagonalize a

2 x 2 matrix. We find the following eigenenergies which gives the bands edges.

while the spectrum edges are given by

which are given by the average of the potential. We want now to discuss the validity of our
treatment. It is known that a perturbative approach is correct provided the typical spacing
between non perturbed levels is large enough compared to the matrix elements of the
perturbative potential. Here, this condition reads :

So, we expect that for an approximantptlqf of a with pe + qp _ 1 À 1 + Í 2 1 - p 1 the opening
gaps will be correctly described by (10)-(10’). In particular, if a = p/q is a rational number,
the calculation is correct provided .1 and p verify (11) with ne = p + q. Now we assume
a being an irrational number. Then, to recover the exact quasicrystal, f and nt must go to
infinity, so that for fixed p and .1, the condition (11) is never verified. So at first sight, our
derivation cannot apply to the casez Q. In fact, we shall see that for large
ne, the main gaps which have already appeared for small np, do not change any more. (The
only change is that in formulae (10)-(10’) pp/ne must be replaced by a _ ) - So if

1+a
a is an irrational number, if p/q is a best approximant of a, and if

1 À 1 + 11 - p 1 : ’TT 2/ (p + q), then, the p + q main gaps are given by formulae (10)-(10’).
From now, we differenciate f used in formulae (10)-(10’) and f’, which is the index of the
linear chain under study. Our result is that when i’ goes to infinity, the properties of the
spectrum are correctly given by (10)-(10’), with e a finite number (at least the ne first gaps).
Moreover, since main gaps are already obtained for small approximants, for which the
corresponding linear chain have quite spaced energy levels, we expect them to be well
described by our treatment even for 1 - p 1 + 1 À 1 quite large. To illustrate our statement,
we consider the Fibonacci chain for which a trace mapping can be found, which allows us to
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find numerically the spectrum of Sf very easily. One can show that an energy E is in the
spectrum of Se (we call it Sp {Se} ), if half the modulus of the trace of the transfert matrices
product is less than 1. It reads explicitely :

For example, we found (Fig. 2) that for ne = 55, the 55 main gaps are very correctly given for
1 à 1 + 1 - pu 1 -- 0.2, while for 0. 2 -- 1 À 1 + 1 - p 1  0.3 many gaps remain good although
some of them (especially the little gaps surrounding the biggest ones) are very badly
recovered. If we only keep the ten main gaps, they are correctly described for

1 À 1 + 1 - p 1 -- 0.4 (Fig. 2), where the linear approximation cannot be good any longer. In
order to be complete, we give the equivalent result for the model which was originally
introduced by Kohmoto et al. and Ostlund et al. [5]. In this case, the chain Se is built by
associating a diagonal hopping constant À to each horizontal bond, and a diagonal hopping
constant - À to each vertical one, in the band we have considered in section 2, in the cut and

project framework. The result we obtain is the following :

while the spectrum edges are

For a being the golden mean, the spectrum of the associate Fibonacci chain is given by

The result is shown in figure 2 and the conclusions are the same as in the preceding case. Now,
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Fig. 2. - The numerical spectra of a Fibonacci chain for N = 13, 21, 55 sites (upper spectra) are
compared to our results (10) (10’) for (a) p = 0.9, À = 0.05 ; (b) p = 0.85, À = 0.1 ; (c)
p = 0.7, À = 0.1. (d) the spectrum of the Fibonacci chain defined by (14) compared to (13) (13’), for
À = 0.15.
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Fig. 2 (continued)

since we have shown that with certain conditions, our treatment is in very good agreement
with numerical datas, we study some important applications of our results.

5. Indexation of gaps.

Consider an energy of the periodic linear chain labelled by j i. e. E (’) = 2 cos
can see that the E,(e &#x3E;s are not labelled following the increasing order along the energy axis,
but in such a way that for a given j we have
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where we have assumed that Pt is a best approximant of a, so that we have
qe

Ipt + 1 qt - pl qi + i 1 = 1. This difference has to be compared to the distance between

and its nearest neighbouring energies 2 cos A simple calculation

gives

Fig. 3. - The band structure for a linear chain of 21 sites (right) and for a Fibonacci chain (left) with
p = 0.8, À = 0, and 21 sites is shown. We have also shown the gaps given by (10) (10’). k is the Bloch
vector.

Comparing (15) and (16), and since 1 * j * 1 (nt - 1)/2 1, we see that E(t +’) can be naturally
associated to Ej , and will correspond to the same opening gap. So, for a fixed

j, we see that in the spectrum of the periodic chain (E E [- 2, 2 ] ), a gap will open for the
infinite quasiperiodic chain at the energies

We can make the same treatment foi

and we obtain gaps at

(where [ ] denotes the integer part),
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Moreover, the opening of the gaps for given p. À, and j are given by (10)-(10’) for
fez + oo. Of course, the gap opening at Gf will be correctly given for

We write explicitely the formula we obtain when j obeys this last condition. The gap edges are
given by

and the spectrum edges are

where we define 0 = a and e, c’ e {-1,1}. Finally, we see that the gaps are indexed(1- a )
by only one integer j which is the « memory » of the periodic linear chain. They open at

Gf as soon as À :0 0 or p 9&#x26; 1. This indexation is very interesting since it labels the gaps

according to their intensity if we do not mind the sine term. In figure 4, we show the main
gaps and their labels, for a Fibonacci chain with À = 0 and p = 0.9. Now, we focus on the
density of states (DOS) or more precisely, the integrated DOS. Between two gaps labelled by
j and j’, there are exactly the same number of states, whatever p and À are, since it can be
shown [6] that the bands never overlap. Thus, in the integrated DOS, the height of the
plateau corresponding to the j-th gap does not depend on p and À. Let us define the DOS
n (E ), and g (E ), the integrated DOS, normalized in such a way that we have

Then, we call Gf (p, À ) the center of the j-th gap. With our definitions, we have naturally
Gf (1, 0) = Gf, which has been previously defined. Thus, for any given p and À, we can
write

Fig. 4. - The labelling of the main gaps for a Fibonacci chain of 987 atoms, compared to the 21 main
gaps predicted by (17) (17’), for p = 0.9, À = 0. The fifth gap is quite small because of the sine term in
(17).
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Fig. 5. - (a) The IDOS ôf a large Fibonacci chain (left) and the IDOS given, by (17)
(17’) (17") for p = 0.85, À = 0. (b) The IDOS of a large Octonacci chain (left) and the IDOS given by
(17) (17’) (17") for p = 0.85, À = 0.

In figure 5, we show the integrated DOS for two different quasiperiodic chain related

respectively, to a = J5 2 - 1 and a = à - 1. The agreement between the numerically2
calculated IDOS, and our result (17)-(17’) and (17"), is very satisfactory. The height of the
plateaux are exactly given for any value of p (we took À = 0), while their width is correct only
for the first gaps, whose label j verifies (11). We note that Belissard, and Kalugin et al. [7],
found similar results for the height of the plateaux, invoking more complicated tools.
We want now to specify the conditions for which this formula apply when a E Q, that is for

finite approximant. If we come back to equations (10)-(10’) and (13) for a = p/q, we see that
in formulae (17)-(17’) we only have to take 1 _ j _ (p + q ) - 1 = n - 1. Even if formulae
(17)-(17’) only hold for p and q infinite, we show that even for small p and q they are quite
correct. The main discrepancy between both formulae is for j = 1 (we recall that formulae
(10), (11), (13) are correct for n odd, whereas (17) and (17’) hold for any n). Then, for
j = 1 we find a relative discrepancy for the bands edges of the order ir/6 n. Thus, already for
quite small n our result (17)-(17’) is correct. The width of the gap is badly approximated for
n = 2 (411-pl/’TT instead of 3211 - p 1 ), better given for n = 3 and good for n . 5.

However, if we want to describe the gaps for very small values of n, the formulae (10)-(11)
give the good result. (17)-(17’) must be seen as simplified formulae which hold for large
n, and especially for n infinite.
We now study a second particular case, namely 0 « 1, which corresponds to very small (or

large) a. Then, we obtain a linear chain with one defect for about Int 1 (or
a

Int [a ]) atoms (where Int [x] is the integer part of x). Equation (17) shows that for

Il - p 1 _ 8 (we take À = 0) the main gaps have approximately a constant width

a = 4 8 ( 1 - p ) and are located at ± 2 cos (irj 0 j « 1 / 0 . We numerically found the
eigenvalues of Jet in (7), for Pt = 6 qe = 95 and 0 = 6/101, and show in table I, the 5 main
gaps for p = 0.9. They are well described and verify the announced property.

6. The measure of the spectrum.

In the preceding section, we have shown that near p = 1 and À = 0, the spectrum of a linear
quasiperiodic chain has an infinity of gaps which appear at Gr = ± 2 cos (’TT j 8). Since
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Table 1. - The five first main gaps (center and width) for the chain defined in section 5. The
subscript « n. s. » denotes numerical simulations, whereas « th. » refers to equations (17),
( 17’ ) . The width is near 4 0 ( 1 - p ) - 0.023762...

{j 7T (J [2 7T ] j ± 1} is dense in [0, 2 7T ] for 9 an irrational number, points where gaps open
are also dense in [- 2, 2 ]. Thus, the question of evaluating the total width of the bands arises.
Numerical studies were performed for the quasiperiodic linear chain obtained for

a = °2- 1 [5] and a = à - 1, in the framework of the study of a quasicrystal, related to2
the octagonal quasiperiodic tiling [8]. In both cases, the measure of the spectrum were found
to be zero and Bp, the measure of the spectrum of Se, found to vanish like ne 6"(p, k ). Recently,
it has been proved rigourously that the Lebesgue’s measure is zero for any a, in the case
p = 1, k # 0 [10]. We show in the following that our study leads to an expression for
Sa (p, À ), near p = 1 and À = 0. For a crystal Sa (1, 0 ) = 0, , while for the corresponding
quasicrystal 5 a (P , À ) is a smooth function of p and À, depending a priori on a, and which
verifies

for any fixed k,) and p o. Indeed, in these cases, the linear chain splits in an assembly of
molecules, and its spectrum reduces to a finite number of molecular states. So, even for finite
f, the spectrum measure is zero. From now, we study the case À = 0 and p :A 1, and will give
the result for k :0 0 and p = 1, which can be derived in the same way. In the following, we
take p such as 1 - p 1 _ lInÎ, so that our calculation is expected to be quite correct. From
(17)-(17’), the total band width is

where

Using the Euler formula, the term between brackets can be written

The function h (0 ) is a series of the variable B, whose convergence radius is found to be 1.
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Moreover, one can write

We then obtain, grouping the constant terms in a generic function F ( 0 ) and since

In pe - In ne for large ne

Thus, for large f, and since we choose In ne « 1 - p 1 - 1, we can write

which gives the first order expansion of 5 a (p, 0) in power of 1 - p 1

Similar calculations, in the case p = 1 and k * 0, and for the model studied by Kohmoto give

The most striking result is that to the first order, our result does not depend on the irrational
number a we were starting from. The expressions (21)-(21’), are in perfect agreement with
numerical studies for the Fibonacci chain or the « Octonacci » chain which is related to

B/2 - 1. For example, at À = 0 and 1 - p = 0.005, we find 6 = 0.005 x 0.4117 ± 1 and for
1 - p = 0.01, we find 6 = 0.01 x 0.4180 ± 1. Moreover, it can be shown that if g (x ) _
ax + bx2 + o (x2) then we have

Here, for xl = 0.005 and X2 = 0.01, , the slope at the origin for 5a(p,0) is found to be

approximately 0.4054, which must be compared to 2013. = 0.40528... We end this section, byn2

giving an heuristic argument for the form of â a ( p , 0 ). Since for p = 0, Pa (p, 0) is infinite,
we add a term of the second order in the first equality (21), so that the argument of the log is
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zero when p = 0. We obtain the following « phenomenological » form for 5 a (p, 0)

We can compare (22) with numerical datas for a = f - 1. It appears that the agreement is
very good for 11 - p 1 -- 0.5 and remain good for higher values (Fig. 6). We found identical
results for a = à - 1 and a = (B/5 2013 1)/2, which suggests that Sa (p, 0) does not depend
on a at all orders, at least for typical irrational numbers as those studied numerically.

Fig. 6. - Numerical calculations for 8 a (p, 0) (squares) and the phenomenological curve (22).

7. Conclusion.

In this paper, the most general quasiperiodic linear chain was considered, as a perturbed
periodic chain. The energies for the which a gap opens belong to a dense set

j ± 2 cos lrj a j -- 1 . Hence, the gaps are labelled by only one integer, according to1+a 1-
their intensities. The biggest ones are well described even for a quite large perturbation, while
the j-th gap, for large j, whose intensity is of order j -1 is correctly given by our treatment, if
the matrix elements of the perturbative potential are quite smaller than j-1. This treatment
can be used for the infinite quasiperiodic chain as well as for finite approximant crystals of any
size. Moreover, one can derive to the first order the exponant which describes the way the
total band width vanishes when n (the size of an approximant of the a-quasiperiodic chain),
goes to infinity. A surprising result is that, to the first order, 8 a does not depend on a.
Numerical datas are in very good agreement with these results.
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