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Résumé. 2014 Des mesures de diffusion dynamique de la lumière ont été effectuées sur des
échantillons orientés de phases smectiques lyotropes diluées. L’hydrodynamique des smectiques
A binaires est utilisée pour décrire le spectre des fluctuations dans les echantillons. Le seul mode

hydrodynamique experimentalement accessible est le mode barocline (ainsi que son cas limite : le
mode d’ondulation), dont l’origine est le couplage entre fluctuations de concentration et

fluctuations de deplacement des couches. Sa relation de dispersion anisotrope est fonction
notamment de deux constantes élastiques : le module de compression des couches (à potentiel
chimique constant) B ; le module de courbure des couches K. L’étude de la flexibility des

membranes (K) et des interactions intermembranaires (B) a lieu sur une droite de dilution le
long de laquelle le pas du smectique varie de 4 à 35 nm. Les résultats confortent la description en
termes de membranes flexibles (flexibilité proche de kB T) soumises à l’interaction stérique de
Helfrich.

Abstract. 2014 Dynamic light scattering measurements on oriented samples of dilute lyotropic
smectics have been performed. The hydrodynamics of two-component smectics A is applied to
describe the fluctuation spectrum in our multicomponent samples. The experimentally relevant
hydrodynamic mode is the undulation/baroclinic mode, which arises from the coupling between
concentration and layer displacement fluctuations. Two elastic constants, the layer compressibility
modulus (at constant chemical potential) B and the bending modulus K, are extracted from its
anisotropic dispersion relation. Membrane flexibility (K) and intermembrane interactions

(B) have been studied along a dilution line, with smectic repeating distances in the range 4-35 nm.
The results support the view of flexible membranes (flexibility of the order of kB T) interacting by
means of Helfrich’s steric interaction.

J. Phys. France 50 (1989) 3147-3165 15 OCTOBRE 1989,

Classification

Physics Abstracts
61.30 - 62.90 - 82.70D

1. Introduction.

Lyotropic smectics, as hinted by the etymology of their name, are liquid crystalline phases
obtained when soap (more generally an amphiphilic compound) dissolves in water. They are
therefore multicomponent systems whereas thermotropic smectics can be a single component.
Owing to the hydrophobic effect, surfactant molecules in solution aggregate in various
structures among which bilayers (membranes) are often encountered. When stacked in

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:0198900500200314700

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:0198900500200314700


3148

periodic layers, these membranes lead to a smectic A phase [1]. Such a structure allows a
convenient study of their physical properties such as flexibility and interactions. Indeed, as we
explain later, flexibility can be traced from the smectic bending modulus K and interactions
from the compressibility modulus B.
Even if the smectic order is most often found in the concentrated regime, in some cases it

may still exist at high dilution (low amphiphilic content) [2-4]. These dilute lamellar phases
are of special interest : they are unique example of colloidal smectics and one illustration of
phases of surfaces. In the dilute range, smectic repeating distances can reach several
thousands of angstroms [5-7]. As for regular colloids, the large length scales simplify the
description of the physics of these phases : interactions are no longer dominated by
microscopic molecular forces and continuous descriptions are more safely applicable. Thus
the possibility of changing continuously the repeating distance d (from 10 À to more than
1 000 Â) is specially useful in the study of interacting membranes. Besides, owing to their
large flexibility, the membrane conformations and physical properties are strongly affected by
thermal fluctuations [8-11].

Recently, much effort has been devoted to the measurement of elastic properties of dilute
lamellar phases. Using different techniques such as EPR [12], response under mechanical
constraint [13] and high resolution X-ray scattering [14, 15] informations on flexibility and
membrane interactions have been obtained. One of the most remarkable results is the

experimental evidence for repulsive undulation forces which have been proposed some years
ago as a possible mechanism for membranes to interact [8]. These forces are entropic in
origin : they come from the hindrance to undulations on account of the steric short distance
repulsion between membranes. They arise on the same physical grounds as the pressure of a
polymer constrained between two hard walls [16] or the steric repulsion between wandering
lines of defects in the two-dimensional commensurate-incommensurate phase transition [17].
The reason why these repulsive interactions are strong enough to overcome the Van der
Waals attraction is the large flexibility of the membranes : indeed, in these systems, the
membrane bending constant K is of the order of the thermal energy kBT.

Light scattering is a particularly convenient way for measuring elastic constants of liquid
crystals. Both static and dynamic measurements give, in principle, an access to the elastic
moduli. Static measurements, although giving direct information, are difficult to achieve

experimentally ; on the other hand dynamic ones, which are easier, require a hydrodynamic
model to interpret the results. The hydrodynamic of the one-component smectic A has been
worked out by de Gennes [18] and, in a more general context, by Martin et al. (MPP) [19] ;
light scattering experiments have been performed confirming the validity of the approach [20-
22]. The case of two-component smectics A has been explicitly studied by Brochard and de
Gennes [23] but less investigated experimentally [24-26].
We present in this paper an extensive study of the hydrodynamics and light scattering of

multicomponent lamellar phases. In part 2 we recall briefly the elasticity of two-component
smectics A. Then, in the following part, we reformulate and generalize the hydrodynamics of
two-component smectics A using the MPP framework. In a fourth part we describe the
experiments we have performed on a typical dilute lamellar phase, previously studied with
other techniques [13, 14]. In part 5 we give experimental results that permit us to measure the
two elastic moduli B and K independently. The last part is devoted to an interpretation of the
dilution behaviour of the elastic constants in terms of flexibility and interactions between
membranes.

2. Elasticity of two-component smectic A.

The free energy density f of two-component, isothermal and incompressible smectics A, up to
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second order in layer displacement u and concentration fluctuations Sc (mass fraction), is

[23] :

with B defined as the layer compression modulus (at constant concentration), K as the
bending modulus, X as the osmotic compressibility (at constant layer spacing) and

C, as the coupling constant between layer displacement and concentration fluctuations.
Of particular significance is the combination È = B - C2X@ which is the layer compress-

ibility modulus at constant chemical potential. This elastic constant B may be related to the
interactions between membranes, as we now explain. Let us describe the microscopic
structure as a stack of surfactant bilayers of thickness ôand repeating distance d (Fig. 1). On
geometrical grounds, the surfactant concentration (mass fraction) is expressed as :

where ms is the molecular mass of the surfactant, vs its molecular volume and p the total mass
density. If we assume that both the solvent and the surfactant are incompressible

Fig. 1. - Schematic representations of unstrained and deformed states of a lyotropic smectic A with
membrane thickness 6 and repeating distance d. Layer compression at constant surfactant concentration
(a), layer compression at constant membrane thickness (b) and membrane compression at constant

layer thickness (c) are displayed. The elastic stresses are controlled respectively by B(a), B(b) (in the
appropriate limit) and X(c).
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vs and p are constants. The equilibrium values for 5 and d at a given concentration c result
from a competition between two antagonist trends : the bilayer thickness 03B4tends to be close to
some value 50, which would be the thickness of an isolated membrane ; on account of the
membrane-membrane interactions the repeating distance do, resulting from equation (2)
(do = ms 501 pVs c ), is not the optimum one. A simplified model for the energy (per unit
volume) of the stack structure which features this competition is a sum of two terms :

where E is a characteristic surfactant energy, pc/ms the number density of surfactant and
V (d ) the membrane-membrane interaction potential per unit area. The first term is written in
the harmonic approximation, valid for small departures from the reference thickness

so.
The equilibrium repeating distance deq is the solution of the minimization equation :

and is close to do at large dilution. Concentration and repeating distance fluctuations around
equilibrium are described by a Taylor expansion of the free energy (Eq. (3)), up to second
order :

By comparison with equation (1) we identify :

with

Using the definition B = B - C2c X and equations (4) and (6) we get the layer compression
modulus at constant chemical potential :

From equations (6) and (7) the difference between B and B and the importance of this last
elastic constant is clear : the layer compression modulus at constant concentration B is related
to both the intrinsic energy e and the membrane-membrane interactions V, whereas the layer
compression modulus at constant chemical potential B is characteristic of the interactions
alone. At large dilution B is dominated by the bilayer thickness rigidity (B = epc Ims) and we
have B  B. These properties are illustrated in figure 1, which features three basic elastic
deformations of a lyotropic smectic A. Note that a compression at constant concentration,
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which keeps &#x26; Id constant, corresponds to both a diminution of the bilayer thickness and a
decrease of the repeating distance [27].
The elastic constant B is the one which is most readily obtained in a static experiment, as is

apparent on the expressions for the correlation functions :

In a light scattering experiment, by a proper choice of the polarizations, it is possible to
measure separately the two correlation functions (c(q) c(- q» and u(q) u (- q )&#x3E; . Indeed,
the dielectric tensor for a uniaxial medium is :

where s is the mean dielectric constant, Ac the dielectric anisotropy, 03B403B103B2 the Kronecker

symbol, and na the component along the oeaxis of the director (optical axis) of the medium.
In the case of a low birefringence (As « 1 ), the intensity of the light scattered at a wave
vector q, for an incoming polarization i and an outgoing one f, is proportional to :

where Scc, Suu and Suc are the correlation functions defined in equation (8).
An X-ray (or neutron) scattering experiment in the vicinity of the quasi-Bragg peak is a

measurement of the shape of the total mass density autocorrelation function, which is related
to (u (q ) u (- q)) [28] ; on the other hand, the scattered intensity at small angles originates in
surfactant concentration fluctuations [29], which should in principle be described by
Scc(q). The response under mechanical constraint is a susceptibility measurement, equivalent
to a determination of (u (q) u (- q)) on account of the fluctuation-dissipation theorem : all
these examples illustrate that in the static limit the compressibility modulus which is measured
is B (at constant chemical potential).

3. Hydrodynamics of two-component smectic A.

The number of relevant hydrodynamic variables to consider can be obtained following the
general prescription of MPP [19] by counting the number of conserved quantities and
continuously broken symmetries. In the case of the one-component smectic A [18], one
hydrodynamic variable associated with the loss of the translational symmetry along the
normal to the layers comes into play : the layer displacement u. It adds to the usual five
variables of a simple fluid (total mass density p, momentum density g, and energy density e)
and that leads to six hydrodynamic modes which are : heat diffusion (corresponding to 1



3152

mode), shear (1), sound (2) and second sound (2). In the case of two-component smectics A
[23] we have to take into account one more conserved variable, namely the mass density
pc of a species, and therefore seven modes are present.
The complete mathematical description of these modes, by means of seven coupled

hydrodynamic equations, is presented in the appendix. In what follows we set forth a simpler
description which rests upon some innocuous approximations. We assume that the system is
incompressible and athermal, which amounts to state that the mass density and entropy per
unit mass remain at equilibrium. This approximation is valid for any mode with a frequency
much smaller than the sound frequency (typically 2 GHz at a wave vector q = 107 m- 1) and
the thermal mode relaxation frequency (about 1 MHz). It allows the replacement of three
hydrodynamic equations by as many constraints, on pressure, longitudinal momentum and
temperature. Among the four equations that remain, one is uncoupled. It describes a
transverse (with respect to both the wave vector and the optical axis), high frequency (about
30 MHz) shear wave. With simplifying (but not essential) assumptions on the symmetry of the
viscosity and diffusion coefficient tensors, and on the values of the « flexodiffusion » and
permeation dissipative coefficients (taken equal to zero) (see appendix), the remaining three
coupled hydrodynamic equations (with a space Fourier transform) are :

In equation (11), the x-z plane contains both the wave vector q and the normal to the layers
(along the z-direction) ; q is the magnitude of q ; gt is a transverse momentum

((qz gx - qx gz)1q); l is a shear viscosity and a 1 p 2 X is the single non-vanishing
component of the diffusion coefficient tensor.
These three equations can be solved for arbitrary wave vectors but in order to identify more

easily the mode structure we first study limiting cases.

3.1 LIMIT qz = 0. - For qz = 0 equation (11) simplifies and reads :

In this limit, the concentration fluctuations are decoupled from the layer displacement and
transverse momentum ones. Consequently, we recover a one-component smectic A mode
structure superimposed to a binary fluid one. The two coupled equations lead to a transverse
shear wave and an undulation mode [18, 19]. In the limit Kp /,q 2  l, their relaxation

frequencies are given by :
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The shear mode is a high-frequency mode (about 30 MHz at q = 107 m- 1) that corresponds
to gt = 17q x 2u and 8c = 0 : it does not couple to concentration fluctuations and little to layer
displacement ones. Consequently, it scatters light very weakly. The undulation mode, with
gt = Kp /~2. qq2. u and 8 c = 0 is at low frequency (typically 10 kHz), couples strongly to
layer displacement fluctuations and is thus easily observable in a light scattering experiment
[21, 22] (Fig. 2a shows a schematic representation of this mode). Note that the undulation
mode modulates the orientation of the director keeping constant both the intermembrane
distance (qz = 0) and the bilayer thickness (since 8c = 0).
The last mode (gt = 0, u = 0 ) corresponds to concentration fluctuations and therefore to a

modulation of the membrane thickness (Fig. 2b). It is reminiscent of the well-known

peristaltic mode of soap films [30-33]. Consequently we call it the membrane peristaltic mode.
Its dispersion relation is :

The membrane peristaltic mode gives a contribution to light scattering, but its characteristic
frequency (about 10 MHz) makes it difficult to observe [24].

3.2 OBLIQUE q VECTOR. - For an oblique wave vector (i.e. qx qz =F 0), the three variables
gt, 5c and u are coupled and equation (11) leads to the following three modes [23] : the
second sound, which corresponds to two propagative waves ; the baroclinic mode, which is
diffusive, deserving its name because it corresponds to a compression wave at oblique q.
To lowest order in q, the frequencies of the second sound are given by :

These frequencies are controlled by B, the layer compressibility modulus at constant

concentration and consequently measure mainly the stretching energy of the surfactant
bilayer (Eq. (6)).
The relaxation frequency of the baroclinic mode is given, in the limit of small

qx, by :

In contrast to second sound, the relaxation frequency of the baroclinic mode is mainly
controlled by membrane interactions, in the dilute range, since BX is then of the order of
c2 (see Eq. (6)). In this range, equation (14b) becomes :

The baroclinic mode corresponds to gt = PILÏiqqx u, 8c = - i Bqz ulCc which implies that
the layer thickness remains constant (BICC = c in the dilute range, see Eq. (6)), whereas the
layer thickness is strongly modulated by the second sound modes (&#x26;c e- 0 at non-zero

ôzu). The second sound and the baroclinic modes are schematically shown in figures 2d and 2c
respectively. In figure 2 we note that the second sound corresponds to both a variation in the
bilayer thickness and in the distance between membranes when the baroclinic mode
modulates only the membrane distance and not the bilayer thickness.
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The three coupled hydrodynamic equations (Eq. (11)) can of course be solved in the
general case to describe the cross-over from qz = 0 to oblique q. The study of the complete
solutions for the dispersion relations shows that the undulation and baroclinic modes are on
the same branch and therefore two limiting aspects of the same mode. The dispersion relation
of the undulation/baroclinic mode displayed in figure 3 illustrates this property. Note that this
behaviour has to be compared to the one that obtains in one-component smectic A, where the
undulation mode is the limit of the second sound mode at qz = 0. For two-component smectic
A phases, the second sound degenerates into the membrane peristaltic mode (this statement
corrects a mistake in Ref. [26]). This pecularity of two-component smectic A can be
intuitively grasped considering the drawings of figure 2 where it is clear that one limit of the
second sound (Fig. 2d) at qz = 0 is the membrane peristaltic mode (Fig. 2b), since these two
modes modulate the bilayer thickness, and the limit of the baroclinic mode (Fig. 2c) is the
undulation mode (Fig. 2a). In their previous treatment of this problem, Brochard and de
Gennes [23] had proposed the same name « slip » for both the membrane peristaltic and
baroclinic modes. Since these two modes belong to different branches, we propose to call
them by two different names related to their geometrical features (Fig. 2).

Fig. 2. - Hydrodynamic modes of a two-component smectic A : undulation mode (a) ; membrane
peristaltic mode (b) ; baroclinic mode (c) ; second sound mode (d). Modes a and b (respectively c and d)
occur for a wave vector parallel to (resp. oblique with respect to) the layers. Mode a (respectively b)
continuously merges into mode c (resp. d) as qz increases from zero.

4. Experimental details.

As made clear by equation (10), only modes coupled to the dielectric tensor can be observed
in a light scattering experiment. Such are the membrane peristaltic/second sound and the
undulation/baroclinic modes. The first branch is always at high frequencies, therefore our
intensity correlation spectroscopy technique will be more sensitive to the undulation/baroclin-
ic branch.

4.1 GEOMETRY OF THE SET UP. - Figure 4 shows the geometry of the set-up we used. The
position of the detector is defined by the scattering angle 0. Two angles 0 and Q define the
direction of the optical axis (oriented samples are used) : the angle 6 controls the in-plane
rotation (around an axis perpendicular to the scattering plane) and Q the out-of-plane one
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Fig. 3. - Anisotropic dispersion relation of the undulation/baroclinic mode near qz = 0. The smectic

bending modulus K is measured from the peak frequency, the compression modulus B from the
oblique q behaviour. The triangles are the experimental data for a sample with d = 6.1 nm at

q - 1.4 X 107 m- 1. The solid line is a theoretical prediction from equation (11).

Fig. 4. - Geometry of the set-up, drawn in the scattering plane. The angle 0 controls the modulus of
the wave vector. The z-axis is the projection on the scattering plane of the normal to the layers. The
angle gi controls the out-of-plane orientation of the smectic optical axis. The incident light is always
polarized perpendicularly to the scattering plane.

(around an axis parallel to the scattering plane). The incident light is always polarized
perpendicularly to the scattering plane (polarization vector i). The analyzer is either parallel
or perpendicular to the scattering plane (polarization f).

Since our sample cells have plane interfaces, in order to compute the magnitude q and the
projection qz of the wave vector, refraction has to be taken into account. We neglect the small
optical anisotropy of our samples. With n (resp. n’) the index of refraction of the index
matching bath (resp. the sample), we get the following expressions for q and qz :
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with cos i = cos 0 cos 03C8, cos f = cos ( 0 - 0 ) cos Q ; 1 ’ and f’ are related to i and f by the
Snell-Descartes’ law ; E is + 1 for 0 outside [7T /2, 7T /2 + cp] and - 1 otherwise. The

wavelength in vacuo of the incident light is À (krypton laser À = 647.1 nm).
From equation (16) it is clear that the orientation for qz = 0 corresponds to 0 = ~/2

(i = f ). The choice of this orientation is not sufficient to ensure that one observes the
undulation mode : concentration fluctuations are not coupled to it (Sect. 3.1) and light
scattering selection rules are such that layer displacement fluctuations are not visible when
f z i . ql + i z f. ql is equal to zero (Eq. (10)). To observe the undulation mode one thus has
to choose 03C8 # 0 and polarizer and analyzer at right angles.

4.2 SAMPLE PREPARATION. - We studied a series of samples corresponding to quaternary
water/sodium dodecylsulphatelpentanolldodecane systems. The phase diagram of this system
at constant temperature (21 °C) is known in detail [34] and high resolution X-ray [14] and
mechanical [13] techniques have been used to measure quantities related to the elastic

constants B and K. A short report of preliminary results on B has been given in a previous
letter [26]. Starting with a concentrated sample (no dodecane) in the lamellar phase it is

possible to swell the membranes with a mixture of dodecane and pentanol. The bilayers are
19 Â thick and can be swollen continuously from a repeating distance d of 35 Â to 400 Â (for
a given water over surfactant mass ratio of 1.55). The samples once prepared are put in
rectangular glass capillaries (100 03BCm thick, 1 mm wide and 30 mm long) which are then
sealed. A good homeotropic orientation is achieved using a thermal treatment : the samples
are heated up to the lamellar-isotropic phase transition then slowly cooled down to room
temperature (cooling rate about 0.1 °C min-1).

5. Results.

Experiments have been performed for three values of the angle 03C8 : 03C8 = 0°, 03C8 = 25° and
Q = 70°. At Q = 0° and when qz = 0, concentration fluctuations alone can be detected
(Eq. (10)). The only mode that could be seen in this case is the membrane peristaltic mode.
As discussed previously, it is not readily observable in our experiment. Indeed, for

03C8 = 0° and qz = 0 the recorded signal is very weak, usually not monoexponential and poorly
reproducible. It originates probably in the small remaining unoriented parts of the sample
(which are not at qz = 0). Away from qz = 0, we pick up a nice, monoexponential and
polarized signal which corresponds then to the baroclinic/undulation branch. When

03C8 = 25° or Q = 70° we clearly follow the same branch for oblique q but now near
qz = 0 we get a significant monoexponential depolarized signal corresponding to the pure
undulation mode (Fig. 3).

5.1 UNDULATION MODE. - The experimental dispersion relation of the undulation mode is
obtained according to the following procedure : with Q = 25° (or Q = 70°), at a given angle cp,
polarizers being crossed, we record a relaxation frequency varying the angle 0 in the vicinity
of cp 12 : this varies the projection qz around zero at fixed modulus of the wave vector q. The
maximum relaxation frequency, which occurs at qz = 0, allows us to accurately determine the
undulation mode frequency. The sharpness of this maximum can be appreciated in figure 3.
Repeating this procedure for different angles 0 (i.e. different values of q), we determine the
dispersion curve Wu as a function of q. The angles 0 lie in the range 10°-90°. Figure 5 shows
typical data for two samples at different dilutions (d = 113 Â and d = 344 Â). As expected
from the theory (Eq. (13b)) we get Wu proportional to the square of q. The proportionality
constant Du is the ratio of the smectic bending modulus K to the viscosity q. The resulting
values of 1/Du (i.e. ~IK) as a function of the repeating distances d are plotted figure 6.
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Fig. 5. - Undulation mode dispersion relation at different dilutions ; d = 11.3 nm (a) and d = 34.4 nm
(b).

Fig. 6. - Inverse slope 1/Du of the undulation mode dispersion relation as a function of the smectic
repeating distance d. Filled squares : experimental data ; solid line : prediction from equation (18), with
K = 0.8 kB T.

5.2 BAROCLINIC MODE. - The experimental dispersion relation of the baroclinic mode
obtains according to one of the two following procedures : i) at IP = 0° and 0 fixed, without
analyzing the polarization of the scattered light, we record the relaxation frequency as a
function of 0, scanning the entire range 0 /2  9  0 /2 + 03C0 /2. There is no relevant signal
close to the limit 0 = ~ /2 (qz = 0 ) as explained above, nor close to the limit 0 = ~/2 + 7T /2
because of the specular reflection by the capillary of the incident light into the detector ; ii) at

Q = 25° (or Q = 70°) and 0 fixed, we again scan the entire range * /2 = *  03B8 /2 + 7r/2, the
polarizers being crossed (0 in the vicinity of 0 /2), or parallel. In this case we are able to
record a signal at any 0, but are restricted in the q,, range since its maximum value (at
0 = 0/2 + 7T /2) is now q cos tP instead of q. Note that the experimental points of figure 3
have been obtained following this second procedure. For each procedure we then vary the
angle 0 between 15° and 160°. We checked that they gave equivalent results. Figure 7 displays
representative data for the relaxation frequency (Ob of the baroclinic mode for two different
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Fig. 7. - Baroclinic mode dispersion relation at different dilutions ; d = 6.1 nm (a) and d = 23.2 nm
(b).

Fig. 8. - Inverse slope 1/Db of the baroclinic mode dispersion relation as a function of the smectic
repeating distance d. Filled squares : experimental data ; solid line : prediction from equation (21) with
K =2.4kBT.

samples (repeating distances d = 60.8 Â and d = 232 Â), as a function of the square of

ql 2 = q 2 - q2Z), far from the q, = 0 limit. In this range the dispersion relation is linear in
ql , in accordance to the theoretical prediction of equation (14b). The inverse slope
1/Db, which is the inverse of the smectic compression modulus at constant chemical potential
È, divided by the mobility IL, is plotted as a function of the repeating distance d figure 8.

6. Discussion.

In order to interpret the behaviour under dilution of the « diffusion coefficients »

Du and Db, we need to introduce a microscopic calculation for the friction parameters IL and q
and to model the d-dependence of K and B.

6.1 MICROSCOPIC MODEL FOR THE DISSIPATIVE COEFFICIENTS. - Following Brochard and
de Gennes [23], we assume that q is the pure solvent viscosity qs (dodecane ;
rls = 1.35 x 10-3 Pa.s). This is probably realistic for very dilute samples even though the case
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of concentrated ones is less obvious. As regards 1£, we first notice that it appears in both
relaxation frequencies of the membrane peristaltic and baroclinic modes (compare Eq. (13c)
and Eq. (15)) and then again refer to Brochard and de Gennes [23], who calculated 03BC for the
membrane-peristaltic mode from the solvent Poiseuille flow, to get :

with and ps (resp. pM) the mass density of the solvent (resp. the

membrane).

6.2 ELASTIC CONSTANTS. - The elastic constants K and B can be modelled using the
description of a lyotropic smectic phase as a stack of interacting membranes. The layer
bending modulus K reflects the membrane flexibility : since the smectic A phase is built from
a stack of membranes that remain essentially identical upon dilution we expect K = K /d,
where K is the membrane bending modulus. Therefore, we get the dilution dependence for
D,, :

The least square fit using equation (18) is shown in figure 6 which yields a value of
K = 0.8 kB T. On the dilution range investigated the experimental bending modulus K
decreases continuously from about 4 x 10- 13 N to 1 x 10- 13 N which is about two orders of
magnitude smaller than values commonly encountered in thermotropic smectics A

(K =- 10-11 N). Note that this is partly caused by the intrinsic large flexibility (low K) of the
membrane and partly by the dependence on d (« colloidal effect »).
The layer compression modulus É is directly related to the intermembrane interactions

(Eq. (7)). For the system we study, previous experiments [14, 15] have shown that the
relevant interactions come from the hindrance to thermally excited undulations originating in
the steric short range repulsion between membranes. These are Helfrich’s undulation forces
[8]. In the smectic case, the resulting interaction potential per unit area is [8, 11] :

With equations (7) and (19) we get :

and thus (Eqs. (17) and (20)) :

The solid line in figure 8 corresponds to a fit using equation (21) with only one adjustable
parameter, namely K (the membrane thickness 8 being fixed to 30 Â [14]). The result is

K = 2.4 kB T. The layer compression modulus B ranges from 5 x 104 Pa to 102 Pa which is
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about two to six orders of magnitude less than a typical thermotropic value. This effect comes

mainly from the large value of the repeating distance d (B oc d- 3).

7. Conclusion.

We have shown that light scattering techniques allow in principle to have an access to all the
elastic coefficients of the lyotropic smectic A free energy. This can be performed with the
selection of both the polarizations and the wave vector q. The velocity of the propagative
second sound mode at oblique q is a measure of the layer compressibility modulus at constant
concentration (B ) ; the relaxation frequency of the limiting membrane peristaltic mode
(qz = 0) gives the osmotic compressibility at constant layer spacing (x ). The baroclinic mode
at oblique q vector has a relaxation frequency proportional to the layer compressibility at
constant chemical potential (B) ; its limiting behaviour at qz = 0 (the undulation mode)
depends on the bending modulus (K). We have noted the difference between thermotropic
(one-component) smectics A and lyotropic (two-component) ones : namely, the second sound
branch contains the undulation mode in the thermotropic case whereas for lyotropic systems it
degenerates into the membrane peristaltic mode ; the baroclinic mode then leads to the
undulation mode in the limit qz = 0.

In these series of experiments we have presented results for the baroclinic/undulation
branch and checked the dispersion relation including the crossover regime. We did not
present results for the second sound/membrane peristaltic mode mainly because it is at much
higher frequencies and gives a weak signal. In principle this other branch could be observed at
small q (smaller frequencies). Another interesting development of this work would be to
measure the static light scattering intensities that are also related to the elastic constants.
The study of the baroclinic/undulation mode allows us to measure K and B for a dilute

lamellar phase along a dilution line. We have directly measured the elastic constant K and
checked that it behaves as 1/d, the membrane bending modulus being K = 0.8 kB T. This
confirms that this system is very flexible [14, 26]. Moreover, we have measured the
interactions between membranes and established the d- 3 dependence for B, coming from the
undulation forces. The magnitude of the undulation forces is a function of the bending
modulus K, therefore we can also extract its value from the B measurements : we found
K = 2.4 kB T. This is comparable (but not equal) to what we got from the undulation mode
study. This difference by a factor 3 is unimportant at the present stage of understanding of the
dissipative coefficients 1£ and q [36].
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Appendix.

We detail here the hydrodynamic properties of a two-component smectic A phase. The seven
independent hydrodynamic variables to consider are [19, 23] : total mass density p,
momentum density g, energy density as in any simple fluid ; mass density pc of a species
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(two-component system) and layer displacement u (smectic A system). The evolution in time
of these variables is described by :

The first six equations are the conservation laws, stated on a local form, for the

corresponding conserved variables. The mass flux is the momentum density ; the momentum
flux is the stress tensor U ij ; JE (Je) is the energy (particle) current density. The last equation is
not a continuity equation since u is not a conserved variable ; Ju describes the relaxation of u
towards equilibrium.
To close this set of equations, the fluxes Uij’ JE, J, and Ju must be known. The

thermodynamic and symmetry properties of the system (with the usual assumptions of local
equilibrium and monotonic increase of entropy with time) set general constraints upon the
fluxes that allow to state them more explicitly. Following the general MPP derivation [19],
care duly taken that the two extra hydrodynamic variables are not on the same footing since
p c is a conserved variable whereas u is a broken-symmetry one, we get :

(the z-direction of the coordinate axes is perpendicular to the smectic layers). In these

equations the terms with a D superscript are the dissipative contributions to the fluxes : if all
D-terms are set equal to zero the total entropy remains constant. The other terms are the so-
called reactive fluxes. As in the one-component smectic A case, there is a twofold

contribution to the reactive part of the stress tensor : the first is the pressure p ; the second
comes from the « stress vector » (D which describes the elastic response to a strain u. The

dissipative fluxes are given by the following constitutive relations :

In these equations, T stands for the absolute temperature and /I is the difference between
the chemical potentials (per unit mass) for the two species. The dissipative coefficients
describe mass diffusion (a,, a, ), heat diffusion (Kz, K, ), permeation (e) [35], viscous

dissipation (qijkf : five independent viscosities, explicitly given by Martin et al. [19]) and
cross-processes : thermodiffusion (f3 z, f3 l..)’ « thermoflexion » or coupling between heat
diffusion and layer displacement (03BE; already present in the one-component smectic A case)
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and « flexodiffusion » or coupling between mass diffusion and layer displacement ( T ; specific
to the two-component smectic A case).

After replacement of the dissipative fluxes by their expressions (Eq. (A.3)) the (linearized)
hydrodynamic equations now read :

where we have used instead of the energy density E the entropy per unit mass s. Pressure p,
temperature T, chemical potential difference il and stress vector (D are still to be expressed in
terms of mass density p, entropy s, mass fraction c and strain u, with the help of the
thermodynamic relation (up to second order) :

The notations are : layer compressibility modulus at constant entropy, mass density and
composition : B ; layer curvature modulus : K ; heat capacity at constant density and
composition, per unit volume of an unstrained smectic : cv ; crossed coefficients :

CS, Cp and Cc (this last one specific to the two-component smectic A case). With the
definitions :

and

we have for small departures from equilibrium :
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The general solution of the complete set of hydrodynamic equations (Eqs. (A.4) and (A.6))
will not be attempted here. We shall rather restrict our analysis to the case where the
compressibility and the heat capacity are small : then mass density and entropy per unit mass
remain very close to equilibrium and 8p = 0 and 8s = 0. Within the scope of this

approximation, pressure, a component of the momentum and temperature are not indepen-
dent hydrodynamic variables. They are on the contrary constrained by the hydrodynamic
equations themselves. To proceed further, we resort to Fourier transform in space. With
coordinate axes such that the x-z plane contains both the wave vector q and the normal to the
layers (qy = 0 ) we get the constraints :

and the dynamical equations :

where we introduced the new variables :

and effective dissipative coefficients :
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The relevant hydrodynamic equations can now be written as a matrix equation :
atX = M. X, with X, the column vector (gt, 5c, u ) and M, the three-by-three matrix given
below :

The hydrodynamic mode structure follows from the properties of this matrix : its

eigenvectors are the hydrodynamic modes ; they relax towards equilibrium with frequencies
given by its eigenvalues. At the leading order in a wave vector expansion, a real eigenvalue
(i.e. a pure imaginary frequency) corresponds to a diffusive mode and a pure imaginary one to
a propagative mode. The hydrodynamic equations given in the main text (Eq. (11)) result
from a simplification of the matrix coefficients :

77t(q) = q (viscosity tensor 71ijkî reduced to its isotropic limit)
qx2 .

03B1 (q) = a~ 2 (no particle diffusion, heat diffusion or thermodiffusion along the z

q
direction) 
F(q) and 1 (q ) equal to zero. (Permeation ; coupling between heat or particle diffusion with

layer displacement neglected),
with the notation X - 1 = p (au /ac ). These simplifications do not affect qualitatively the mode
structure discussed in the text. The limit qx = 0 is quantitatively modified, however : instead
of being a zero frequency mode at qx = 0, as follows from equation (14b), the baroclinic mode
(which becomes in this limit the permeation mode) is at the (expected small) frequency
Ù) perm. : v

Similarly, the limiting frequencies of the second sound are actually finite. One of them is
associated to the (slow) mode that corresponds to the diffusion of one species normally to the
layers (Sc =1= 0, gt = 0, u = 0):

The second one is the (high) relaxation frequency of a transverse shear wave.
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