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Résumé. 2014 Une théorie générale permettant d’étudier n’importe quel matériau élastique et
composite est proposée. Son application aux composites lamellaires est ensuite développée. Ces
résultats généraux sont illustrés par des exemples de nouveaux modes de vibration localisés dans
des couches fluide et solide comprises entre deux autres solides semi-infinis.

Abstract. 2014 A general theory for the study of any composite elastic media is proposed. It is then
applied to layered composites. These general results are illustrated by examples of new localized
vibrations within fluid and solid slabs sandwiched between two other semi-infinite solids.
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1. Introduction.

Following the pioneering works [1] of I. M. Lifshitz for phonons and J. Friedel for electrons
on the study of a point defect in a solid, the surface of a solid was studied as a planar defect in
an infinite solid [2]. Interfaces between two different media [3] and then superlattices [4]
started then to be considered in a similar manner. However this approach to interface
problems requires one to know first the properties of the free surface pieces of matter out of
which the composite material is built. It was shown recently [5] that the study of any
composite material can be undertaken directly from the bulk properties of each of its pieces
together with the boundary conditions at the interfaces. This interface response theory [5]
deals in a unified manner with problems formulated within discrete and continuous spaces. It
was applied to phonons, magnons, and electrons in the tight binding [6] approximation as well
as to electromagnetism and free electrons [7]. The present paper shows how this theory [5]
enables any composite elastic media to be studied, and gives new results for localized elastic
vibrations within a fluid and a solid slab sandwiched between two other semi-infinite solids.

The next section of this paper gives the general equations enabling any composite elastic
material to be studied. Section 3 illustrates this general theory by an application to layered
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composite materials. Finally, we give specific new results for localized elastic vibrations within
a fluid and a solid slab sandwiched between two other semi-infinite solids.

2. Général theory for any elastic composite material.

2.1 BULK AND FREE SURFACE EQUATIONS. - The equation of motion for the displacements
ua, a = 1, 2, 3 of a point of an infinite homogeneous 3-dimensional elastic material is

where p is the mass density, the vibrational frequency, T al3 the stress tensor

C af3 J.L JI are the elastic constants and ’Tl J.L JI the deformation tensor

Then the bulk equation of motion (2.1) can be rewritten as

Suppose now that the elastic matter is limited by a free surface whose position in the infinite
3-dimensional space is given by

Then the elastic constants are

where the Heavside step function is such that

The use in equation (2.6) of 0 [X3 - f (xl, X2)] means that the elastic medium occupies the
space x3 &#x3E; [(X1,X2).

Define with the help of equations (2.4) and (2.6) the bulk operator

and the cleavage operator
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such that

Note that after differentiation of the right hand side of equation (2.8b), one has

Define then a surface response operator A such that its elements are

where the bulk response function G is defined by

~  ~ 

Knowing the bulk response function G and the surface response operator A, one can obtain
the response function gs of the homogeneous elastic material bounded by the free surface
defined by equation (2.5) from the general equation [5]

where Ï is the identity matrix.
It is useful to use the following notation : D for the space in which the elastic matter is

defined and M for the space of its free surface. Then equation (2.13) provides [5]

where 3- (MM ) is the inverse matrix of

A useful particular value of equation (2.14) is

where Us 1 (MM) and (MM) are the inverse matrices of gs (MM ) and G (MM ),
respectively.

Let us stress that in order to calculate the elements of gs from equations (2.14) and (2.16),
one has in general to discretize the surface space M, in order to calculate the inverse matrices
defined above.

2.2 THE GENERAL EQUATIONS FOR A COMPOSITE MATERIAL. - Let us now consider any
composite material contained in its space of definition D and formed out of N different

homogeneous pieces situated in their spaces Di. Each piece is bounded by an interface
Ml, adjacent in general to j (1, j , J) other pieces through subinterface domains

Mij. The ensemble of all these interface spaces Mi will be called the interface space M of the
composite material.



2566

Considering first each piece with its free surface, one can calculate from equation (2.16) its

Then the corresponding g-1 (MM ) for the composite material is obtained [5] in the following
manner

All the boundary conditions at the interfaces are satisfied through these equations (2.18).
By taking a discrete number of points in the total interface space, one calculates then the

inverse g (MM ) of g-1 1 (MM). Let us define here G (DD ) as a block diagonal reference
response function constructed out ot the elements of the bulk response functions

G(D,D,).
All the elements of the response function g of the composite material can be obtained [5]

from

The new interface states can be calculated from

and the total variation of the density of states dN (lù 2) between the composite material and
the reference one was shown [5] to be

where the phase shift ’TJ ( úJ 2) is given by

For perturbation defects, the equation (2.21) reduces to that first proposed in 1952 by
Lifshitz for phonons around point defects and by Friedel [1] for free electrons around

impurities in metals and used by him to derive the well known Friedel sum rule. The results
(2.18-2.22) in slightly different forms were obtained also, within the Surface Green’s Function
Matching Theory [8] for materials with one, two and two periodic interfaces. The

generalization to any composite material was achieved afterwards within the Interface

Response Theory [5].
Let us stress finally that if U(D)) represents an eigenvector of the reference system,

equation (2.19) enables one to calculate the eigenvectors 1 u (D ) of the composite material
[9]
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In particular if U(D)) represents a bulk wave launched in one homogeneous piece of the
composite material, equation (2.23) enables to calculate all the waves reflected and
transmitted by the interfaces.

Rather than expanding more on these general results, let us illustrate them by a few
applications to layered composite elastic materials.

3. Layered composite materials.

Any layered composite material can be built out of semi-infinite and slab pieces. We will
therefore first show here how to obtain from equation (2.17) the corresponding g;- 1 (Mi Mi )
for a semi-infinite solid and then for a slab. Then we will indicate how these results can be also
used for viscous and non viscous fluids. Finally we will describe how to use these results for
any layered composite.

In all what follows we assume the interfaces perpendicular to the X3 axis. Then the function
f (xl, X2) vanishes (see Eq. (2.5)). Taking advantage of the infinitesimal translational
invariance of this layered composite in directions parallel to the interfaces, one can Fourier

analyze all operators, and in particular the response functions g and G, according to

where

and

il and i2 being unit vectors in the 1- and 2-directions, respectively. Using equations (2.8a) and
(2.12), one finds that the Fourier coefficient Gal3 (lq 1 X3 x3 ) of the bulk response function
G is the solution of the following system of ordinary differential equations

Let us now choose an isotropic elastic medium for which the bulk response function
G can be calculated in closed form.

3.1 BULK RESPONSE FUNCTION FOR AN ISOTROPIC ELASTIC SOLID. - An isotropic elastic
medium is a medium whose properties are isotropic in all directions of space. For such a
medium

with
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The square of the longitudinal and shear plane wave velocities are respectively

Such a material is also isotropic within the (Xl, X2) plane. It is possible to choose in

equations (3.2) and (3.4) k2 = 0. The results obtained for G(k11 x3 x3 ) can be used for any
other direction of k¡1, after a rotation of the Xi and X2 axes such that k¡1 lies along
xl. As in this case 1 k¡, 1 = kll = kl, we will write them as function of kll rather than

kl.
Let us define also

and

Another interesting property due to the isotropy in the (xl, x2) plane is the decoupling of
the transverse vibrations polarized along x2 from the sagittal vibrations polarized in the
(x1, x3 ) plane. This decoupling will remain for all layered composites and it is possible to
study separately the X2 polarized transverse vibrations and the sagittal ones in such

composites.
The elements of

Let us remark that a t = (klr- úJ2/cf)1I2 is real for úJ :ctkll and that we choose

a t = - i ( cv 2/ cf - kir )112 for úJ :&#x3E; Ct kll. The negative sign in this last result corresponds in the
response functions to outgoing waves at x3 = ± 00. The same consideration applies to

al.
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3.2 ONE SEMI-INFINITE SOLID. - Let us consider now a semi-infinite solid such that

x3 r 0. For the isotropic solid described above and for kp - *Ikll , the elements of the cleavage
operator defined by equation (2.10) become

With the help of equations (2.11), (2.15), (2.16) and (3.12) one obtains

Let us note that the gs 1 (00 ) for the same elastic medium but such that X3 -- 0 has the same
expression (3.14) but with a change of sign in the off-diagonal elements coupling the
xi and x3 polarisations.
Note also that

from which, with the help of equation (2.20) one obtains the well known Rayleigh wave
dispersion relation.
With the help of equation (2.14), one also recovers [10] the response function

Us of the semi-infinite solid.

3.3 A FREE SURFACE SOLID SLAB. - Let us now consider an isotropic elastic slab such that

The interface space M is now formed out of these two surfaces X3 = ± a. The cleavage
operator has contributions proportional to a (X3 + a ) and to 6 (x3 - a ) ; the coefficients of the
first one are equal to those given by equation (3.13), the signs of the coefficients of the second
contribution are just changed. As above, one can calculate the corresponding Us (MM).
Since the transverse vibrations polarized along X2 decouple from the sagittal ones, it is
convenient to derive their contribution to this gs 1 (MM ) separately namely
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The calculation of the sagittal contribution to gs 1 (MM) can be obtained more easily, with
the help of the reflection symmetry through the middle of the slab. This decouples the
corresponding 4 x 4 matrix in two (2 x 2) matrices: g-- ’(MM) for the symmetrical
coordinates

and gsÂs for the antisymmetrical coordinates

respectively. Their expressions are

where

and

where

The above expressions are particularly useful for composites keeping this reflexion

symmetry through the middle of a central slab. In general, however, we will need the
(4 x 4 ) expression of the slab g s 1 (MM ) for the normal coordinates {I- a, Xl)’ 1- a, X3),
1 a, x 1 &#x3E; , 1 a, X3) }. This expression is easily obtained from equation (3.18) to be
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where

3.4 THE SPECIAL CASE OF FLUIDS. - It was shown before [11] that the motion of a fluid
governed by the linearized Navier-Stokes equation can be studied with the help of the
equations that describe the motion of a solid providing that

and

where co is the longitudinal speed of sound in the fluid, po its density, and g and

1£ ’ are the coefficients of shear and dilatation viscosity.
A non-viscous fluid can also be studied from the above equations, by taking the limit

ct - 0 in them.

3.5 ANY LAYERED ELASTIC COMPOSITE. - We have now all the ingredients necessary for the
study of the elastic properties of any layered composite with fluid and solid parts. Once the
s ’(Mi Mi ) for each different part is determined, then the g- 1 (MM) of the composite is
obtained by linear superposition of these Js ’(Mi Mi), as specified by equations (2.18). Then
the main basic properties of the composite can be obtained with the help of equations (2.19)-
(2.23). Rather than expanding these general results, let us illustrate them by an application to
the vibrations of a fluid and a solid slab sandwiched between two semi-infinite solids.

4. A few applications.

4.1 THE FLUID SANDWICH VIBRATIONS. - Let us consider a non-viscous fluid slab of

thickness 2a sandwiched between two identical semi-infinite solids. The application of the
theory to this composite easily provides closed form expressions for the sandwich vibrations
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localized within the fluid slab. Note first that there are no transverse polarized modes in the
fluid slab.
The expression giving the symmetrical sagittal sandwich modes was found to be

and those for the antisymmetrical sagittal ones

where the p o and p are the mass densities of the fluid and of the solid respectively ;
« 1 and « t are the outgoing at infinity penetration coefficients of the solid given by
equations (3.8)-(3.9) and ao is the equivalent of a for the longitudinal wave in the liquid.
Remark that in the limit a - oo , coth ao a and th a 0 a --+ 1, both equations (4.1) and (4.2)

reduce to the expression for the localized vibrations at a planar fluid-solid interface [12].
Figure 1 represents the first symmetrical and anti-symmetrical modes localized within the

fluid slab. Defining the speed of these modes by c, we represented clct = f (kp a) for the
parameters characteristic of an acoustic Perot-Fabry interferometer [13]. In connexion with
this experiment, using equations (2.23) we also calculated the reflected and transmitted waves
due to an acoustic wave launched in the solid. These results are given in the appendix.

Fig. 1. - Localized waves in a thin fluid slab of thickness 2 a sandwiched between two identical semi-

infinite solids. The figure displays the ratio of the speed of propagation c of these waves to the transverse
speed of sound c, in the solid as a function of akl. The parameters used in this calculation are those of an
acoustic interferometer, namely : p o = 1010 kglm 3, , co = 1 900 mis for the liquid (N2H4, H20) and

p = 2 200 kg/m 3, Ct = 3 750 m/s and cl = 5 900 m/s for the solid (Si02).

4.2 THE SOLID SANDWICH VIBRATIONS. - Let us now consider a solid slab of thickness 2a
sandwiched between two different semi-infinite solids. Using the results (3.14), (3.19) and
(2.18), one obtains a (4 x 4 ) matrix expression for the sagital part of the g-1 (MM ) associated
with this composite and using equations (3.17), (3.14) and (2.18) one obtains a (2 x 2) matrix
for the transverse part. Then equation (2.20) enables us to calculate the localized vibrations
within the 5folid slab. Such localized modes were studied before with another method but only
for symmetrical sandwiches [14-15].
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Let us label the two semi-infinite solids by the subscripts 1 and 2 and keep for the solid slab
the same notation without subscript as in section 3.3. The closed form expression giving the
localized transverse modes was easily found to be

Figure 2 represents the first of the infinity of modes localized within a slab of W sandwiched
between Ni and Al. The input parameters are given in the table I. The speed c of these
localized modes lies in between the transverse speeds of sound of Al and W. Note that these
localized modes exist only when the material sandwiched between the two others has a
transverse speed of sound ct such that Ct  Cll  ct2. Otherwise one obtains only resonant
modes, also called leaky waves [12].

Fig. 2. - Speed c of transverse localized waves in a Ni-W-Al sandwich.

Table 1. - Input values for the calculation of the velocities given in figures 2, 3 and 4.

The sagittal modes localized within the sandwich are the solutions of the following equation
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where the parameters without index are given by equations (3.20) and for i = 1 and 2

In order to discuss the different possible localized sagittal modes in such a sandwich, let us
distinguish four cases depending on the respective values of the transverse speeds of sound of
the three different materials and on the existence or non-existence of a localized Stoneley
wave having velocity c, at a single interface between the central material and one of the
others.

An infinity of localized sandwich modes exist. Their speed is ct. The variation of the speed
c as a function of 2 akll of the first of these modes is given in figure 3 for the Ni-W-Al
sandwich. When 2 akll --&#x3E; oo, the velocity of this sandwich mode goes to the velocity of the
Stoneley wave existing at the single W-Al interface. The other modes (not shown in the
figure) come out of the bulk band of Al for higher values of 2 akll and when 2 akll --+ oo, their

velocity tends asymptotically to the velocity ct of W.

ii) Ct  ctl  ct2 with no existence of a Stoneley wave
One expects similar results as above, apart that all localized mode velocities c will tend to

ct for 2 akll --+ oo.

Only one localized mode exists below ct1 and its velocity c - cs for 2 akll --+ oo. The velocity
of such a mode is represented in figure 4 for a W-Al-Ni sandwich.

iv) ctl  Ct  ct2 and ctl  ct2  ct

There is no truly localized mode within the sandwich.

5. Discussion.

Let us first mention here two other problems which were solved recently with the same
formalism.

(i) Closed form expressions for bulk and surface transverse elastic waves in superlattices
made of 3 and 4 different layers were obtained [16].

(ii) Analytic expressions for the elastic energy of interaction of a point defect with a planar
defect, a plane of dilatation and half a plane of dilatation in a plane defect have been
calculated [17]. The implications for segregation of impurities near high angle grain
boundaries are also discussed in this work.

Many other problems related in particular to the static and vibrational properties of layered
composites can be studied with the present formalism. Let us just mention here those related
with the seismic propagation of elastic waves [18], the non-destructive testing of layered
multimaterials, their thermodynamic properties, etc.



2575

Fig. 3.

Fig. 4.

Fig. 3. - Speed c of the first sagittal localized wave in a Ni-W-Al sandwich.

Fig. 4. - Speed c of the sagittal localized wave in a W-Al-Ni sandwich.

Explicit expressions of the elastic response functions were obtained only for a few layered
systems : free surfaces and a planar interface between two static solids [19] with conventional
solutions of the differential equations. The formalism described in this paper enables one to
consider more complex layered composites mostly because the double boundary conditions
(continuity of stresses and displacements at each interface) are combined (see Eqs. (2.18))
into a single boundary condition.

Let us finally stress that the theory outlined in this paper and illustrated by two simple
examples of layered composites applies to any elastic composite without any restriction as to
the number and the form of the constituents. Of course in such cases and especially if one
deals with non-isotropic constituents, the whole theoretical procedure described in Section 2
becomes numerical and should be compared with the finite element method. Advantages
were [20] found in the use of the interface response method, mostly because many physical
properties require only a calculation within the interface space and because a knowledge of
the response function for a given composite avoids having to redo the whole numerical
procedure each time one seeks the response of a system (like the S.O.N.A.R. for example) to
another excitation.
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Appendix

The fluid sandwich : localized, reflected and transmitted waves.

Consider a sagittal bulk propagating wave coming from X3 = + oo . The corresponding
eigenvector has as components

where

Using this incident wave as 1 U(D» in equation (2.23), one obtains from the second and
third term of this equation the reflected and transmitted waves. Let us recall that the

a i and a, to be used in the response function appearing in this equation were defined as

and provide then the reflected and transmitted waves corresponding to the incident wave
(Al). In what follows we give the final expressions of these waves, where the ci, and

cit take the values given by equation (A2). Let us define also

and

and
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With these notations, the reflected (in the solid at X3 «-- a) wave has the following components

The wave transmitted in the fluid slab (- a « X3  a ) is

The wave transmitted in the solid at X3 «-- - a was found to be

The above results (A.7)-(A.9) also contain the waves corresponding to the localized

symmetrical and antisymmetrical modes whose dispersion relation is given by Dl = 0
(Eq. (4.1)) and D2 = 0 (Eq. (4.2)) respectively. The unnormalized wave corresponding to the
symmetrical modes (Dl = 0) and the antisymmetrical ones (D2 = 0) is obtained by
multiplication of the expressions (A.7)-(A.9) by Dl and D2, respectively, and taking
respectively the limit Dl --&#x3E; 0. Note that B is in this case a common normalization factor and

that for these modes localized within the fluid slab,
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