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Résumé. 2014 Une théorie par la fonctionnelle de la densité de courant est développée pour des
supraconducteurs dans un champ magnétique. Le formalisme conduit à un ensemble d’équations
de Kohn-Sham auto-cohérentes à résoudre, dans une seconde étape auto-cohérente, avec les

équations de Maxwell pour le potentiel vecteur.

Abstract. 2014 A current-density functional theory for superconductors in a magnetic field is

developed. The formalism results in a set of self-consistent Kohn-Sham equations to be solved, in
a second self-consistency loop, with Maxwell’s equations for the vector potential.
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Préface. - It is an exceptional pleasure for me to contribute, jointly with my young colleagues, to this
scientific celebration of Jacques Friedel. Although we live on different continents and come from rather
different backgrounds, Jacques has been one of my closest personal and scientific friends since the early
1950’s.
We have witnessed each other’s children grow up and establish families of their own. For several years

1 watched his sons’ slow progress, and sometimes lack of it, on a recalcitrant, heavy, old boat which had
changed the garage in Palteau into a dry-dock. Jacques’ first student, André Blandin, became my close
friend and frequent visitor ; his second, Emile Daniel, came to work with me after his thesis. For many
years, and still continuing, we have had a regular shuttle service between our groups in Califomia and in
Paris. Over this period, spending a few months, or at least, weeks in Paris every few years has grown for
me into an almost irresistible need ; and visiting Jacques and Mary in Paris and Palteau, as well as our
younger French friends and colleagues in and near Paris, has become for me something like a

homecoming.
Almost all of Jacques’ scientific work has been of the greatest interest to me and stimulated much of

my own thinking. The so-called Kohn phonon anomaly is essentially the Fourier transform of the
famous Friedel oscillations in coordinate space. We have shared strong interests in impurities in metals,
in properties of alloys, in many body effects in metals, in surfaces, and even in science-planning (of
which Jacques has done too much !).

Selecting a suitable subject for this paper was very easy since there are few areas in solid state physics
which have not been touched by Jacques’ insights. In the fall of 1987, when visiting Santa Barbara, he
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proposed some viewpoints concerning the then very new high temperature superconductors, while we
began to ask ourselves if density functional theory might have something to offer. The present note is on
this latter subject.

Je dédie cette petite oeuvre à Jacques et à notre amitié.

1. Introduction.

Traditional superconductivity of pure metals is well described as a phenomenon of

homogeneous media. Due to the relatively large coherence length (102-104 Â), in-

homogeneities on the scale of the lattice constant can be neglected. This statement holds true
for both the weak coupling limit (BCS theory [1]) and for the strong coupling case (Eliashberg
equations [2]). In the new high- Tc materials, the situation is different. Experimental
coherence lengths of the order of 10 Â suggest that inhomogeneities on the scale of the lattice
constant have to be taken into account in a proper description of these materials.

Density functional theory (DFT), by its very construction, is a theory of inhomogeneous
systems [3]. The basic idea of DFT in its original form is to describe the properties of a normal
system in terms of its ground state density [4], or, at finite temperature, in terms of its
equilibrium density [5]. The grand canonical potential of such a system is defined as

where 8 =1 / e denotes the inverse temperature (the Boltzmann constant is set equal to 1),
and Îlv - J.L is the grand canonical Hamiltonian

with

and

(Atomic units are used throughout). v (r) is a local external potential and 1£ denotes the
chemical potential of the system. It was shown by Mermin [5] that, for given /3, J.L, and

v(r), there exists a functional of the electron density n (r),

whose minimum, attained for the correct equilibrium density, is equal to the correct grand
potential. Here F [n (r) ; 6 ] is a universal functional of n (r). Based on this variational
principle Kohn and Sham [6] (KS) derived a set of temperature dependent single-particle self-
consistent equations, having the same structure as the temperature-dependent Hartree
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equations, but including many-body effects through an exchange-correlation potential,
vxc (r).

Originally developed for normal systems with a local external potential, DFT has since
been generalized in many ways. If, e.g., a magnetic field, B (r), is present, its (Zeeman)
coupling to the electron spin can be incorporated by adding the term

to the basic Hamiltonian fIv - }.t. Here the operator

represents the spin magnetization, uo is the Bohr magneton, and cr,,,,p denotes the vector of
Pauli spin matrices. In this case the basic functional F (cf. Eq. (6)) depends on both the
density, n (r), and the spin magnetization, m (r). If orbital magnetic effects are taken into
account, F depends, in addition, on the paramagnetic current density jp(r) [7, 8].
The most recent development, stimulated by the discovery of the high-T, materials, has

been the DF formulation for superconductors [9]. In this generalization of DFT, the basic
functional F depends on a complex valued « anomalous » density I(r), in addition to the
normal density, n(r). à(r) is proportional to the order parameter of the Ginzburg-Landau
theory [10]. The DFT of superconductors will be briefly summarized in section 2. The
purpose of the present note is to incorporate orbital magnetic effects, such as the Meissner
effect, into the formalism. The central result will be a set of KS-like equations, generalizing
the Bogoliubov-de Gennes equations [11] to incorporate exchange and correlation effects.
The derivation of these equations and a detailed proof of their gauge invariance will be
presented in section 3.

2. Density functional formalism for superconductors without magnetic field.

Coherence phenomena such as superfluidity and superconductivity are characterized by the
presence of « off-diagonal long-range order » (ODLRO) [12, 13]. For superconductors,
ODLRO manifests itself in the two-particle density matrix as an exact decoupling of the form

(the brackets denote thermal averaging). The « anomalous density »

appearing in equation (8) can be identified [14, 11], in the appropriate limits, with the order
parameter of the Ginzburg-Landau theory [10].

In exactly the same fashion as the order parameter, m(r), of a magnetic system is coupled
to an external magnetic field, B (r) (cf. Eq. (7)), the order parameter à (r) of superconductors
is coupled to an external pair potential, D (r), leading to the Hamiltonian
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More generally, ODLRO holds for the full two-particle density matrix of four different
arguments in the form [13]

where

One might therefore consider the nonlocal anomalous density,

coupled to an external pair field D (r, r’ ) :

D (r, r’ ) can be physically realized as a pair field induced by the proximity of an adjacent
« given » superconductor [9]. Alternatively the pair field D may be introduced as a

mathematical device which is eventually allowed to go to zero. (This scheme is analogous to
introducing a weak magnetic field to fix the direction of magnetization of a spontaneous
ferromagnet. The same trick is employed in the formal derivation of spin DFT for systems not
subject to an external magnetic field).

Logically a DF formalism can be developed either for the local order parameter
L1 (r) or for the nonlocal anomalous density L1 (r, r’ ) (1). Although the latter might have more
physical significance, we shall concentrate here, for simplicity, on the local gap function
L1 (r). As long as we deal only with Coulomb-induced superconductivity, the total Hamiltonian
takes the form

where Îlv - J.L is given by equation (2). It was demonstrated long ago that the Coulomb

repulsion alone can give rise to superconductivity [16] and there is a widely held opinion that
in the new high-Te materials the principal pairing mechanism is of purely electronic origin.
The formal incorporation of phonon-induced pairing terms in (14) is possible [9], but raises
new issues connected with retardation effects and with the universality of the functional F. In
the present paper we limit ourselves to purely electronic pairing.

Following Mermin’s argument [5], a Hohenberg-Kohn (HK) theorem based on the

Hamiltonian Îlv - J.L, D is easily established. The theorem states that, at any given temperature
0, the densities n(r) and à (r) uniquely determine the external potentials v (r) - g,
D (r ), so that the grand canonical density operator,

(1) Similarly, DFT of normal systems can be formulated either for the density, n (r), or for the density
matrix y (r, r’ ) [15].
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and hence the grand potential,

become functionals of n(r) and L1(r). The latter can be written as

where F [n, à ; /3 ] is a universal functional of the densities n (r), à (r), i.e. , F does not depend
on the external potentials (v (r) - 1£ ), D (r) of the particular system considered. The
functional F is defined as

where T [n, à ], U [n, A ] and S [n, à 1 are, respectively, the functionals for the kinetic energy,
the Coulomb energy, and the entropy at temperature 0 = 1//3. (The explicit dependence of
the functionals on (3 is suppressed for brevity).

Consider now a particular system characterized by the external potentials (vO(r) - go),
Do (r ). Then, due to the Gibbs principle [5], f2,0 - go, Do [n, à ] is minimized by the equilibrium
densities no (r), Ao (r) of the system, with ilvo - J.Lo, Do [no, ao 1 being the correct equilibrium
value of the thermodynamical potential.
A particularly important application of this variational principle is the derivation of a set of

KS-like single-particle equations. To this end we define an exchange-correlation free-energy
functional F,,, [n (r), à (r) ] by the equality

where

,ô,, T, [n, a ], and S, [n, à ] denote, respectively, the density operator, the kinetic energy, and
the entropy of a noninteracting system subject to potentials vs(r) and D,(r), chosen such that
its densities n (r ) and à (r) are equal to those of the interacting system. The grand canonical
Hamiltonian of this system,

is diagonalized by the Bogoliubov [17, 18]-Valatin [19] transformation
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where the functions Um (r) and v,,, (r) satisfy the eigenvalue equations

The operators y:’ t and y:’! create quasiparticle excitations above the superconducting
ground state. They obey the usual Fermi anticommutation relations, so that

Using equations (22) and (24), the densities n(r) and d(r) are easily expressed in terms of the
functions um(r) and vm(r) :

To determine the effective potentials us (r) and Ds(r), we compute Fs[n, à ] in terms of the
um (r), vm (r) and Sm’ substitute the result in (19) and then minimize the thermodynamic
potential (17) with respect to n (r) and 4 (r). This yields

where

Since the effective potentials us (r ) and D, (r) depend on the densities n (r ), A (r), the whole
cycle of equations (23), (25)-(30) has to be solved in selfconsistent fashion. This set of KS-like
equations is structurally similar to the Bogoliubov-de Gennes equations [11]. However, in
contrast to the latter, they contain (in principle exactly) all normal and superconducting
many-body effects through the exchange-correlation potentials v,,c(r) and Dxc (r).

3. Current-density functional theory of superconductors in a magnetic field.

In this section we shall incorporate the coupling of electronic currents to a given vector
potential A (r ). This is achieved, as usual, by substituting



2607

for the kinetic energy T in equations (2) and (14). This leads, after some trivial manipulations,
to the total Hamiltonian

where jp denotes the paramagnetic current density operator

The physical current density j (r) (which satifies the continuity equation) is related to the

paramagnetic current density by the equality

Following the analysis of section 2, a HK theorem for the Hamiltonian fIv - IL, D, A is easily
established : the densities n (r), 4 (r ) and jp (r ) = (jp (r)) uniquely determine the potentials
u (r ) - IL, D (r), A (r ), so that the grand canonical potential,

becomes a functional of n(r), L1(r), and jp(r). As before, this functional can be split into a
universal part, F, which is defined as in equation (18) (with all functional dependences on
n (r ) and 4 (r ) being extended to include jp(r», and a part that depends on the given
potentials :

Once again, the absolute minimum of this functional, attained for the correct equilibrium
densities, equals the correct grand potential at temperature 0.

In order to derive a set of KS-like equations it is assumed (2) that the interacting densities
n(r), à(r), jp(r) can be obtained as equilibrium densities of some non-interacting system
characterized by the Hamiltonian

(2) This assumption corresponds to the usual assumption of « non-interacting v-representability » in
ordinary KS theory.
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By virtue of the HK theorem, the potentials us (r), Ds(r), As(r) are unique and can be
determined from the variational principle. The result is

where

and

The exchange-correlation functional, F xc’ is defined as in equations (19), (20), with all

functional dependences on n (r ) and à(r) being extended to include jp (r ) .
It should be noted that, in equation (37), the quadratic term A2(r)12C2, arising from

cancels with the last term in us(r), equation (40). Therefore

fIs depends only linearly on the exchange-correlation potential Axe (r).
The Kohn-Sham/Bogoliubov-de Gennes equations then take the form

and the densities, expressed in terms of the um (r), vm (r), are given by

and
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Equations (38)-(49) are the central result of our analysis. Once a selfconsistent solution of
these equations is achieved the thermodynamical potential (36) is easily calculated. We find

where n: = - B log tr {e - 3PlIs} is the grand potential of the non-interacting (KS) system. We
now turn to the proof of gauge invariance of the formalism. We consider the gauge
transformation

where A (r) is an arbitrary function of space coordinates. To ensure gauge invariance of the
basic Hamiltonian A,, - », D, A, the extemal pair potential must transform as

As a consequence of (53), one finds for the densities

Now let (u, (r) - IL ), D, (r), A, (r) be the set of single-particle potentials leading to KS
solutions Um (r), vm (r ) that reproduce the interacting densities n (r), à (r), jp (r ) via equations
(47)-(49). If n’ (r ), à’(r), j’(r) are the gauge transformed (interacting) densities then, by
virtue of the HK theorem, there exists one and only one set of potentials, (us - IL’),
D§, As reproducing the densities n’, a’ , and j’

Obviously,

do the job : One readily verifies that the solutions u;" (r), v;" (r) resulting from the KS
equations with the potentials (58)-(60) are given by

which lead to densities n’ (r), à’(r), j’(r) satisfying equations (55)-(57). Hence the potentials
(58)-(60) constitute the (unique) set of gauge transformed KS potentials leading to the gauge
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transformed densities. Equations (58)-(60) together with (53) demonstrate that HS (Eq. (37))
is manifestly gauge invariant.
We conclude this section with an investigation of how the functional F,,c and the resulting

exchange-correlation potentials behave under the gauge transformation (51)-(54). To this end
we first consider the functionals F [n, 4, j p ] and FS [n, d, j p ] defined in equations (18) and
(20). Since fIv - IL, D, A is manifestly gauge invariant the entropic part of F [n, A, j p ] must be
gauge invariant as well. Furthermore, the Coulomb interaction is gauge invariant,

while the kinetic energy transforms as

All this taken together leads to

As demonstrated above, the noninteracting Hamiltonian, HS, is manifestly gauge invariant.
Therefore, the non-interacting entropy SS[n, a, jp] must be so too. Furthermore, as a

consequence of (64), the noninteracting kinetic energy functional T, [n, 2l,jp] transforms in
exactly the same way as the interacting one since the noninteracting densities are, by
construction, identical with the interacting ones.
Hence,

By inserting (65) and (66) into the defining equation (19) of Fxc[n, Li, jp] one finds that the
exchange-correlation functional is gauge invariant,

or, more explicitly,

Taking the functional derivatives of this equation with respect to n (r), à * (r), and

jp (r), one readily verifies that

Of course, by inserting these equations, together with (51), (52), and (54) into the defining
equations (38)-(41) of U,, AS, and D,, one recovers the transformations (58)-(60).
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The gauge invariance of F xc has important consequences for its functional dependence on
,à (r) and j p (r) : since equation (68) holds for arbitrary functions A (r), Fxc can only depend on
à (r) 1 and on the curl of the velocity field,

i.e., the exchange-correlation functional can be written as

This implies, e.g., that a local approximation with respect to jp(r) is not possible. A local
approximation with respect to v(r) on the other hand can be constructed [8].

In an actual superconducting system placed in a given external field, AeX(r), supercurrents
are set up which act as sources for an induced field, Ain(r), resulting in a total field

A;n satisfies the Maxwell equation

where j (r) is the superconducting current of equation (34). A(r) must be treated self-

consistently with j (r) by the following procedure :

1) a trial form is used for the « given » potential, A (r), in equation (31) ;
2) the analysis described above, equations (31)-(49), is carried through, resulting, in

particular, in a corresponding trial supercurrent, j (r), by equations (34), (47), and (49) ;
3) equation (75) is now solved for A;n(r), with the boundary condition Aln(r) = 0 far from

the superconductor, resulting in an iterated A(r) by equation (74) ;
4) this process is repeated until selfconsistency is obtained ;
5) the total grand potential is obtained by adding to equation (50) the magnetic energy

where B (r ) = V x A (r ).
In the formalism presented so far, the Zeeman coupling of magnetic fields to the electron

spin has been neglected. As indicated in the introduction, such effects are easily incorporated
by adding the Hamiltonian ÊB (Eq. (7)) to the basic Hamiltonian fi, - ,, D, A. The functional
F then depends on n(r), L1(r), jp(r), and on the spin magnetization m(r) (3).
The DFT of superconductors presented here provides a unified framework to incorporate

all normal and « superfluid » many-body effects through the functional Fxc[n, 4, jpJ. Like all
DF methods it is particularly suited for dealing with spatial inhomogeneities. As emphasized
in the introduction, the new high-Tc materials are characterized by relatively small coherence
lengths. Therefore, inhomogeneities of à(r) can be expected to be important in these
materials. Also, an appropriate inclusion of normal many-body effects, as achieved by our

(3) More complicated couplings involving spin-current densities can also be included following a
prescription recently given by Vignale and Rasolt [8] for normal systems.
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formulation, is likely to be important for the high- Tc superconductors which appear to be near
a Mott-Hubbard transition.
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