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(Reçu le 16 janvier 1989, révisé le 20 juillet 1989, accepté le 24 août 1989)

Résumé. 2014 La biréfringence induite par l’écoulement dans un liquide contenant de fines

particules et confiné entre deux cylindres coaxiaux est étudiée au voisinage de la transition entre
écoulement de Couette et tourbillons de Taylor. Après avoir établi l’expression analytique du
champ hydrodynamique dans le domaine d’écoulement axisymétrique, nous en déduisons la
vitesse angulaire d’une particule entraînée par ce champ puis la fonction de distribution des
orientations de la particule. Moyennant certaines hypothèses simplificatrices mais néanmoins
réalistes, on montre que les expressions théoriques de l’angle d’extinction ~ et de l’intensité de la
biréfringence induite 0394n s’obtiennent en considérant la suspension comme une superposition de
couches infiniment minces d’orientation continuement variable. Les résultats théoriques sont
ensuite comparés aux courbes expérimentales tracées à l’aide de mesures effectuées sur des
suspensions de deux types de particules : la bentonite et le virus de la mosaïque du tabac. En
écoulement de Couette, la forme des particules en solution n’influe pas sur l’allure générale des
courbes ~ (G ) et 0394n(G), G étant le gradient de cisaillement dans l’espace annulaire. Il n’en est
plus de même en écoulement axisymétrique de Taylor pour lequel ces mêmes courbes présentent
un aspect différent pour les solutions contenant des particules allongées (V.M.T.) ou aplaties
(bentonite). Ces résultats sont confirmés par le calcul théorique.

Abstract. 2014 We have studied the birefringence induced by the flow in a liquid containing very fine
particles in the vicinity of the transition between the Couette flow and the Taylor vortex flow. We
derive at first an analytical expression of the axisymmetrical hydrodynamical field and then the
angular velocity of a particle in the flow. The resolution of the diffusion equation leads to the
orientation distribution function F. On condition of some simplifying but realistic hypotheses, we
show that the extinction angle ~ and the birefringence 0394n of the solution are the same as the

properties of an equivalent stratified medium composed of very thin layers the orientation of
which varies continuously. The results concerning the velocity profile and the critical Taylor
number are in good agreement with other sources ; the theoretical computation of ~ and
0394n are then compared to experimental curves realized with solutions of bentonite and T.M.V. ;
interesting conclusions can be drawn on the influence of the shape of the particles on the behavior
of the angle of extinction and of the birefringence intensity in the region of the Taylor vortex flow.
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1. Introduction.

In his original theoretical and experimental work Taylor [1] showed that when the angular
velocity of the inner rotating cylinder of a conventional Couette cell reaches a critical value
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depending on the geometry of the cell, the velocity profile in the gap between the cylinders
changes suddenly, giving rise to the well-known three dimensional and stable flow called
Taylor vortex flow.
Now, if we are interested in the flow of diluted solutions of rigid particles, the average

orientation of a particle at the different points of the annular gap when the vortex flow is
established, will undoubtedly differ from the orientation it will have in a conventional Couette
flow. If, in addition the medium presents flow birefringence, it is then not surprising to notice
an important change in the behaviour of the angle of extinction X and of the birefringence
intensity An as a function of the velocity gradient when the critical value is reached.

Previous work [2] and more recent experiments [3] performed on solutions of clay materials
show clearly this assumption.
Adequate theoretical interpretation of these curves have been developed in the past [4-8]

for the Couette flow but concerning the Taylor vortex flow no theoretical studies of these
optical properties have been done.
The aim of this paper is to work out the theoretical expressions for the birefringence

intensity àn and for the extinction angle X of suspensions of rigid particles undergoing the
axisymmetrical Taylor flow.
The comparison between theoretical predictions and experimental measurements per-

formed on solutions of clay material and Tobacco mosaic virus (TMV) seems to confirm the
validity of the model derived from the linearized Navier-Stokes equations and allow

interesting conclusions about the effect of the shape of the particles on the behaviour of y and
An at the transition.

2. Theoretical.

In order to calculate the birefringence intensity, which characterizes the degree of orientation
of the particles and the extinction angle defined as the angle between the line of flow and a
neutral line of the liquid, we ought to know the orientation distribution function F of the
particle, function which depends itself on the hydrodynamical field in the cell.
The main difficulty of the above mentioned problem lies in the determination of the

function F. If, for instance, we consider an orthotropic body, there is no coupling between
translational and rotational motion and F satisfies the rotational diffusion equation [9] :

3 
z

where the operator V = 3 ei a ; e is the unit vector along the principal axis i,
1 8ai

ai the rotation about this axis and M stands for the angular velocity.
If, in addition, the particule is of révolution, the rotation about the axis of révolution has no

physical meaning. Let u be the unit vector along this axis, the diffusion équation becomes :

in which V =- A = u A a is the well-known rotational operator. (In quantum mechanics,
au

z j3l corresponds to the angular momentum operator). The previous equation may also be
written as :

ù is the time derivative of the orientation vector u.
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The angular velocity co or the vector u can be expressed as follow :

The first and second term in the right hand side represent respectively the Brownian
contribution and the hydrodynamic part to the rotational velocity of the particle. While the
first one depends on the geometrical form on the particle, the second one requires the
knowledge of the hydrodynamical field in the gap of the Couette cell.

Concerning the optical part of the problem, the study of the polarization of the medium
under the action of the electrical field of the incident light will lead to the principal
permittivities of the medium from which we shall merely deduce An and x.

2.1 HYDRODYNAMICAL FIELD. - Let us follow the method of Chandrasekar [10] to find a
solution of the linearized Navier-Stokes equations and assume that the three dimensional flow
results from the superposition of a small axisymmetric perturbation to the laminar flow.

Calling uT’ ue, u, the three components of the perturbation in the steady state, we write :

we get, after some handling of the N.S. and continuity equations, the well-known sixth-order
differential equation relating u (x ) and its derivatives.

together with the boundary conditions :

x stands for a dimensionless variable related to r by

R1 and d being respectively the radius of the inner cylinder and the width of the annular gap, T
is the classical Taylor number and f2 1, f2 2 respectively the angular velocity of the inner and
outer cylinder.

It should be made clear that equation (2.1) holds only in the small gap approximation
(width of the annular gap smaller than the radii of the cylinders). Since only the inner cylinder
is rotating, e will be set to - 1.
Although the exact solutions of equation (2.1) are known [11, 12], they appear as an

integral representation which does not allow for an easy handling in further developments ;
thereby we shall seek for a simpler approximated expression.

Integrating equation (2.1) leads to a Volterra equation :

where
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A solution of this latest equation is written as :

where the different vi (x) satisfy :

The approximation of order zero to the solution vo (x ) is readily evaluated and is expressed
as :

expression which satisfies the three boundary conditions for x = 0.
The constants A, B, C are related to the first, fourth and fifth derivates of v (x ) calculated

for x = 0.

Generally speaking a term vi (x ) will write as :

The number of such factors in the expression of v (x ) is determined in the following way : let
the boundary conditions be applied for x = 1 to the three components u (x ), v (x ),
w (x ) of the perturbation ; we get an homogeneous system of three equations with the
constants A, B, and C as unknowns and T and a as parameters. For different values of a, we
seek for a solution of the system by allowing T to vary until the determinant of the coefficients
equals zero. Among all the values chosen for a, one of them leads to a minimum for T which is
then the Taylor number we are looking for.

Satisfactory results have been obtained by including terms up to the second approximation
in v (x ) and we found for a and T values which are in excellent agreement with different
authors as can be seen in table I.

The radial part of the three components can be written for :

- the tangential component

- the radial component

with v standing for the viscosity of solution ;
the axial component
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Table 1. - Critical Taylor numbers obtained through different methods.

Table II compares the relative values of the different components with other authors. These
former equations can be used to compute the components of the perturbation in the
approximation of a small gap and as long as the flow remains in its first stage (no azimuthal

Table II. z Components of the perturbation at the transition fiom Couette flow to Taylor
vortex flow.
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wave). However it should be noticed that neither this method of resolution nor the study of
the growth of the vortices [13] lead to an absolute value of the three components of the
velocity field.

Following Davey [13] who showed that the equilibrium amplitude Ae of the motion obeys to
the law : 

°

relative value of v (x ), u (x ) and w (x ) can be evaluated once T and a have been determined.
However, a look at the marginal stability curve (Fig. 1) shows that, for each Tu Tc, two

values of a (a = k/d) are equally possible and as far as T remains in the direct vicinity of
Tc, there is no experimental nor theoretical evidence to choose the smaller rather than the
greater value of a.

Fig. 1. - Marginal stability curve.

The figures 2-7 represent respectively the relative variations, as a function of x, of the
tangential, radial and axial component of the perturbation for both cases a « a,, and

a &#x3E; a,, and for different values of the Taylor number T. In each set, the curves are ordered
according to ascending values of T : the curve with the smallest maximum corresponding to
the smallest value of the Taylor number. These values of T are chosen so that the

corresponding shear rates are identical to those used in the experiments and are :
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Table III. - Taylor numbers and values of a used in the curves 2-7.

Fig. 2. - Tangential component of the perturbation for different values of the Taylor number in the
case a « a, (Taylor number and values of a listed in Tab. III).
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Fig. 3. - Tangential component of the perturbation for different values of the Taylor number in the
case a:::. ac (Taylor number and values of a listed in Tab. III).

For a given a, the tangential component v of the perturbation appears to be the principal
one being roughly ten times more important than the others. For a given T, the values of this
same component v appear to be very similar for a greater or smaller than ac.

Concerning the radial component u(x), there is a significant difference between the
maxima of the different curves corresponding to the cases (a &#x3E;- or : ac) : the highest values

n R
for a given G (shear rate Dl d R, ) being obtained in the case a &#x3E; ac ; as G is increased and
reaches the final value, the radial component tends not to increase any more when
a « ac ; this conclusion does not hold for the other case &#x3E; ac.
However, in any case we ought to remember that these curves represent only relative

variations since a multiplicative factor remains in the equations.
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Fig. 4. - Radial component of the perturbation for different values of the Taylor number in the case
a - ac (Taylor number and values of a listed in Tab. III).

2.2 STATISTICAL ORIENTATION OF THE PARTICLES. - Suppose now that the liquid contains
small particles carried away by the flow ; under the combined but antagonist action of the
Brownian motion and of the hydrodynamical field, the particles will take a preferred
orientation in the direction (0, cp ) (see Fig. 8) characterised by the orientation distribution
function F (0, cp ) which satisfies :

2.2.1 Brownian velocity. - For a prolate or oblate spheroidal particle, roB is given by the
relation :
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Fig. 5. - Radial component of the perturbation for different values of the Taylor number in the case
a &#x3E;. a,, (Taylor number and values of a listed in Tab. III).

where Dr is the rotational diffusion coefficient around a transverse axis of the particle and
eo, eç,,, the unit vectors in the 0 and cp directions.

In the same way, we have :

2.2.2 Hydrodynamic velocity. - This calculation is based upon the following hypotheses : the
velocity of the particle equals that of the fluid (no slip condition) and its variations are

instantaneous ; in addition, we will suppose that the centre of gravity of the particle moves
with the velocity of the liquid at this point.
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Fig. 6. - Axial component of the perturbation for different values of the Taylor number in 
the case

a : a,, (Taylor number and values of a listed in Tab. III).

Taking into account Jeffery’s work [14] concerning the Couette flow, the two components
of the spin of the particle assumed to be a spheroid, are :
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Fig. 7. - Axial component of the perturbation for different values of the Taylor number in the case
a :&#x3E; ac (Taylor number and values of a listed in Tab. III).

where b is the shape factor of the particle defined as the ratio2 - , p stands for the ratio ofp +1
the axes of the spheroid.
Once, we know à and (p, it is easy to get (OH or UH since :
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Fig. 8. - Coordinates system and orientation of a particle.

2.2.3 Diffusion equation and mathematical expression of F. - Introducing the expressions of
COB and (OH in equation (2.2) we obtain :

where 4 = 1 a sin 0 3 ) + - 1 a2 represents the Laplacian operator.sm 80 sin 2 é) cp Z

Seeking for a solution written in term of a series :

in which :

we obtain, after substitution of Fi for the series in equation (2.3), three recurrence relations
between the an, M, , and b n, m, j. While in the case of Couette flow, the first coefficients could be
easily determined once ao, 0, 0 is set to 1/2 7T, for the Taylor vortex flow, we shall merely
compute the coefficients an, m, j and b n, m, j which will appear in the final expression of X and
an.

2.3 PERMITTIVITY TENSOR OF THE SOLUTION. - This calculation is based on the hypothesis
that the electric field of the incident light wave may be treated quasi-statically, this implies
that the wavelength is greater than the largest dimension of the particle.
The solution is composed of a suspension of spheroidal particles (permittivity [ e ]) bathing

in a homogeneous and isotropic medium (permittivity El).
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Since the properties, we are measuring (X and An) are macroscopic properties of the liquid,
we state that the real discontinuous medium can be idealized by an equivalent continuum of
permittivity [e’] [Fig. 9] and write that the polarization of these two equivalent media is

equal.

Fig. 9. - Representation of the equivalent dielectric medium.

A simplification arises from the fact that the solution of the polarization problem of a
medium of permittivity [e] placed in a medium of permittivity £1 is identical to the one of a
substance of permittivity [e] eole, in vacuum [15].
By orientating successively the external influencing field Eo along the principal directions of

polarization of the particle, we obtain the two principal equivalent permittivities y( and
" 1 1 

where A = - is the volumic concentration of the particles.
V

The terms Au (0 ) and A’(0) represent elliptic integrals the definition of which can be found
in reference [16]...
Then in the principal axes of the particle, the permittivity is written as :
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However it should be noted that the optical properties (X and the phase angle) are measured
referring to a system fixed to the cell and deduced from the principal one by the rotation
(8, cp ). Thereby [E’] should be written in this new coordinates system and becomes

[E]. Applying Maxwell’s equations to the equivalent dielectric medium, we obtain the

ellipsoid of the indexes :

where the Fij are the components of [E] 1. 
As it could be expected from the fact that the flow presents an axial periodicity, the

orientation of the ellipsoid is also dependent in z. This means that the liquid will have to be
considered as a superposition of infinitely thin layers the orientation of which varies

continuously.

2.4 EXTINCTION ANGLE AND BIREFRINGENCE INTENSITY. - Making use of the results of
Leray [17], concerning the composition of small birefringent media and if 8(z) and
/3 (z ) represent respectively the phase angle and the azimuth of an infinitely thin layer we can
write :

where 0 is the phase angle of the equivalent medium. The Taylor vortex flow being periodical
in the axial direction, the integration is performed on a single period T of the phenomenon.

Introducing the mean components (weighted by the distribution function) of the permittivi-
ty tensor we get :

and

nm the average index and
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where

The birefringence intensity of the solutions is weak ; thus the difference E’ - Ell’ is small

compared to either one or the other of the permittivities : a factor such that (c) equals
nearly cjjB On the other hand, the solutions are highly diluted so that A is also very small.
These considerations allow us to assume :

and

Finally, the angle of extinction and the birefringence intensity can be expressed as :

and

with

For later use, the term in brackets in the expression of An shall be called F (o-, b ),

/ G B- 
d 

We note that in the frame of the approximations, the results for tg 2 X and An are not very
different from the classical ones ; as a matter of fact in this case, the previous relations are :
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The complexity of the previous expressions tg 2 X and An does not allow for the prospect of
finding a simple analytical form easy to handle like in the case of the classical Couette flow.

Thus, we have performed a numerical calculation of the angle X and of the birefringence
An beyond the critical value 7c. The only adjustable parameter (scaling factor /) remaining in
the equations (arising from the fact that the tangential velocity component is a solution of an
homogeneous system) is chosen to obtain the best agreement with our experiments.

3. Expérimental part.

Experimental measurements have been performed on aqueous solutions of flattened particles
like bentonite and rod-like particles like T.M.V. The details of these studies are found in
reference [3]. The optical properties are measured by the classical method of Senarmont.
When submitted to a shear flow, the liquid containing rigid anisodiametrical particles
becomes birefringent and two characteristic quantities can be measured : the extinction angle
X defined as the angle between a neutral line and the direction of the flow and the phase angle
ç related to the birefringence intensity An by the relation :

3.1 OPTICAL DEVICE. - The ellipsometer used in the experiments is composed (see Fig. 10)
of two polarizing devices P 1 and P 2 which remain crossed during the détermination of the
position of the neutral lines of the liquid under flow. A quater wave plate À/4 can be
introduced in the light path in order to measure the phase angle cp of the medium.

3.2 COUETTE CELL. - The classical Couette cell is built from two coaxial glass cylinders
fitted together and making up an annular space in which a thermostatic liquid can flow. The
manufacture of the inner one has received special care and the inner radius of the cylinder is
constant within ± 0.01 mm all along its length. Inner rotating cylinders of various radii are
made of stainless steel. The typical dimensions of the cell are :

diameter of outer cylinder : 50 mm
diameter of inner cylinders : 46, 47, 48 mm
height of the cell : 70 mm

3.3 SOLUTIONS OF RIGID PARTICLES. - Two kinds of rigid particles, different by their shape,
have been used in aqueous solutions : bentonite, a clay material and Tobacco mosaic virus
(T.V.M). The particle of bentonite appears like a leaf of a 100 to 200 Â in thickness and up to
10 000 A in length while the particle of T.M.V. looks like a rod of 3 000 À in length and 150 À
in diameter.

Preparation of the solution.

A definite amount of dry material (2 g) is poured in distilled water and the mixture is shaken
mechanically for several hours. After decanting, the remaining liquid undergoes several
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Fig. 10. - Schematic representation of the ellipsometer.

filtrations, the last one being made on a Micropore filter of 0.45 &#x3E;. Finally and just before
use, the solution is submitted to centrifugation at 10 000 rvs/min during 20 minutes.
The sample of purified T.M.V. has been offered to us by Professor Jean Vitz of the

Botanical Institut of Strasbourg. The initial concentration of 34 mg/ml is reduced to 1 mg/ml
by addition of a phosphate buffer.

4. Comparison with experiments. Discussion.

4.1 BENTONITE. - The experimental results referring to this type of particle are reported in
the curves shown in figures 11a and 11b. The study has been performed for two widths of the
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Fig. 11. - (a) Variation of the extinction angle X versus G for different widths of the annular gap (case
of bentonite solution). 1 mm (o), 1.5 mm (* ), 2 mm (*) (in brackets, above the experimental values,
the corresponding critical gradient computed from the expression of 7). (b) Variation of the

birefringence intensity for different widths of the annular gap (case of bentonite solution). 1 mm (o),
1.5 mm (* ), 2 mm (*), k = 2.04 x 107 (in brackets, above the experimental values, the corresponding
critical gradient computed from the expression of 7).
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annular gap (1.5 mm and 2 mm). As the gradient G increases and finally reaches the critical
value G’c corresponding to Tc, the angle X increases first to a maximum and then falls rapidly
towards the direction of the flow. This maximum exists also in the case of 1.5 mm gap, but

appears to be less sharp.

Fig. 12. - (a) Theoretical variation of x versus G for different scaling factors in the case of a bentonite
solution. 0.03 (*), 0.04 (*), 0.05 (*), 0.07 (e) (theoretical value of Gc: 35.6 s-’). (b) Theoretical
variation of An versus G for different scaling factors in the case of a bentonite solution. 0.03 (*),
0.04 (*), 0.05 (*), 0.07 (a) (theoretical value of G, : 35.6 s-1) .
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Looking at the birefringence (Fig. llb), we note, as G reaches the critical value

Gc, a disastrous drop of An in comparison with the value we would measure in the case of
Couette flow for the same value of G.
The corresponding theoretical results obtained in the case b = - 1, are presented in the

figures 12a and 12b. A surprisingly good qualitative agreement is obtained when we choose a
scaling factor around 0.05 in the case a  ac (plain lines).
The same conclusion can be drawn with the curves F ( (T , b). If we choose a &#x3E;. a, the

computation of X and F(o-, b ) leads to the results represented by broken lines : the only
satisfactory result is obtained for the curve F(u, b ) when the scaling factor f equals 0.05 ; a
complete disagreement between theory and experiment can be noticed in the case of the angle
X which is seen to increase continuously when G &#x3E; Gc.

4.2 TOBACCO MOSAIC VIRUS. - These results are reported in figures 13a and 13b for the
experiments and 14a and 14b for the theoretical calculations.

Starting in the Couette flow region, we gradually increase G and by reaching
Gc, the same break in the curve X (G ) and An (G) appears ; although the extinction angle X
shows a flattened plateau instead of a maximum with this kind of particle. The same sharp
break is observed with the birefringence intensity for G = Gc.
The results of our computation show a fairly good agreement for the variation of X versus G

in the case a &#x3E; ac (plain line in Fig. 14a) : the curves do not show a maximum as in the case of
bentonite solution for any scaling factor f.
The case a « ac is represented by the broken lines : the results are not basically different

from the case a &#x3E; ac but the evolution of F (o,, b ) versus G (Fig. 14b) shows clearly that the
only satisfactory case corresponds to a -.. ac : as a matter of fact we note that, for all
F (a , b ) is very close to the corresponding curve of the Couette flow for all G.

5. Conclusion.

The emergence of a periodic flow in a Couette cell when the angular velocity of the rotating
cylinder is gradually increased will have an important effect in the dynamo-optical properties
of the solution.

This fact can indeed be easily admitted if we know that these properties depend on the
degree of orientation of the particles which in turn, depends heavily on the structure of the
hydrodynamical field.
The experimental measurements of these properties should also show, in some manner, the

emergence of this second flow superimposed to the underlying laminar Couette flow : the
measurements of the induced birefringence in the range where this transition happens confirm
this fact.
The breaks observed in the birefringence intensity curves  (G) are sharp enough to

determine quite accurately the critical gradient at which the transition appears : thus the
birefringence intensity measurements appears to be an interesting method in the determi-
nation of the emergence of the vortices and can be compared to the torque measurements
method [18].

In addition, it seems that the shape of the particle in the liquid plays an important part in
the manner in which these properties behave when G is still increased after Gc : unlike the
curves X (G ) and àn(G) corresponding to the Couette flow and which show the same
qualitative aspect whatever the shape of the particle may be, the variation of the angle of
extinction y in the Taylor flow is greatly affected by the shape of the particle in solution and
thus, its study gives us the means of distinguishing between the flattened and elongated
particle.
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Fig. 13. - (a) Variation of the extinction angle X versus G for different widths of the annular gap (case
of T.M.V. solution). 1 mm (o), 1.5 mm (0), 2 mm ( * ) (in brackets, above the experimental values, the
corresponding critical gradient computed from the expression of 7J. (b) Variation of the birefringence
intensity for different widths of the annular gap (case of T.M.V. solution). 1 mm (o), 1.5 mm (0),
2 mm ( * ), k = 2.04 x 10’ (in brackets, above the experimental values, the corresponding critical
gradient computed from the expression of T).
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Fig. 14. - (a) Theoretical variation of X versus G for different scaling factors in the case of a T.M.V.
solution. 0.03 (* ), 0.04 ( * ), 0.05 (*), 0.07 (e) (theoretical value of Gc : 35.6 s -1). (b) Theoretical
variation of An versus G for different scaling factors in the case of a T.M.V. solution. 0.03 (*),
0.04 ( * ), 0.05 (*), 0.07 (e) (theoretical value of Ge:35.6s -1).
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These experimental conclusions are confirmed by the theorical computation of these same
properties.
The critical Taylor number Tc corresponding to the first transition from Couette flow to

Taylor vortex flow is in total agreement with the value proposed by different authors as shown
in table I.

Our calculation is based on the resolution of a system of linearized equations which are
valid only in the region of gradients slightly above the critical gradient Gc and if the flow
remains in its axisymmetric form. However we have assumed that the velocity components
derived from it could be used in an extended region to compute X and F(cr, b ) for the values
of G well above Gc. We known also from visual observation and different authors [19, 20],
that a wavy flow in the axial direction superimposes to the first Taylor flow rather quickly in
the case of a narrow gap which represents our case. But when we compare the theoretical
results with the experimental curves of y (G ) and An (G ), the agreement is complete in all the
range of variation of G.

This conclusion tends to prove that the azimuthal wave has little influence on the optical
properties measured in the axial direction.
Another interesting conclusion of this work is that, at least theoretically, it appears possible

to reach the intrinsec permittivities e, and 611 of the particle by associating the results
obtained in the case of Couette and Taylor flows : the slope at the origin of the curve
An (G) in the Couette flow leads to the difference 81. - 811 while, in the case of Taylor flow,
we can reach one of the permittivities cj).
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