
HAL Id: jpa-00211052
https://hal.science/jpa-00211052

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spinodal decomposition in a lattice-gas automaton
Daniel H. Rothman, Stéphane Zaleski

To cite this version:
Daniel H. Rothman, Stéphane Zaleski. Spinodal decomposition in a lattice-gas automaton. Journal
de Physique, 1989, 50 (16), pp.2161-2174. �10.1051/jphys:0198900500160216100�. �jpa-00211052�

https://hal.science/jpa-00211052
https://hal.archives-ouvertes.fr


2161

LE JOURNAL DE PHYSIQUE

Spinodal decomposition in a lattice-gas automaton

Daniel H. Rothman (1) and Stéphane Zaleski (2)

(1) Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of

Technology, Cambridge, Massachusetts 02139, U.S.A.
(2) Laboratoire de Physique Statistique, CNRS, Ecole Normale Supérieure, 24 rue Lhomond,
75231 Paris Cedex 05, France

(Reçu le 21 mars 1989, accepté le 5 mai 1989)

Résumé. - Nous analysons un modèle de décomposition spinodale récemment introduit par
Rothman et Keller. Ce gaz sur réseau immiscible a la particularité intéressante non seulement de
conserver le nombre de particules et l’impulsion mais aussi de permettre des simulations

hydrodynamiques avec interfaces mobiles. Nous présentons une étude expérimentale et théorique
du comportement statistique du gaz sur réseau immiscible. Nous obtenons tout d’abord une
estimation théorique du coefficient de diffusion en r6solvant une équation de Boltzmann discrète.
Les simulations numériques de la diffusion des particules d’une part et de la croissance des
domaines d’autre part permettent de trouver la ligne spinodale du gaz sur réseau immiscible.
Cette dernière est proche de la ligne où le coefficient de diffusion calculé théoriquement s’annule.
Le gaz sur réseau immiscible constitue en outre un exemple intéressant de système où la

dynamique microscopique est irréversible.

Abstract. - We analyze a lattice-gas model of spinodal decomposition recently introduced by
Rothman and Keller. This immiscible lattice gas (ILG) is of special interest because it not only
conserves momentum and particle number, but is also capable of hydrodynamic simulations of
interfaces. Here we perform a jointly theoretical and empirical study of the statistical behavior of
the ILG. We first obtain a theoretical prediction of the diffusion coefficient by solving a discrete
Boltzmann equation. We then confirm, by numerical simulations of diffusion and domain growth
kinetics, that the spinodal curve of the ILG is approximately given by the line in the space of
density and concentration where the theoretical diffusion coefficient vanishes. The ILG is also an
interesting example of a system with irreversible microdynamics.
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Introduction.

There is a great interest in finding simple models of fluid mixtures on both the microscopic
and macroscopic scales. On the microscopic level much is still to be leamed about the
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spinodal decomposition that leads to the separation of phases [1], as well as about the
structure of interfaces themselves [2]. On the macroscopic level, the behavior of multiphase
flows is extremely difficult to describe. These flows posses a rich phenomenology and are of
industrial as well as fundamental interest.
Some progress may be expected with the help of a lattice-gas automaton (LGA) approach

to the problem of fluid mixtures [3, 4]. In a lattice gas, fictitious particles hop from site to site
on a regular lattice. When particles meet at a site, they undergo a simple, deterministic
collision that conserves momentum and particle number. The large-scale behavior of LGA
can be shown to obey the incompressible Navier Stokes equations [4] ; thus LGA offer an
attractive alternative for the numerical simulation of hydrodynamics.
The phenomena observed in lattice gases are considerably enriched when LGA are

extended to deal with mixtures of several species of particles [5]. When certain nearest-
neighbor interactions are added, a surprising result is that a spinodal decomposition
spontaneously occurs at a critical density [6]. A recent example of such a decomposition is
illustrated in figure 1 [7]. Studies performed thus far indicate that such a model simulates
immiscible fluid dynamics very similar to the dynamics of Newtonian fluids. Each of the pure
phases behaves as the hexagonal lattice gases now well understood by researchers [4, 8, 9],
while surface tension exists at the interfaces between phases. Since the behavior of this gas at
sufficiently high densities is identical to that of a mixture of immiscible fluids, it is appropriate
to label such LGA mixtures « immiscible lattice gases » (ILG’s).

Fig. 1. - Spinodal decomposition in an immiscible lattice gas, on a 512 x 512 hexagonal lattice.
Boundaries are periodic in both directions. From reference [7].
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ILG’s have already shown promise in a variety of different applications [10]. Our purpose
in this paper, however, is to gain a fundamental understanding of the model. In particular, we
study specific statistical properties of ILG’s. This is not an easy task because of the peculiar
nature of the statistical mechanics involved.

Unlike ILG’s, most models of spinodal decomposition conserve an energy functional
during their evolution. For example, Ising-like models conserve an energy of the form

where E is the energy of a heat bath at temperature T, J is a coupling constant,

Si is + 1 if a site is « red » and - 1 if a site is « blue », and (1 , j ) denotes nearest-neighbor
sites. These models attempt to mimic closely the classical systems of statistical mechanics ;
they are simulated either by Monte Carlo methods or by an explicit representation in cellular-
automaton (also called microcanonical) models. The interaction energy common to these
models favors the separation of the system into two phases when J/T is large enough. ILG
models, however, are qualitatively different : there are interactions between nearest-neighbor
sites but no energy is conserved. Thus, using standard arguments, one would not expect to see
separation in ILG’s because a separated state would be infinitely less likely than a mixed one ;
i.e., the mixed state would win because it has higher entropy. How, then, may separation
occur in the ILG, where interaction energy is absent ? The answer lies in the irreversible
microscopic dynamics of the ILG. Because these dynamics are peculiar, fundamental

principles of statistical mechanics, such as the existence of Gibbs states [11], may not hold.
However, what is remarkable - and essential for applications - is that on the macroscopic
scale not much difference is observed with real systems [6, 10].
The questions we thus seek to address are the following : what is the nature of the statistical

state observed in the ILG ? How does it differ and how is it similar to classical systems of
statistical mechanics ? Would an observer limited to the observation of macroscopic
properties of the system such as density, momentum, etc., notice any difference ? For

practical applications we obviously hope there is little difference but no theoretical

justification is yet available.
Before we address such questions we find it useful to recall how separation of a mixture can

be analyzed in the real world [1] (see Fig. 2). Separation occurs when the free energy of the
system F = U - TS ( U is internal energy, S is entropy) has a minimum for two separated
phases. Let a system of volume V be initially one mostly red phase, where x represénts the
fraction of reds, 0 ====X ==== 1, and F (x, T, V ) is the corresponding free energy. Assume the
system separates into two homogeneous phases with red fractions xl and X2, the first phase
corresponding to a fraction a of the total number of particles. Then x = ax, + (1 - a ) x2 and
the new free energy is a F (Xl) + (1 - a ) F (x2 ). The condition for the stability of the initial
phase of composition x is thus

This condition will be verified for all xl, x2 and x if the function F is convex, i.e., if its second
derivative is non-negative. The spinodal line is then the line in the T, x diagram on which the
second derivative of the free energy is zero.
The unstable region inside the spinodal curve is a region where a system of composition

x will spontaneously separate into two phases of neighboring compositions x, - X - X2. There
are also metastable states outside the spinodal which are unstable to nucleation of a phase of
different composition x2, with x2 in the other well of figure 2. Because of surface tension, such
a large change may occur very slowly : it is well known, for example, that superheated water



2164

Fig. 2. Fig. 3.

Fig. 2. - Typical free energy curves, for temperatures Tl  T2  T3. At T3, the mixed phase is stable.
T2 is the critical temperature, below which the mixed phase is unstable.

Fig. 3. - Typical coexistence (solid) and spinodal curves (dashed).

may be metastable unless vapor bubbles of sufficient size are nucleated. Such metastable
states are located between the minima of F and the spinodal. The minima of F thus delineate
the « coexistence curve » of the mixture. Two phases may coexist in the system only if they are
located on such points. When the two minima of the free energy merge the second derivative
vanishes. Thus the coexistence and spinodal curves must meet on a critical line in a

T, x phase diagram, as seen in figure 3. When a system passes through this critical line it

undergoes a second-order phase transition.
Spinodal curves and coexistence curves may also be defined for the ILG. The relevant

thermodynamic variables are now x and d, the reduced density (defined below) of the lattice
gas. For example, a spinodal curve may be defined by observing where, in the

x, d diagram, phases spontaneously decompose. A coexistence curve may also be determined
by observing at which fractions x two phases may coexist.

In this paper we will be concerned exclusively with the prediction and measurement of the
spinodal curve of the ILG. The prediction is made by assuming that the mixed phase is close
to a factorized state, i.e., a state without correlation between sites. Although this assumption
is a gross approximation, it becomes accurate in the limit of a vanishing density
d. Importantly, it allows us to compute a diffusion coefficient, D, for the ILG. We then
predict the spinodal curve by noting that the decomposition occurs when D becomes negative.

In what follows we shall first review the salient aspects of the ILG. We then define a
Boltzmann equation for the ILG and solve it using a Chapman-Enskog expansion. The
theoretical prediction of the diffusion coefficient is then compared with empirical estimates
from numerical experiments. Knowledge of D allows the prediction of the spinodal curve.
The theoretical spinodal curve is then compared with further empirical results obtained from
numerical studies of domain growth.

Immiscible lattice gases.

The ILG model of reference [6] involves two types of particles - « red » and « blue » living
on a hexagonal lattice. We shall keep notations as close as possible to [4]. The velocities at a
site are numbered from 0 to 6 with co = 0 and cj , 1 = (cos (2/7r/6), sin (2/7r/6)). The
configuration of any given site is represented by 14 boolean variables ri , bi for

0 -- i -- 6. ri represents a red particle in direction i and bi represents a blue particle, and there
is at most one particle of each velocity. The configuration of a site is noted s where
s = (ro, bo, ..., r6, b6 ).
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The lattice gas evolves in two steps. First, particles propagate to the nearest-neighbor sites
at velocity ci . In the collision step care is taken to conserve the number of red and blue

particles as well as the momentum. This creates 4 invariant quantities. The output
configuration chosen will also depend on the nearest neighbors. To simulate attraction

between particles of like color, those collisions which send red particles in the direction where
the neighbors contain a relative majority of red particles should be favored, while blue
particles should be sent towards neighboring blue particles.
The precise rules can be expressed in the following way. The configuration of a nearest

neighbor in direction j is written si = (r6, b6, ..., r6, b6 ). We also write si = ri + bi and
si = ri + bi. The configurations of all six neighbors can be represented as 0- = (sI, ..., s 6).
The « color field » corresponding to the configuration o- is

where summation over repeated indices is assumed. The « color flux » of an output
configuration s’ is

qs, = (ri - bi) ci . (4)

The configuration that minimizes the product - fu . qs- is chosen. In practice this rule is

difficult to implement because of the large number of fields f, that can be realized. In
appendix A we describe a simplification of that rule which results in the exact definition of the
rate A (s, s’, u) at which a collision changes s into s’ in the presence of a neighbor
configuration a.

Unlike spinodal decomposition in nature, the explanation of the decomposition observed in
the ILG lies in the kinetic rather than the equilibrium properties of the system. It seems that
at low densities the Boltzmann equation approach is still valid for the gas. Molecular chaos
holds in the sense described in [4]. From this assumption it is possible to show how the
dynamics make the single mixed phase unstable. Let d (x, t ) be the local reduced density
(number of particles divided by 7) and (J (x, t) be the local fraction of red particles. The
average flux of color can be defined as J = (q). If the steady state reached with

d and 0 uniform and constant in time is slightly perturbed, with 0 not uniform but

d still so, one expects a linear response :

In reversible LGA’s, an H theorem holds [12] and one can show that transport coefficients
must be positive. On the other hand in the ILG one may obtain D  0. Indeed the color field

f, is a local estimate of V (d 0 ). The collision rule tends to align J with the color gradient and
thus make D negative.
A fundamental understanding of D is thus a crucial component of a fundamental

understanding of the ILG. In the following section, we try to estimate D by constructing a
Chapman-Enskog solution of the Boltzmann equation. From these estimates of D we may
then predict the transition to a two-phase state in a d - 8 diagram.

The Chapman-Enskog estimation of the diffusion coefficient.

In our statistical approach we investigate one-particle distribution functions and call

Ri (x, t ) and Bi (x, t ) the probability of having respectively a red or a blue particle at site x in
direction i. As in [4], Ni = Ri + Bi is the probability of finding any particle in direction
i. The Boltzmann equation is obtained by a molecular chaos postulate. We assume that the
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arriving particles at a site and those at neighboring sites are all independently distributed
variables. This assumption is usually rather successful for predicting viscosities [12, 13] and
diffusivities [5]. In the present context this is a relatively crude assumption : numerical
simulations of the ILG show correlations between the colors observed at neighboring sites.
The Boltzmann equation approach is nevertheless useful : it allows an intuitive understanding
of the mechanism that leads to the decomposition into two phases. Accordingly the

probability of a configuration (s, a ) of a site and its neighbor given a state described by the
one-particle densities Ri, Bi can be written as

where

and where

Clearly P and W depend implicitly on the local one-particle densities Rl , Bi. The Boltzmann
equation is then

where A (s, s’, a ) is the probability of an output s’ given an input s and an input neighbor
configuration a. A similar equation obtained by exchanging red and blue holds. This

equation is solved by an expansion around a state of local equilibrium :

where R/n) is of order n in gradient. The local equilibrium is extremely simple : one lets the
fraction of reds be 9 and the reduced density be d. The one-particle densities in that state are :

At next order in the gradient expansion one expects

where we adopt as usual Greek letters to denote vector components. Correspondingly we
shall let P (O)(s) and W(O)( u) signify the distributions obtained by replacing Ri and

B; by their first order expressions in (7), (8).
From the Boltzmann equation (9) one obtains at first order in gradient :

(no sommation on i), where :
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and

Using equations (7), (8) and the expressions for the distributions R (0), R (1), etc., it is easy to
express 931 and 932. 951 is the usual contribution to the deviation from local equilibrium arising
from the Chapman-Enskog expansion at first order. 952 is specific to the immiscible lattice gas
collisions. These collisions produce an additional flux of color towards regions of the same
color, by letting the outcome of the collisions depend on the neighbor configuration
Q. Finally 933 indicates the change in the neighbor configurations resulting from the distortion
of local equilibrium. This distortion leaves the total number of red (or blue) particles on a
neighbor site unchanged and should not affect the color fluxes toward the neighbors. Thus it
does not come as a surprise that $3 = O. Indeed, W(cr) is symmetric in the exchange of
directions :

while R/1J3 (y) = - R/I)(y). Using these identities one sees that the r.h.s. of (16) cancels.
Expanding the derivatives in (14) and (15) and replacing in (13) we obtain

where .aei)l) and .aei)2) in the r.h.s. contain contributions respectively from 931 and

$2’ .aei)l) is given by

where pr = Xi ri , pb = Xi bi and p = pr + pb. In (18) the brackets ( ) u indicate nveraging
over o- using the factorized distribution (8) in equilibrium :

Also,

where Pur = Xkj r£, Pub = Xkj bi and p, = Pur + Pub’ The evolution of the color fraction may
now be obtained simply as a consequence of the conservation of red particles. Observe that :

The usual scaling for diffusion is ai = 0 (V2). Using this scaling, together with (10), (11), (12) .
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and (17) one obtains

where

Equations (17), (18), (20), and (22) constitute our theoretical prediction for the diffusivity
D of color in the ILG. The first term on the r.h.s. of equation (22) is a « propagation »
contribution in the sense of reference [4]. The factors A(’) and t (2) are polynomials of the
48th degree in d and 8. Although it is in principle possible to compute all the coefficients
involved, at this stage we simply performed a numerical calculation of y for some selected
values of d and 0. The details of this numerical computation are presented in appendix B. The
results are presented and compared with direct computations from numerical simulations in
the next section.

Before illustrating our results, it is interesting to consider the meaning of the various terms
in D. The diffusivity calculated above can be broken into two contributions. The first
contribution arises if one sets Ai)2) = 0 in (17). The resulting diffusivity Dl is identical to the
self-diffusion coefficient in an equivalent lattice gas, without nearest neighbor interactions but
with transition rates given by (A (s, s’, u» u’ These rates depend on the parameters
d, 9 through the distribution of neighbor configurations in equilibrium, W(u ; d, 0), as
shown by equation (19). Numerical calculations have always shown that Dl was positive. It
seems likely that this would always be the case. But we have found no rigorous way to
determine the sign of Di. In particular, the averaged rates do not verify semi-detailed
balance. Thus the method employed in [12] cannot be used. Semi-detailed balance does not
hold because even when the neighbor color field is 0 on average, certain output configurations
get selected more often as they are optimal for the instantaneous color field.
The second contribution to D comes from the term Âi)2): it represents the effect of a

gradient of concentration on the distribution of the neighboring sites. This contribution is
always negative.

Comparisons of theoretical and empirical estimâtes of D.

To assess the accuracy of our theoretical estimate of D, we have performed two independent
numerical experiments. The first is a direct comparison of the predicted values of
D with measurements of D made from simulations. In the second experiment we compare the
spinodal curve obtained from the predicted zeroes of D with results obtained from numerical
domain-growth experiments.

EMPIRICAL ESTIMATE OF THE DIFFUSION COEFFICIENT. - Empirical estimates of the
diffusion coefficient were obtained by performing simulations in square boxes with the density
set at d and the color fraction set at 0 + a on one side and 8 - a on the other. Boxes of
various sizes L (11 x 11, 20 x 20 and 27 x 27) were used.

This experiment requires somewhat more care than analogous experiments performed with
the simplest possible LGA mixtures [5]. Of particular interest is the way we set the color
fraction at the boundaries. Specifically, two additional columns of nodes are used on each
side. Nodes are reset at each time step to the desired color fraction and density by
regenerating sites randomly with the expected distribution of red, blue, and empty cells. The
random generation is done after the propagation step of the lattice gas and before the
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collisions. At least two additional columns are necessary, because the outcome of the
collisions in the second column will depend on the color in the first column.
To obtain D, we first measure the flux J of color by counting the number of red or blue

particles crossing a vertical line. The diffusion coefficient is best expressed in terms of a
« conductivity » K (d, 0 ) = dD (0, d). We estimate it by

The theoretical predictions for this quantity as well as the measured results are shown in
figure 4 for 8 = 0.5, 0.02  d  0.28. We repeated these experiments for 8 = 0.75 with
similar results.

Statistical errors are estimated by repeating the experiment about 30 times and estimating
the standard deviation. There are several sources of statistical error. The most important is
related to averaging over noisy time series for the color flux. If fluxes were uncorrelated from
one time to the next the error would be of order N-1/2, where N is the total number of red and
blue particles crossing the measuring line. At low density very few particles are observed and
this statistical error increases. This explains the large error bar on the left-hand-side of
figure 4. The measurement is also affected by long-range, large-time correlations near the
critical point. Physically these correlations correspond to the presence of blobs of blue or red
phases, which persist for a typical time To and have a typical size eo. Because of these
correlations one must average over times much longer than To. The presence of these
correlations is responsible for the large error bars near the critical point in figure 4.
The agreement is good between theory and numerical experiment near d = 0. This is not

surprising since one expects the Boltzmann equation to be approximately valid when the
neighboring nodes are weakly coupled. The theoretical and numerical values are in

disagreement away from d = 0, but the transition point is not too far from the predicted
value : 0.23 ± 0.02 from experiment versus 0.20 from theory.

Fig. 4. - Plot of the theoretical and numerical values of the diffusion coefficient K defined in the text.
Squares represent numerical-experimental values and (x)’s represent theoretical values. Typical error
bars are plotted, representing two standard deviations.
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EMPIRICAL DETERMINATION OF THE SPINODAL CURVE. - If Du 0, a mixed state (equal
concentrations of both colors) is stable. D  0, on the other hand, implies instability : an
infinitesimal perturbation of sufficient wavelength should result in decomposition into two
phases. The locus of points for which D = 0 as a function of d and 0 is therefore the spinodal
curve for the ILG.
Numerical solutions of equations (17), (18), (20), and (22) for D (d, 8 ) = 0 are depicted in

figure 7 as small squares. To compare this approximate prediction with results from
simulation we could simply repeat the diffusivity experiments described above for a variety of
values of d and 8. We have chosen, however, a different route that makes specific contact
with our study of phase transitions : measurements of the growth rate of the correlation
length. We assume that the correlation length e (t) oc t ", where t is the number of time steps
and the exponent a &#x3E; 0 for simulations initialized as homogeneous mixtures. We may thus
estimate the location of the spinodal curve by determining the limiting values of

d and 0 which yield positive a.
We performed experiments with boxes of size 32 x 32, initialized as random mixtures for

various values of d and 8. Correlation lengths were estimated at discrete intervals of time by
2-D Fourier transformation of the relative color density

where the sum is taken over the 7 possible velocities and x is a discrete position vector. By
assuming isotropy of the ILG (confirmed qualitatively by inspection), we work with the
circularly averaged modulus of the 2-D transform of pc, given by

where the discrete wavenumber k = 1 k 1 and the brackets denote circular averaging. The
correlation length is defined to be proportional to the inverse of the pc-weighted average of
k :

Fig. 5. - Plot of the growth exponent, a , for varying d at fixed 0 = 0.5. Error bars represent two
standard deviations. Based on these data, the transition density is taken to be d = 0.19.
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For each d - 8 pair, the ILG was run 12 times with different initial conditions for 1 000
time steps. The growth exponent a was then estimated for each run by measuring the slope in
a log-log plot of e (t). Typical results are shown in figures 5 and 6. In figure 5,
d varies while the concentration is fixed at 0 = 0.50, whereas in figure 6, 8 varies while the
reduced density is fixed at d = 0.30. Each point represents the mean of a, for the 12
independent runs ; the error bars represent 2 standard deviations from the mean. The error
bars are relatively small when a = 0 because g (t ) is approximately flat for each run. The
larger error bars that occur for positive a have two causes. One cause is hysteresis near the
critical point : growth may begin at different times in each simulation. The second source of
error is our assumption of the power law for the growth of e, which has of yet no firm
foundation. Finite-size affects appear insignificant : similar tests for boxes of twice the size
yielded similar results.
We determine points (d, 8 ) on the spinodal curve by identifying by eye the value of

d (or 8 ) at which a (d ) (or a (0 )) departs from the line a = 0. For the data of figure 5, we

Fig. 6. - Plot of the growth exponent, a, for varying 0 at fixed d = 0.3. Error bars represent two
standard deviations. Based on these data, the transition concentration is taken to be 0 = 0.93.

Fig. 7. - Phase diagram of the immiscible lattice gas. Squares represent the theoretical predictions for
D (d, 0) = 0, (x)’s represent observations from simulations. Errors in the observations are approxi-
mately the same size as the symbols. Locations inside the curve formed by the empirical points represent
regions of stable decomposition of the two phases.
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find d, = 0.19 ; similarly, for the data of figure 6, 8 = 0.93 at the transition. We consider the
errors in these estimates to be on the order of ± 0.02. We note that the value of

dc obtained in our diffusion and domain growth experiments differ but the discrepancy falls
within the error bars.

By performing the same measurements at different locations in the space of d and

8 , we obtained the empirical spinodal curve in figure 7. These estimates are compared to the
theoretical predictions of D (d, 0 ) = 0. Experiment and theory compare reasonably well. As
in the direct numerical estimates of D, we interpret the deviations from the theoretical
predictions primarily as a limitation of the Boltzmann approximation for the ILG.

Conclusions.

We have introduced a jointly theoretical and empirical approach to the study of spinodal
decomposition in immiscible lattice gases. We have shown that phase separation occurs in
ILG’s not because of a favorable free energy (no such quantity appears to exist) but rather
because of its unusual kinetic properties. Specifically, for certain combinations of density and
concentration, the diffusion coefficient of the ILG becomes negative, providing for the
decomposition of phases. Theoretical predictions based on the Boltzmann approximation and
empirical studies of diffusion and domain growth have each confirmed the existence of a
phase diagram in the plane of density and concentration for the ILG. The resulting spinodal
curve separates the region where a single phase can be stable from the region where it

decomposes into domains containing both phases. The agreement between the predictions
derived from the molecular chaos assumption and the empirical observations is qualitatively
good.
There are several consequences to this description. One is that it is unlikely that more

stable phases would be discovered in this model than are already known. However, the
precise nature of the behavior in the region between d = 0.2, at the critical point of the phase
diagram, and d = 0.4, where the surface tension measured in reference [6] vanishes, is not
clear. One possibility is that the surface tension was too small to be observed in this region by
the methods of reference [6], but this conjecture will have to be clarified by further analysis.
Another point that requires some clarification is the effect of dilution on the behavior of the
irrimiscible phases. Transport properties such as viscosity and diffusion rate in the stable
phases should be investigated. Finally, we note that we have only scratched the surface of the
most important of our objectives - the precise delineation of the relationship of the ILG to
the classical mixture models of statistical mechanics and hydrodynamics.
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Appendix A.

The rule that was used differs slightly from the simplified description given in the
introduction. The essential effect of maximizing the product f, - qs, is to align the field with the
flux. Hence it is only necessary to keep information about the orientation of f. Let

Wu = (fu, i) be the nngle of the field with the x axis. The exact field f, is replaced by a field
fier’ where fk = (cos 2 7T k / N, sin 2 7T k / N) and k, is a number between 0 and N - 1 that
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verifies

When f is zero f’ = fk is also zero. Then the product fku . qs, is maximized. Higher values of
N yield better approximations of the true field. Since the interface is fluctuating it is likely
that a very accurate approximation would be unnecessary. In this paper all calculations were
made with N = 36.
For each input configuration s there is a class of output configurations C, which share the

same values of momentum and have the same number of red and blue particles. Among all
those only a subset maximize fku . qs Let 13s, u be that subset. For instance if f = 0 then
TS, C,. One choses randomly between the configurations in 13s, u using a random number
generator. This implies a transition rate given by

where [-G 1 denotes the number of elements in set t. Since the transition rate depends on
a only through ku one may define A’ (s, s’, k ) to be the rate of transition in presence of a
color field indexed by k = ku.. ,

Appendix B.

The computation of .ae (2) is the most lengthy. It involves summing over 342 neighbor
configurations. This can be simplified by rewriting (20) in the following way

where

The computation of Wj (k) may be further simplified by factorizing the contributions of the 6
nearest neighbors in the above sum.
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