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Résumé. 2014 La section efficace de diffusion diffuse élastique de neutrons par un monocristal
TiN0,82 a été mesurée à l’équilibre thermodynamique à 700, 800 et 900 °C. L’intensité diffuse est
maximale aux points de type (1/2 1/2 1/2) du réseau réciproque. Les lacunes d’azote se mettent
préférentiellement en positions de 3es voisins sur le sous-réseau métalloïde c.f.c. Des énergies
effectives de mise en ordre de paires d’atomes ont été calculées, par l’approximation de champ
moyen, par simulations de Monte-Carlo et par la Méthode de Variation d’Amas ; les deux
dernières techniques ont donné des énergies très proches, indépendantes de la température :
V1 ~ 82 et V2 ~ 62 meV pour les premiers et seconds voisins azote respectivement ; V3 et les
énergies d’interaction plus lointaines sont très faibles. Les atomes de titane s’éloignent, et les
atomes d’azote se rapprochent de leurs lacunes premières voisines, de 0,042 et 0,024 Å
respectivement.

Abstract. - The elastic diffuse neutron scattering of a TiN0.82 single crystal has been measured in
thermodynamic equilibrium at 700, 800 and 900 °C. The diffuse intensity is maximum at the (1/2
1/2 1/2) type reciprocal lattice positions. Nitrogen vacancies are found to situate preferentially as
third neighbours on the metalloid f.c.c. sublattice. Pair interaction ordering energies were
calculated by mean-field approximation, Monte-Carlo simulations, and Cluster Variation

Method ; the last two methods give very similar temperature independent pair energies :
V1 ~ 82 and V2 ~ 62 meV for first and second nitrogen neighbours respectively ; V3 and further
interaction energies are very small. Titanium atoms are found to relax away, and nitrogen atoms
to relax toward their first neighbour vacancies, by respectively 0.042 and 0.024 A.
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1. Introduction.

Titanium mononitride TiNx is a metallic compound with the f.c.c. NaCI type crystal structure.
It shows extreme hardness, a high melting point (up to 2 950 °C for x = 1) and superconduc-
tivity (T, = 5.49 K for stoichiometric TiN) [1]. TiN has important applications as thin films
and coatings for mechanical wear resistance of cutting tools.
TiNx displays large departures from the stoichiometric composition, and can be found with

a nitrogen concentration x between 0.5 and 1.15. Non-stoichiometry is accommodated by
nitrogen vacancies for 0.5  x  1 and by titanium vacancies for x:&#x3E; 1 [1]. It has been shown
that these vacancies affect thermodynamic, mechanical, electrical, magnetic and supercon-
ducting properties. For example, (i) the superconducting critical temperature decreases with
vacancy concentration, (ii) the lattice parameter afcc increases with nitrogen concentration for
x «-- 1, attains a maximum value 4.24 Â for stoichiometric TiN, and then decreases for
x &#x3E; 1 [1].

In transition metal carbides and nitrides, vacancies are not randomly distributed, but are
organized in a long or short-range order. Furthermore, vacancies induce also small local
distortions of the lattice. Experimentally, the short-range order (SRO) and the local
distortions give rise to a diffuse intensity in the electron, X-ray or neutron scattering spectra,
which has been observed [2]. In particular, Billingham et al. [3] have seen electron diffuse
scattering surfaces in TiNx for x between 0.5 and 0.75 ; this observation, later extended to
0.65 =s= x  0.88 by Nagakura and Kusunoki [4], has been tentatively explained by a short-
range order model [5]. However, (i) electron scattering does not allow quantitative
measurements of the diffuse intensity, (ii) X-ray measurements in NbCo.72 [6] and elementary
considerations on scattering amplitudes ( 1 fmetal 1 &#x3E; 1 fN 1 , 1 fc 1 ) show that X-ray and electron
diffuse intensities are dominated by metallic atom displacements. Neutrons are therefore
necessary to study the short-range order of metalloid atoms in transition metal carbides and
nitrides.
At low nitrogen content (0. 5 -- x -- 0.61 ), TiNx annealed below 800 °C shows a

,6’-Ti2N superstructure of space group I41/amd, where nitrogen vacancies are long-range
ordered (LRO). This superstructure is characterized by (1 1/2 0) diffraction spots in the
reciprocal lattice [2, 4, 7, 8]. &#x26;’-Ti2N is metastable, as at 750 °C, the following phase
transformation sequence was directly observed by neutron diffraction [9] :

Quenched

where 6 = disordered rocksalt structure TiNx, and e-Ti2N is a stable phase with the tetragonal
antirutile structure [10] (1).
A theoretical work has recently been undertaken to understand this vacancy ordering in

transition metal nitrides and carbides from their band structure. Calculations based on the

generalized perturbation method and in the coherent potential approximation were developed
by Landesman et al. [13, 14]. These authors used an Ising model where only pair interactions
are taken into account, and assumed temperature equal to 0 K, the lattice rigid and the
transfer integrals independent of concentration x. The calculations gave the effective ordering
pair energies V n (defined precisely in Sect. 5) between n-th neighbour metalloid sites versus
the relative filling Ne of metal 3d-metalloid 2p bands (see Fig. 1). These energies decrease

(1) Two other TiNx phases in the composition range 0.3 -- x:5 0.5 have been recently discovered [11,
12].
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rapidly with distance, so that for n -- 5 they are negligible. For TiNo.82,

0.43, and one obtains from figure 1 :

Fig. 1. - Pair interaction energies Vi versus band filling Ne for transition metal nitrides

M6N5, calculated by the generalized perturbation method (G. Treglia, private communication).

The short-range order structure of TiNo.g2 can be predicted from the stability diagrams of
Clapp and Moss [15, 16] mean field approximation depicted in figure 2 : from the above
Vl, V2 and V3 energies, it is found in the (1/2 1/2 1/2) field, i.e. the diffuse intensity is
predicted to be maximum at the (1/2 1/2 1/2) type positions in the reciprocal lattice.
On the other hand, the theoretical calculations mentioned above did not succeed to explain

the occurrence of the LRO (1 1/2 0) 6’-Ti2N phase, which requires V, -- 2 V2 e 0 (if
V3 is small). The same difficulty was encountered in a theoretical calculation based on the
recursive method [13] : even by varying the input tight-binding parameters (within physically
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Fig. 2. - Clapp and Moss stability diagrams of short-range order in f.c.c. solid solutions [16] a) versus
V and V2 (V 3 = 0) ; b) versus V 2/V and V 3/V l’ In each region is indicated the point of the reciprocal
lattice where the diffuse intensity is maximum. Representative points for TiNo.82 : (e) theoretical
calculation by the generalized perturbation method (from Fig. 1), (0) from analysis of present neutron
diffuse scattering data by the Clapp and Moss formula, (x) idem, by Monte-Carlo and inverse CVM
methods.

reasonable limits), the 8 ’-Ti2N phase could only be found stable in a narrow electron
concentration range (Ne c-- 0.5), with a very small stability energy.
The problem is now to determine experimentally the short-range order of TiNo.82 and the

values of the pair interaction potentials. Preliminary diffuse neutron scattering data on
powder samples TiNx [17] gave rather unphysical results (negative first four SRO coefficients,
see Sect. 6). In [18], we have found, by neutron scattering at room temperature on a

TiNo.82 single crystal (in a quenched state) maxima of diffuse intensity in (1/2 1/2 1/2). In
neutron scattering experiments, the strong high temperature phonon scattering can be
eliminated by energy analysis ; for this reason, the diffuse scattering experiments can be
carried in the region of the phase diagram where the system is disordered and where high
temperature fluctuations are in thermodynamic equilibrium (thus avoiding the quenching
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problem of samples). In the present work, the short-range order parameters afmn and the
mean static atomic displacements have been determined for the same TiNo.82 single crystal, in
situ, at 700, 800 and 900 °C. Then the pair interaction energies were calculated by three
different methods (Clapp and Moss mean-field approximation, Monte-Carlo simulation and
Inverse Cluster Variation Method).

2. Experimental.

The TiNo.82 single crystal was prepared by a zone-annealing technique [19]. Details on sample
characterization are given in reference [18].
The diffuse neutron scattering experiment was performed at three temperatures

( T = 700 °C, 800 °C, 900 °C) on the two axis spectrometer G4-4 [20] at Laboratoire Léon
Brillouin (2), C.E.N.-Saclay, France. The {001} and (lÎ0) planes of the reciprocal lattice
were explored with an incident wavelength À = 2.56 A (resolution Ak /,k 4 x 10- 2). The
sample was in a vacuum chamber ( - 10-6 torr). 48 He3 detectors of diameter 50 mm with
time-of-flight analysis and rotation m of the sample, allowed to obtain the elastic diffuse cross-
section for :

0 . 5 _ Q = 4 7T sin 0 /,k -- 4.5 Â with steps 2.50 
° 

in 2(J and 3 
° 

in co. The furnace was a
niobium foil heater.
The data were calibrated to absolute units by comparison with a vanadium standard after

background correction, and were corrected for effective absorption, total incoherent

scattering and Debye-Waller factor, as described below.
The intensity in the two reciprocal planes is calculated in Laüe units (1 Laüe =

x (1 - x ) b 2 = 0.130 barns, see Sect. 3) by the formula :

where :

1 TiN, Iv, IBN, I vac are respectively the numbers of detected neutrons when sample,
vanadium standard, boron nitride (neutron absorbant) and vacuum are in the beam.

. a TiN and av are the effective transmission coefficients for TiNo.82 and vanadium (due to
nuclear absorption + incoherent + Laüe scattering) : CTIN = 0.46 and av = 0.57 for

À = 2.56 Â (calculated from the data of Ref. [21]).
. C is a normalization coefficient which has the following expression :

is the incoherent differential cross-section in Laüe units :

(2) Laboratoire commun CEA-CNRS.
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u oh, U nc and u MS are the coherent, incoherent and total multiple scattering cross-sections
(the multiple scattering cross-section was calculated by the method of Blech and Averbach
[22]).
NT; and Nv are the numbers of titanium and vanadium atoms in the beam.
BT;N and Bv are the Debye-Waller factors for titanium nitride and vanadium (BTiN =

BTi BN = 0.82 Â2 for T = 700 °C, 0.89 Â2 for T = 800 °C, 0.97 Â2 for T = 900 °C [23],
Bv = 0.57 Â2 at 300 K [24]).
The inelastically scattered neutrons are due to the interaction with the phonons. The energy

resolution in our experimental conditions was AE == 25 meV for phonon annihilation and
7 meV for phonon creation : for most of the time-of-flight spectra, it is relatively easy to
separate the elastic and the non-elastic neutrons (Fig. 3) ; in particular, the optical phonons
(60-80 meV) and the acoustical phonons near the Brillouin zone border (30-40 meV) are
eliminated. Nevertheless, close to the Bragg reflexions, as the phonon energies are low, the
separation between the phonon scattering and the elastic scattering cannot be done. By
comparison with the phonon spectrum of TiN [25], one can deduce that the low energy
acoustic phonons are not separated within a zone of dimensions = 0.2-0.3 (in hl,
h2, h3 units) around the Bragg peaks. This is the zone where abnormally high intensities are
observed (Fig. 4) ; the corresponding data had to be eliminated in the least squares fit (3).
The normalization factors C (for Eq. (1)) of both experiments in the {001} and

{IIO} planes, are adjusted in order to obtain the same diffuse intensity along the common
line of the two planes (the correction, due to uncertainties on the values of Nv,
NTi, a v aTiN, is about 10 %).

Fig. 3. - Number of counted neutrons versus time-of-flight per meter and energy transfer to the
neutron recorded in a He3 detector on spectrometer G4-4, Orphée reactor, Saclay, for TiNo.82 at 900 °C.

3. Results.

Preliminary thermal cycles without time-of-flight were carried out between 700 and 900 °C.
They have shown that the diffuse intensity is reversible with temperature and that the

nitrogen sublattice is in thermodynamic equilibrium within a few minutes in this temperature
range.

(3) A high resolution energy experiment at room temperature, performed on spectrometer D7,
I.L.L., Grenoble, confirmed that the large diffuse intensity observed in TiNo.82 close tô the Bragg
peaks is an inelastic scattering.
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The elastic diffuse differential cross-section du /dn of TiNo.82 for two temperatures
T = 700 °C and 900 °C, measured with time-of-flight analysis, is shown in figure 4. (For
T = 800 °C, the spectrum has an intermediary shape between the 700 and 900 °C ones.)

. In the {001} plane, the diffuse intensity is concentrated along circles centered on the
reciprocal node (110). No maxima are observed at the Ti2N superlattice reflexion positions
(1 1/2 0).

. In the {110} plane, the diffuse intensity streaks are roughly parallel to the

(001) direction. The intensity is maximum at the (1/2 1/2 1/2) type positions.
. The high temperature spectra have the same shape as for the quenched sample studied in

[18]. Diffuse scattering is concentrated on the surface observed by electron diffraction, but
the intensity is far to be constant along this surface and far to be periodic in the reciprocal
lattice.

. The maxima of the diffuse intensity decrease with increasing temperature.

The elastic diffuse scattering intensity contains two terms. The first one is the short-range
order contribution, periodic in the reciprocal lattice. The second one is the non periodic
contribution of the static atomic displacements. In TiNo.BZ, the two terms have a comparable
importance.
Expanded up to the second order with respect to the static displacements, which are much

smaller than afcc’ the elastic diffuse cross-section for TiNx has the following expression [26] :

where :

. f, m, n are the coordinates of the ideal atomic positions in the crystal :

(a, b, c unit vectors of the f.c.c. cell).
9 hl, h2, h3 are the coordinates of the scattering vector Q in the reciprocal lattice (of unit

vectors a *, b *, c *) :

e atmn is the Cowley-Warren SRO coefficient ’ . atmn = 1 - IFtmn , where Ftmn is the
1 - x ,
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Fig. 4. - Elastic diffuse intensity (in Laüe units) for the reciprocal planes {001} (left) and

{ll0} (right) of TiNo.82, measured at high temperature by neutron scattering. a) T = 700 °C, b)
T = 900 °C, c) reconstructed cross-section from the fit parameters for T = 700 °C. Bragg peaks are
found at hl=h2=h3=1; h1=2, h2=h3=0; h1=h2=2, h3=0; etc...

conditional probability to find a vacancy at the (f, m, n ) lattice position, if a nitrogen is at the
origin.
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Figure 4 (continued).

Lém and M#§gf represent the components along a and b of the relative displacement
uPmn of A and B atoms separated by Rpmn

(... ) represents the space average of the quantity into brackets.
. N = number of Ti atoms, bN and bTl = scattering amplitudes of N and Ti (respectively

+ 0.94 x 10-12 cm and - 0.34 x 10-12 cm [21]).
The a imn’ ’yQmn and 5 imn parameters have been determined from the experimental cross-

section do-/df2 by the least-squares method.
Due to low energy phonon scattering (see Sect. 2), measurements in small spheres of the

reciprocal lattice close to the Bragg peaks (radius 0.3 in hi units) had to be eliminated from the
fit.

In the fit, the conditions aimn = 0 (including a«) has been assumed ; if not, too many
Imn

values of aimn were negative without any physical meaning (negative diffuse intensity at the
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Bragg peaks !). In fact, from statistical models, the sum of the short-range order parameters
can vary between 0 and 1 (0 in the canonical system, 1 in the grand-canonical system). In any
case, in the least-squares fit, the calculated parameters do not differ significantly if we modify
the value of K (0 =s= K -- 1 ) in the condition E a Imn = K.

Imn

The fit was made with several sets of atmn’ ypmn and 8 pmn parameters. As shown in table I,
the first (X Qmn and Ytmn values were found practically insensitive to the number of parameters
chosen for the fit. The second order contribution is very small, and as can be seen in table I,
the introduction of 8tmn parameters does not influence much the atmn and Yt.n values ; only
two 8tmn have been considered. Contrary to Ytmn, the 8tmn increase with temperature, which
means that they incorporate some phonon scattering. The Btmn parameters do not appear
because the first ones (eool and ~100) are equal to zero by symmetry.

Table I. Effect o f the number o f parameters o f the fit on the first a 1,,,n and ’yemn (700°C).

Data in the two reciprocal planes {001} and {110} have been used. These data lead to a
least-squares fit matrix of rank equal to the number of unknown parameters. The

atmn’ , y $mn and 8 Qmn with (Ltmn) and Llmn) values (from the fit with 24 a, 19 y and 2 6) are
given in tables II and III.

In fact, the fit was made using the data of every two detectors and every two rotations w of
the sample. The four sets of parameters obtained gave an estimate of the statistical errors
from experimental data : these statistical errors for atmn are given in table II.
The reconstructed cross-sections from the fitted parameters are shown in figure 4.
The fit gave a« c= 1.06 to 1.15, instead of 1, the theoretical value. This discrepancy is

mainly due to the difficulties to determine exactly the real number of atoms of the sample in
the neutron beam and the transmission coefficient. If the error on the value of the incoherent
cross-section doi.,/df2 is assumed negligible, this discrepancy may be interpreted as a scale
factor for the cross-section unit. For this reason, the atmn, Ytmn and 8emn parameters have
been corrected by means of the following equation :
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Table II. - Non corrected atmn parameters and estimate o f the statistical error (into brackets)
for T = 700, 800 and 900 °C. For T = 700 °C are also given the measured atmn parameters
corrected by formula (2), and the atmn calculated by Monte-Carlo from the four M.C.
V; i o f table V.

The correction is about 3 x 10-3 on the first neighbour a011 parameter, and less for the

following afmn ; the corrected afmn parameters are given in table II for T = 700 °C.

4. Atomic displacements.

As can be seen in figure 4, for TiNo.82 the contribution of the atomic displacements to the
diffuse intensity is not negligible (the intensity maps are not periodic in the reciprocal lattice) ;
this contribution is shown in figure 5 for T’ = 700 °C. From table III, the static atomic

displacements (Z.) are seen to be independent of temperature.
The average atomic displacements around a vacancy (Lp,;A (A = Ti or N) are determined

from the (L##f) by the relations :
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Table III. - Values o f -yim,, 8tmn, (Ltmn&#x3E; and (Llmn) for T = 700, 800 and 900 °C.

The displacement field around a nitrogen vacancy deduced from the (L) in TiNo.$Z is
shown in figure 6 : the nearest titanium atoms «al2, 0, 0) position and equivalents) move
away from the vacancy, whereas the nearest nitrogen atoms «a/2, a/2, 0) position and
equivalents) move towards the vacancy. The atomic displacement field around a vacancy in
TiNo.82 is quite similar to that observed in SRO transition metal carbides [26] and to the one
calculated by a lattice statics method in the isomorphous compound UC [27].

For this reason, an attempt has been made to calculate static atomic displacements around a
nitrogen vacancy in titanium nitride. The formalism previously developed for uranium

carbide [27] and based on the Green function method for lattice statics [28] has been used.
The elastic constants determined from the phonon spectrum of TiNo.98 are given in

reference [25]. The experimental and calculated first neighbour atomic displacements are
compared in table IV (columms 1 and 2).
The calculated value of the first neighbour titanium displacement is in good agreement with

the experimental value. On the other hand the calculated value for the first neighbour
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Fig. 5. - First order static displacements contribution to the elastic diffuse intensity (TiNo.82,
T = 700 °C, Laüe units).

Fig. 6. - Static atomic displacements around a nitrogen vacancy in TiNo.82 deduced from the
l’ fmn coefficients. (D) : vacancy, (0) : nitrogen, (.) : titanium.

nitrogen displacement differs in sign from the experimental one. This may be due to the fact
that only the Ti-Ti and the Ti-N first neighbour elastic constants are known (see [25]).
A more exact evaluation of the atomic displacements around a vacancy requires an

estimation of the elastic constants between N-N first neighbours. The latter are connected to
the relative variation of lattice parameter 8afcc/ afcc induced by metalloid vacancies by a
relationship which is given in reference [27] for rocksalt structure carbides and nitrides. For
TiNx, 8afcc/afcc = 8 x 10- 3 6x [29], and this leads to the determination of one of the three N-
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N first neighbour elastic constants : 63 = - 0.6 in 2 eZ/aicc unit (e : electron charge, for
notation see [27]).
The new set of atomic displacements calculated with this value of 63 is given in table IV,

column 3 : it is in better agreement with experimental data (Tab. IV, column 1).

Table IV. - Experimental and calculated static atomic displacements around a nitrogen
vacancy in TiNo.82 (in a/2 units ; a/2 = 2.114 À).

In fact, the experimental data give the average atomic displacements around a vacancy in
the largely non-stoichiometric compound TiNx, whereas in the lattice statics method, one
considers the atomic displacements around an isolated vacancy in stoichiometric TiN. In the
simplest model (additivity of the displacement vectors due to each vacancy), two configur-
ations for the first atomic displacement L °ô in TiN,, are obtained :

or

The mean atomic displacement L °ô’ is connected to the displacement LPOOTi induced by
an isolated vacancy through the relation :

For x = 0.82 and a2()o 0.114, one obtains : Lioo = 0.91 L °ô’. Therefore the

(LPOOTi) value calculated by lattice statics for TiNo.82 is 0.013 afcc/2 (=0.028 À), to be
compared to 0.020 afcc/2 (= 0.042 Â) determined experimentally.

5. Short-range-order parameters and effective interatomic ordering energies.

The short-range order contribution a (Q) to the diffuse intensity for T=700"C (order 0
term) is shown in figure 7a for the two reciprocal planes {001} and {110} where the intensity
measurements have been carried. In this section, using statistical mechanics, the short-range
order parameters are related to the pair interaction energies V tmn. In a canonical system
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(vacancy concentration x fixed), the Hamiltonian which describes the order of vacancies
(Ising Hamiltonian) is written as follows :

where the sums £ , £ , £ , £ run respectively through the first, second, third and fourth
1 2 3 4

neighbour pairs in the metalloid sublattice. Ci is the occupying factor :

In this model the pair interactions further than the 4th neighbours are neglected and so are
the triplet and other cluster interactions [13].

Three methods are used here to deduce the Vi from the (corrected) measured

CY p"tn : : Clapp and Moss mean field approximation, Monte-Carlo simulations, and inverse
Cluster-Variation Method (CVM).

5.1 CLAPP AND Moss APPROXIMATION. - The Clapp and Moss formula (4) [15, 16] is the
simplest mean-field approximation. In this formula, the short-range-order contribution

a (Q ) to the diffuse intensity is a simple analytic function of the Fourier transform of the
interaction potentials

where

vQ : first Brillouin zone volume ; kB is the Boltzmann constant and T the absolute

temperature.
From the measured a (Q), a Fletcher and Powell least squares fit method [30] has been

used to determine the Vi. The extension of the interaction is assumed to be limited to a few
neighbouring shells.
The energies Vi obtained when limiting the interaction to four neighbour shells are given in

table V : the first and second neighbour energies Vi and V2 are positive and much stronger
than the others : Vi = 56 meV, V2/VI = 0.71, V3/Vl and V4 /Vi s 0.03. A fit performed
with eight energies does not modify V and V2, but affects somewhat V3 and V4 which remain
small (see the values given in caption of Tab. V).
The intensity calculated with the Clapp and Moss formula (4) and the Vi of table V is given

in figure 7b for T = 700 °C. According to the Clapp and Moss maps (Fig. 2), the short-range
order for V2/Vl:=t 0.71 and V3/V1 -=- 0.02 should be of the (1/2 1/2 1/2) type, in agreement
with the experimental results (see Fig. 7a).

5.2 MONTE-CARLO SIMULATIONS. - As the measured fluctuations are not very strong in this
system, the Monte-Carlo method provides precise values of afmn from known Vi.
The Inverse Linearized Monte-Carlo method described in [31, 32] has been used to

determine the Vi.
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Fig. 7. - Short-range order contribution do-SRO/df2 to the elastic diffuse cross-section of

TiNo.g2 at 700 °C in the {001} (left) and {1 10} (right) reciprocal lattice planes (Laüe units).
a) Reconstructed from the experimental a tmn’ b) Calculated from Clapp and Moss ordering energies
Vi via formula (4). c) Calculated from the energies Vi determined by the Monte Carlo method (see
Sect. 5.2). d) Calculated from the energies V, determined by Inverse CVM (see Sect. 5.3).
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Figure 7 (continued) .

Table V. - Mean-field (Clapp-Moss), Inverse Monte Carlo and Inverse C.V.M. effective
nitrogen-nitrogen ordering energies for the four first neighbour shells in TiNo.82, calculated from
elastic neutron diffuse scattering measurements. The uncertainties deduced from « statistical
errors » on atmn (Tab. II) are given into brackets in the case of C.V.M. calculations. The fit by
the Clapp and Moss formula (4) with 8 potentials at 700 °C gave : V1 1 = 57, V2 = 41,

.Calculation from the four first atmn. - Table V shows the results obtained in calculating the
four first Vi from the four equations provided by the four first measured atmn’ The short-
range order intensity can be recalculated from these Vi (Fig. 7c) : it appears hardly distinct
from the experimental one (Fig. 7a). The set of Cr pmn parameters obtained from these

Vi is given in table II column 5. It must be emphasized that although the Vi are obtained from
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the four first a tmn only, the following a Imn parameters are in agreement with the experimental
ones (in particular the sign alternance is well reproduced). This result supports the ability of a
model hamiltonian with four Vi to describe the measured short-range order.
2022 Calculation fiom the 24 first atmn. - The Vi 1 were also calculated at 700 °C from the
24 atmn given in the first column of table II, by a least-squares fit method (see [31, 32]). The
covariance matrix of this least-squares fit leads to an estimate of the range of variation of the
Vi which can account for the a (Q ). The results are :
V = 78 ± 9 meV, V2 = 61 ± 6 meV, V3 = - 2 ± 3 meV, V4 = 1 ± 2 meV, in good agree-
ment with the values from 4 « pmn given in table V. A X 2 test on this fit suggests that the errors
on the atmn parameters must be about twice the statistical ones given in table II.

It must be noticed here that if any Vi is changed in the range of error given, the other ones
must be also modified. For instance, V3 and V4 cannot be let simultaneously to zero.

5.3 CLUSTER VARIATION METHOD RESULTS. - It has long been shown that the CVM [33] is
a very precise technique for studying statistical problems in crystalline solids, provided the
basic clusters, upon which the algorithm is build, are large enough. Basically, a CVM study
consists in minimizing a free energy functional where the exact entropy has been replaced by a
linear combination of entropies of finite clusters included in a given basic cluster.

Until recently, most of the CVM studies were done with interactions limited to lst and 2nd
neighbours, and, consequently, with relatively small clusters (up to six points) (for a recent
review, see [34]). In the present case, we want to consider pair interactions up to the 4th
neighbours. According to an optimized procedure for selecting the basic clusters [35, 36], the
smallest clusters that we must use in such a case are the face-centered cube itself, that contains
14 points, and, simultaneously, the 13 point cluster formed by one site surrounded by its
twelve first neighbours (see Fig. 8a) ; this approximation is referred to as the 13-14 point

Fig. 8. - Basic clusters for C.V.M. in f.c.c. lattices. a) 13-14 point approximation. b) TO
approximation.
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approximation. These basic clusters are rather large and lead, in the disordered phase, to a
free energy functional which depends on 742 correlation functions.
We have used this 13-14 point approximation in an Inverse CVM algorithm to determine

the pair interactions up to V4. The main steps of that algorithm are as follows [37]. From
guessed values V = (Vl, V2, V3, V4) for the pair interactions, a direct minimizatibn of the
CVM free energy leads to the correlations included in the 13- and 14-point clusters ; in
particular, we calculate the short-range order parameter set a = ( a 1, a 2, a 3, a 4 ). Suppose
now that a small variation &#x26; V is applied to the set V ; the induced variation Sa on the set a is
given, to first order, by :

where X _ a a is the generalized susceptibility matrix :av

Hence, if Aa is the deviation between the calculated a and the experimental ones,

the variation d V needed to make up the deviation da is given, to first order, by the solution
of the linear system

The next trial value for the interaction set is then V + âV. We stop the process when the
deviation âa is smaller than the experimental error. In general, this algorithm converges very
rapidly (typically 5 or 6 iterations in V).
We have used this Inverse CVM in the case of TiNo.g2. The input parameters are the first

four measured correlation functions atmn- Our results for the three different temperatures are
presented in table V where the uncertainties correspond to the statistical errors on

atmn given in table II. Note that the calculated interactions do not depend on T, which proves,
first, that the short-range order in this system can be precisely described by an Ising model
with pair interactions limited to V4 and, secondly, that the experimental data are very precise.
We note also that the CVM results are similar to those obtained by the Inverse Monte-Carlo
method.

In order to have a more complete comparison with the experimental data, we have
computed, within the CVM framework, the short-range order diffuse intensity, which, in
Laue units, is given by a (Q ) (the Fourier transform of the coefficients a (R )). But, and that
point is important, a (Q) has not been computed by a direct Fourier transform of the
coefficients a (R) calculated during the CVM minimization, but, instead, by using the
fluctuation-dissipation theorem which says that a (Q) is proportional to the staggered
susceptibility X (Q) (for more details, see [35, 38]). However, due to practical reasons
(limitation of computer possibilities, even with a CRAY-XMP), the susceptibility X (Q)
cannot be computed readily within the 13-14-point approximation. But we remark, at this
point, that V3 and V4 are much smaller than VI and V2 (V3/Vl =- V4/Vl =-- 0.04) (see
Tab. V). Therefore, for the purpose of computing X (Q) and as a first approximation, we can
use a lower order CVM, namely the tetrahedron-octahedron one (TO) (see Fig. 8b) [39].
More precisely, within the TO approximation, interactions Vi and V2 are treated correctly
(the associated correlations are inside the basic clusters), whereas V3 and V4 are treated in a



2236

mean-field-like way (the corresponding correlations are factorized on the point correlation
functions) .
We have then computed the short-range order diffuse intensity, via X(Q) in the TO

approximation, with Vi = 83 meV, V2 = 62 meV, V3 = 3 meV, V4 = 3 meV, for the two
temperatures T = 700 °C and T = 900 °C and x = 0.82 (Fig. 7d). We can see that these maps
are hardly distinct from the experimental ones (Fig. 7a).

5.4 DISCUSSION OF THE APPROXIMATIONS. - The three approximations used here are « self
consistent » : in each case, a (Q) can be recalculated with the same approximation and the
results are extremely close to the experimental ones.
The uncertainties on the Monte-Carlo Vi were discussed above. We have seen in

section 5.2 that the total errors on the atmn are probably about twice the statistical ones given
in table II : therefore, the true uncertainties on the Vi calculated by C.V.M. should be twice
those given in table V. We also evaluated the effect of normalization errors : at 700 °C, the
computed ordering energies varied from VI = 100 meV, V2 = 72 meV, V3 = 7 meV,
V4 = 6 meV from uncorrected atmn, to 90, 67, 4 and 5 meV respectively from atmn corrected
by formula (2).

In conclusion, the Monte-Carlo and C.V.M. results are in good agreement, V1 1 and
V2 being determined with accuracies of approximately ± 10 %.
On the other hand, the Clapp and Moss approximation gives much lower values of
V and V 2. This is explained by the strong « frustration » of these interactions in a fcc lattice
A, - x B x (Fig. 9). As the mean-field approximation does not take into account neither the
frustration between first neighbour pairs, nor the competition between positive V and
V2, the Clapp and Moss formula tends, for a given set of a parameters, to underestimate the
pair interactions. On the other hand, the basic clusters used here in the CVM approximation
are large enough to include these frustration effects.

Fig. 9. - Frustration phenomena in a f.c.c. lattice with negative first and second neighbour SRO
parameters a 1 and a 2. a) First neighbours. b) Second neighbours.

5.5 DETERMINATION OF THE ORDER TEMPERATURE AND OF THE FUNDAMENTAL STATE. 

Finally, we consider now the problem of the critical temperature Tc of the order-disorder
transformation.

According to the mean-field approximation (formula (4)), the quantity
« -1 1 (Q = 1/2 1/2 1/2 ) should be a linear function of 1 / T and intersect the horizontal axis for
the reciprocal spinodal temperature 1 / T$ (Ts is in fact a lower bound of the order-disorder
transition Tc* that could be determined in the mean-field approximation). Our experimental
data give effectively a straight line (see Fig. 10) which, by extrapolation, leads to

Ts = 260 °C.
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Fig. 10. - Plot of measured 1/IsRo (1/2 1/2 1/2) versus 1 / T (x 103) in TiNo.82.

Using the pair interactions obtained above, it is of course attractive to compute a phase
diagram for the Ti-N system around the composition x = 0.82. Within the C.V.M.

framework, this requires the knowledge of the ground state at T = 0. As V3 and
V4 are very small, this ground state is certainly imposed by interactions Vi and

V2, whose ratio V2/V1 is here equal to 0.73. According to the stability diagram in

Vi and V2, which is known exactly [40, 41, 42], the ground state for V 2/ V 1 = 0.73 and around
x = 0.82 is an ASB type structure (in the present case, A = nitrogen, B= vacancy). This
structure can be described as follows : it consists, along a (110) direction, in a basic sequence
of two pure (110) A planes followed by a mixed AB plane and this sequence repeats itself
along direction (110) (see Fig. 11). In fact, this A5B structure is infinitely degenerated, even
if V3 and V4 are taken into account (for example, three different A5B LRO structures,
degenerated with interactions up to V4, have been proposed for V6C5 and Nb6C5 [43, 44]). But
at finite temperature, from entropic effects only one A5B phase should survive (although the
free energies of all the A5B phases are very close together).

Therefore, in order to limit the number of correlation functions, we have chosen to
consider, for the C.V.M. phase diagram, the simplest A5B phase (Fig. 11). In the TO

approximation, this phase is defined by 94 correlation functions (4) (the use of the TO

(1) The correlation functions of the A5B phase have already been listed [45], but, due to an extra
approximation these authors found only 76 correlations instead of 94.
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Fig. 11. - A5 B structure (orthorhombic unit cell). (0) : B atoms (vacancy) ; (e) A atoms (nitrogen).

ail (112) , bll (112) , cil (110) &#x26; . 
For each orthorhombic unit cell vector a, b, c, are indicated its

components in the disordered f.c.c. cell.

Fig. 12. - TiN,, phase diagram around composition x === 0.82, calculated by C.V.M. from V, = 82 meV
and V2 = 60 meV.

approximation has been justified above). The resulting TiNx phase diagram, around
x = 0.82, is given in figure 12.
The Monte-Carlo method has been used to simulate the low temperature phase of this

system at 460 K with the interaction potentials given in section 5.2 at the A5B (- Ti6N5D)
composition. The Monte-Carlo calculated atmn exhibit a long range structure is not zero
at large distance) which is compatible with the A5B structure until the 28th f.c.c. neighbour
shell (see Tab. VI).

Otherwise, the Monte-Carlo critical temperature at heating, has been found of the

order of 600 K (= 330 °C ) ; the transition is first order and shows a strong hysteresis.



2239

Table VI. - Values o f calculated by Monte Carlo simulation for TiNo.82 in the LRO state
at 460 K, compared to the theoretical values for the perfectly ordered A5 B structure.

In any case, this transition should be very difficult to observe experimentally for kinetic
reasons, the nitrogen mean free path for one hour at 285 °C being about 1 Á from atomic
diffusion data.

6. Conclusion.

In this work, we have for the first time quantitatively measured short-range order parameters
at the equilibrium temperature by neutron diffuse scattering in a refractory non-stoichiomet-
ric compound, and determined precise effective ordering interatomic energies.

In TiNo.82, vacancies prefer to be on third neighbour positions from a vacancy

( This property is similar to that found for [46] and [26].
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Recently, room temperature powder neutron diffraction studies of short-range order were
made on TiNo.67 and TiNo.75 previously annealed at 1 110-1 200 °C [17]. For

TiNo.75, the SRO parameters found were : = - 0.012, = - 0.032, all2 = - 0.006,
= - 0.112, ... These results are inconsistent with ours (especially for that we found

positive), which may be due to the fact that it is difficult to estimate short-range order
parameters from a powder diagram.
We found maxima of diffuse scattering at (1/2 1/2 1/2 ) and equivalent positions. This is in

agreement with the theoretical prediction by Landesman et al. [13, 14]. On the other hand,
the long-range order observed experimentally in Ti2N is of the type. The fact that the
type of order changes between Ti2N (long-range order of 1 1/2 0 type) and TiNo.g2 (short-
range order of 1/2 1/2 1/2 type) is probably due to a variation of the pair interactions with
composition ; the ratio V 2/ V l should increase from less than 0.5 for Ti2N to = 0.75 for
TiNo.82. The generalized perturbation theory predicts the correct trend, but disagrees
quantitatively = 4.2 for Ti2N and 6.0 for TiNo.82, see [14] and Fig. 1).
The static atomic displacements are similar to those observed in transition metal carbides

[26] ; the displacement field calculated by the lattice statics method gives good results if we
estimate the missing coefficient S3 from the value of These static displacements are
not taken into account in the ordering Ising Hamiltonian (3) ; nevertheless, they play
probably an important role in the total energy of ordering (in particular they are much larger
in Ti2N than in TiNo,g2).
We have used three different inverse methods to calculate the pair interactions from the

experimental data : the Clapp and Moss formula, the inverse CVM and the Monte-Carlo
simulations.

Our first remark is that the results always confirm the calculation of Landesman et al. [14] :
V 3, V 4 and further potentials are very weak and (although the numerical values disagree with
those deduced from Fig. 1) the ordering is dominated by V and which are positive in the
present case. As in transition metal alloys, the effective ordering energies decrease much
more rapidly with distance than in normal metal alloys, this damping being due to electron
mean free path effects [47].

Secondly, we note that the Clapp and Moss formula leads to interaction ratio

which are quite good, even if the interactions themselves are not correct. This is due to
the fact that the experimental data have been collected at a relatively high temperature

700 °C ), in comparison to the order-disorder transition temperature (Tc = 285 °C,
according to the CVM phase diagram, see Fig. 12). The Clapp and Moss formula has then
been used in a regime where it is expected to be relatively precise. This is confirmed by the
fact that the plot of (Q = 1/2 1/2 1/2 ) versus 1 / T, obtained from experimental data, is a
straight line, as in the Clapp and Moss formula.

Finally, we note that the calculated interactions do not depend on temperature. This
proves, without any ambiguity, that the order-disorder effects in our system are precisely
described by an Ising model with pair interactions limited to V4. Moreover, the good
agreement between the CVM and the Monte-Carlo results shows that these two inverse
methods are very reliable.
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