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Résumé. 2014 Nous décrivons la croissance libre (à température constante) d’un cristal liquide
colonnaire hexagonal. Le matériau choisi est l’hexaoctyloxytriphénylène. Nous observons trois
régimes de croissance suivant la valeur de la sursaturation 0394: un régime « pétale » pour
0394  0,2, un régime dendritique pour 0,2  0394  0,6 et un régime de branchements denses pour
0394 &#x3E; 0,6. La première transition est expliquée dans le cadre du modèle de Brener et al. [6] par un
effet de confinement et de nombre Péclet fini. La seconde transition morphologique reste pour
l’instant inexpliquée.

Abstract. 2014 The free growth (at constant temperature) of a columnar hexagonal liquid crystal is
described. The chosen material is the hexaoctyloxytriphenylene. Three growth regimes are
observed depending upon the value of the supersaturation 0394: a petal-shape regime for

0394  0.2, a dendritic regime for 0.2  0394  0.6 and a dense branching regime for 0394 &#x3E; 0.6. The first

morphological transition is explained in the framework of the model of Brener et al. [6] by an
effect of confinement and finite Peclet number. The second morphological transition remains
unexplained for the moment.
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1. Introduction.

The growth of a solid (an alloy most of the time) in a liquid which is cooled below its

solidification temperature leads very often to the formation of dendrites. These dendrites are

very important in practice because they are responsible for the solute segregation and thus,
for the microstructure of the alloy. These data are essential in metallurgy because they
strongly affect the hot ductibility of the material as well as its corrosion resistance, toughness
or strength.
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Materials which are usually studied are metals or plastic crystals (pivalic acid, succinonit-
rile). The latter ones have the advantage to be transparent and to melt at low temperatures.

Recently we have shown that it was possible to make grow dendrites in more complex
systems such as columnar or smectic liquid crystals [1, 2].

Liquid crystals are interesting for many reasons. They are transparent (and birefringent
most of the time) and melt at low temperature. On the other hand, their physical constants
(latent heat, surface tension, anisotropy, diffusivity, etc.) are very different from classical
materials. So they are very good candidates for testing theoretical scaling laws.
An important problem is the understanding of the different morphologies observed during

the growth of a single crystal from a supersaturated solution as a function of the

supersaturation and how the transition between these different morphologies occurs. For this
study, we have chosen a well known columnar liquid crystal, the 2, 3, 6, 7, 10, 11-hexa-n -
octyloxytriphenylene (HET in the following) [3]. Many of its physical constants have been
measured and some particular aspects of its growth have already been published. Let us
mention a study of the initial destabilization of a circular germ and of its weakly non linear
evolution [4] and a measurement of the stability constant of a free dendrite [1].

In this article, we sum up in a more complete way these results by including supersaturation
effects. We show the existence of three distinct regimes of growth, namely : the petal-shape
regime at very small undercooling (or supersaturation), the dendritic regime at intermediate
supersaturations and a dense-branching regime at large supersaturation. In each case the
shape and the compacity of the monodomain are very different. We shall describe these three
regimes of growth in three distinct paragraphs (Sects. 4, 5 and 6). In the following section
(Sect. 2) we recall the experimental procedure and its difficulties. In section 3 we discuss

qualitatively the theoretical aspects of the problem.

2. Experimental.

HET has been synthetized by one of us (J.M.). This disc-like molecule (Fig. la) exhibits an
hexagonal columnar phase (Fig. 1b) between 67 and 84.4 °C and is an isotropic liquid above
84.4 °C. The latent heat of the hexagonal-isotropic transition is L = 1 kcal/mole [3]. The
phase diagram of HET in the presence of a small amount of impurities can be found in

Fig. 1. - a) Hexaoctyloxytriphenylene. b) Hexagonal columnar phase. The disc like molecules pack
in long parallel columns forming an hexagonal array.
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Fig. 2. - Phase diagram (from Ref. [1]).

reference [1]. Both liquidus and solidus are straight lines (Fig. 2). The partition coefficient k
of the impurities (defined to be the ratio of the slope of the liquidus to the one of the solidus)
is of the order of 0.35 ± 0.03. This apparently large value is due to the fact that we have a
liquid crystal and not a solid phase. The diffusion coefficient D of the impurities in the liquid
has been measured in directional solidification [5] : D - 1.2 x 10 - 7 cm2/s. The samples are
prepared between two parallel glass plates. Their thickness never exceeds 5 )Jbm. They are
placed into a hot stage whose temperature is controlled to about ± 0.02 °C. A polarizing
microscope is used for optical observations. We observed that very thin samples orient
spontaneously with the molecular columns normal to the glass surfaces. In the following, we
shall only describe the growth in the basal plane i.e. the one of the hexagonal lattice. In this
plane, the interface is rough and the anisotropy of the surface tension is close to 0.1 [1]. The
isotropic-hexagonal surface tension has also been measured : y - 0.52 erg/cm 2. We can then
calculate the typical length y/L - 1.2 Á. We also measured the liquidus and solidus

temperatures for our sample : Tliq. - 82.4 °C and Tsol. ’" 78.5 °C. The control parameter is the
undercooling AT = T1iq. - T or equivalently the supersaturation L1 which is a dimensionless
parameter defined to be (Fig. 2) :

This parameter varies from 0 to 1. m is the slope of the liquidus (negative in our case).
Co is the impurity concentration in the liquid nearby the interface assumed to be flat and
C 00 the mean concentration of impurity in the sample. Experimentally these parameters are
difficult to measure very accurately for many reasons : lack of homogeneity of the impurity
concentration, slow chemical shift of the sample because of its degradation at high
temperature, slight temperature gradient (less than 0.1 °C) between the middle of the sample
and its sides... An other convenient method to measure à is to wait until the system reaches
its thermodynamic equilibrium. In this limit, à = x where x is the volume fraction of
cristallized material. This method requires a time at least equal to l2/ D where f is the average
distance between germs and so, is applicable for large enough values of the supersaturation
(d &#x3E; 0.2 ). We shall see in the following that it is also possible to estimate A from the
evolution in time of the area of the germ. Finally, let us notice an important limitation of this
experiment related to boundary and neighbour effects. These effects appear when the
distance between a germ and the sample sides (or an other germ) is of the same order as the
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diffusion length ed = 2 D/V where V is the growth rate. At small supersaturation
(L1 - 0.2 ), the main limitation stems from the finite size of the sample (1 cm2 in our
experiment). At higher supersaturation, the nucleation rate of new germs becomes important
and the interactions between neighbours are quickly cumbersome. Nevertheless, the diffusion
length is the more small as à is large which limits the effects of the confinement. In practice
we can disregard them up to a certain size of the domain which can vary with the

supersaturation but never exceeds a few hundreds of 03BCm.

3. Theoretical aspects of the problem.

In order to understand these morphologies, we need three theoretical features that we expose
in the following :

a. THE FINITE SIZE EFFECTS. - We assume that the medium is two-dimensional since the
thickness of the sample is much smaller than its lateral dimensions L. Let us assume that n
germs are initially present in the system and that the initial concentration is Coo. Let

Co be the equilibrium concentration on the liquidus line corresponding to the temperature of
the sample. Let R be the final radius of a germ. The conservation of impurities implies that

or that

b. THE MULLINS-SEKERKA INSTABILITY. - A growing circular germ is unstable with respect
to the Mullins-Sekerka instability. The growth rate of the instability can be written as

Here the radius of the germ is slightly deformed as :

where 0 is the polar angle. do is the capillary length defined as do = (’Y / L )(T* /mC o(k - 1 ))
in the chemical case. The expression for the growth rate is valid in the quasistationary
approximation, i.e. when it is much larger than the inverse of the time scale for the evolution
of the radius Ro. In the limit Ro goes to + oo, j goes to + oo, j/Ro = k, one obtains the usual
Mullins-Sekerka growth rate as

where V = dRo/dt. The largest growth rate is obtained for the most unstable wavelength
Àc = 211"(3 doD/V)1I2.

c. CRYSTAL GROWTH IN A CHANNEL. - When the circular germ becomes unstable, a six fold

periodic structure is generated so that each petal can be considered as a single crystal growing
in a divergent capillary. Crystal growth in a capillary of uniform section is now well

understood. Let us introduce the dimensionless diameter rl = f / do where f is the width of the
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capillary and do the capillary length. In a recent study, Brenner et al. [6] determine

approximate solutions for needle crystals growing at constant velocity. For a given
undercooling the growth rate appears as a two-valued function of the diameter A when this
diameter is larger than a critical value Ac(0394). Three of these curves are shown in figure 3 for
the values of à equal to 0.1 ; 0.2 and 0.3 and a surface tension anisotropy (3 equal to 0.1. It
appears that Ac (A) is a rapidly decreasing function of d. The lower branch is at low Peclet
number (defined to be Pe = PV /2 D), and corresponds to the Saffman-Taylor branch already
discussed by many authors [7, 9]. As shown analytically, [10] this branch is unstable with
respect to tip-widening instability, which is confirmed by experiments [11] and numerical
simulations [12]. The upper branch, at Peclet number larger than 1, is stable and corresponds
to free dendritic growth when A goes to infinity. When A is smaller than A,, (,à), the growth is
not stationary.

Fig. 3. - Dimensionless growth velocity (in unit 2D / do) versus channel diameter (adapted from Fig. 3a
of Ref. [6] for L1 = 0.1 ; 0.2 ; 0.3 and /3 = 0.1).
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4. The petal shape regime.

It is observed at small supersaturation, typically à  0.2. We already described this growth
regime in a previous article [4] (Fig. 4). In this section we summarize the main results already
obtained :

- the germ, circular at the beginning, destabilizes above a certain radius R6 : an hexagonal
modulation develops which is amplified by the destabilizing effect of the diffusion field. A
linear stability analysis (Mullins-Sekerka theory) gives R6 as a function of the capillary length
do. Comparison between theory and experiment gives do - 200 Â. This value is in good
agreement with the one we can directly calculate from the phase diagram ;

Fig. 4. - Petal-shape regime (0394 = 0.15 ).
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- a harmonic analysis of the shape of the germ shows that the 12th and 18th modes are
both in phase opposition with the 6th mode (Fig. 5a). They correspond to a non linear
saturation of the hexagonal mode and should lead to a tip-splitting instability of each branch
of the monodomain. Because of the confinement and of the slowing down of the growth at
long time, we did not observe this second instability ;

Fig. 5. - Experimental Fourier component 5j versus time in the weakly non linear regime (see
Eq. (4)). The value of j is indicated on each curve. a) à = 0.1 (petal shape regime ; from Ref. [4]) ; b)
à = 0.3 (dendritic regime).

- the total area A of the germ increases linearly in time (Fig. 6a) as long as boundary
effects are negligible. This result is compatible with the numerical simulations of Brush [13].
As was shown by this author, the linear dependence of the area versus time remains valid in
the non linear regime (whatever the shape of the germ) if the Peclet number defined to be
Pe = RV /2 D is small (R is the radius of the germ) and if the tip radius of each branch is
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« 1

Fig. 6. - Global properties of a germ in the petal shape regime ; a) total area versus time ;
b) maximum radius of the germ versus its area (the dotted line corresponds to a circular germ).

sufficiently large compared to the capillary length. Thus, the variation of the total area can be
computed by assuming that the germ is circular and by using the well known self-similar
solution in t 1/2. The measurement of the slope of A (t ) enables us to calculate the

supersaturation a. Remember that
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where À 2 is a function of ¿1 which is given by [14] :

Ei (x ) is the exponential integral function;
- the maximum radius of the germ increases as t1/2, as can be seen in figure 6b even in the

non linear regime. In this figure, we plotted RMax. versus the area A of the germ for various
values of the sursaturation 2l (calculated from the measured slope dA/dt via Eqs. (7) and
(8) ) . In this regime the radius of curvature of the tip of each branch continuously increases
whereas the tip velocity decreases as t- 1/2 . This result is essential. It characterizes this time-
dependent growth regime.

5. The dendritic regime.

For values of the supersaturation lying between 0.2 and 0.6, we observe another type of
growth. The destabilization mechanism is always the same at the beginning and the hexagonal
mode first develops. Its non linear evolution is however quite different because each branch
leads very quickly to a dendrite. Figure 7 shows the typical evolution of a germ at

à - 0.3. In this sequence, the sidebranching is not very developed. By increasing A, the
sidebranching develops, leading to more and more compact germs (Fig. 8). Note in figure 7c
that the germ is almost circular : the six primary dendrites are still visible. Their tips are stable
but their secondary branches are unstable wih respect to tip-splitting instability. By further
increasing the supersaturation, the tips of the primary dendrites become themselves unstable
by tip-splitting instability. It is then impossible to recognize any direction of privileged
growth. This regime will be described in the next section. We made again a global analysis of
the germ for various supersaturations. Then we were interested in the local properties of a
dendrite (velocity and radius of curvature of its tip).

5.1 GLOBAL PROPERTIES. - We made again a harmonic analysis of the shape of the germ
just after its destabilization (Fig. 5b). One observes that the first mode to appear is still the
hexagonal one. The following one is the 12th mode still in phase opposition with the 6th. The
18th mode then appears. Contrary to the petal-shape regime, this mode is in phase with the
fundamental one. It seems to us that the further evolution of the germ is tightly related to the
sign of this mode. It is also worth noting that this mode corresponds to the development of a
side-branching instability.
We also measured the area of the germ against time for many supersaturations (Fig. 9a). In

every case, A (t ) is a linear function. This is a consequence of the impurity conservation. The
values of 0394, obtained by direct measurement of the undercooling, or by measurement of the
volumic fraction x of hexagonal phase at equilibrium, are in good agreement with the one we
deduce from the slope dA/dt via equations (7) and (8). These results are compared in table I.

Table 1. 
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Fig. 8. - Germs in the dendritic regime at various supersaturations ; a) a = 0.24 ; b) a = 0.45 ; c)
a = 0.63.

Finally we plotted RMaX. versus A (proportional to t) (Fig. 9b). All these curves are similar
(within the experimental error) and superimpose. One observes two behaviours : a transient
regime during which RMax. increases as A 1/2 (or t 1/2 followed by a permanent one during which
RMax. is a linear function of A (or t). In this limit the six dendrites are independent : their tips
have a constant curvature and move at constant velocity V = dRMax./dt.



2132

Fig. 9. - Global properties of a germ in the dendritic regime ; a) total area versus time ; b) maximum
radius of the germ versus its area (the dotted line corresponds to a circular germ).

These free dendrites belong to a class of stationary solutions which have been already
extensively studied both experimentally and theoretically [15, 9]. We summarize their

properties (partially published in Ref. [1]) in the next subsection.
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5.2 LOCAL PROPERTIES OF A DENDRITE. - For each dendrite we measured the velocity V
and the radius of curvature p of its tip. Such a measurement is difficult because it requires to
wait until the dendrite gets its stationary growth regime. In figure 10 we plotted
Ln p as a function of Ln V for various supersaturations. We found a linear law : its slope is
near to 0.45 which means the velocity is approximately proportional to the square of the
curvature. In this experiment (p 2 V &#x3E; - 12 ktm3/S. This law is very robust and is well verified
even if the germ is not strictly in a stationary growth regime. This experimental result is

compatible with the theory and the selection mechanism by surface tension anisotropy (see

Fig. 10. - Dendrite tip radius against tip velocity. These measurements have been made on different
dendrites at various supersaturations.

Ref. [1] for further information). It expresses that the radius of curvature is proportional to
the most unstable wavelength of the planar front (p oc Àc oc (do D/V)1/2). We also tried to
test on a few examples whether the Ivantsov relation was well satisfied. This relation relates
the product p V to the supersaturation a. (Such a verification is tricky because one have to
make sure that the dendrites are independent and grow at constant velocity.) Table II gives a
few values of the Peclet number measured experimentally and calculated from the Ivantsov
relation :

Remember that the Peclet number is defined to be Pe = pV /2 D for a dendrite.

* For this value of the supersaturation it is impossible to obtain isolated dendrites.
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The agreement between theory and experiment is satisfying according to the fact that the
Peclet number varies very fast with the supersaturation à.

Let us notice a last original aspect of the growth of this phase. It happens (this is very

scarce) that a disclination line pierces the germ. For some reasons of symmetry, this line is
necessarily aligned along a two-fold axis of the hexagonal lattice [16] which is also a

preferential direction of growth of the dendrites. Figure lia shows a dendrite whose growth
axis is confused with the disclination. It is clear on this picture that this peculiar dendrite is
sharper and moves faster than an ordinary dendrite. The defect, whose topology is described
in figure llb, creates a local cusp-like perturbation on the tip which strongly modifies the
selection mechanism of this dendrite. A naive interpretation would consist to say that the
defect increases the surface tension anisotropy nearby the tip, which leads, according to the
theory, to both a sharper and faster dendrite ( p 2 V decreases whereas p V remains constant).
Let us discuss now the transition between petal shape and dendritic regimes. As

mentionned before, each petal can be considered as a single crystal growing in a divergent
capillary with an angle 0 = 2 7r/6. We assume that the growth characteristics are similar in a

Fig. 11. - a) Anomalous dendrite which is growing along a disclination line : this dendrite is sharper
and move faster than the other dendrites. b) Columns configuration in a vertical plane normal to the
defect line (schematic).
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divergent capillary and in a rectilinear channel, for which theoretical results are available. At
least for small angle of divergence, one can approximate the dimensionless channel width
ll = fldo by 2 ’TTRMax./6 do where RMax. is the radius of the envelop of the petal tips. As
mentionned in section 3c, growth at constant velocity is possible only if A is larger than a
critical value Ac(2l), a decreasing function of the undercooling. At low undercooling, the final
radius R f of the germ given in section 3a is such as ll,f = 2 irRf/6 do is smaller than

Ac (,à) and unsteady growth is observed (petal shape regime). At larger undercooling the final
radius of the germ is larger and Ac(Ll) smaller, so that above some critical value

Llc, for which Ac (,à) and Af are equal, growth at constant velocity, i. e. the dendritic regime, is
expected. This is what we observe experimentally. Consider the case à = 0.3 for which
Ac -- 104 (Fig. 3). As do = 200 Â, the size of the corresponding channel is f = 200 03BCm. This is
of the same order of magnitude as what we observe experimentally at this supersaturation.
Despite this good qualitative agreement, further theoretical results are needed to make a
quantitative comparison with our experiment. In particular calculations in the divergent
geometry remain to be done.

It is interesting to discuss this transition in comparison to what occurs in the viscous
fingering problem. In this last problem, the transition between petal-shape and dendritic
regimes is observed when a petal meets a small air bubble [17]. In this case the transition is
interpreted as being due to the anisotropy of the surface tension induced by the bubble.
Similar phenomenon occurs when a thin wire is stretched along the axis of a divergent cell
[19] : in this case, anomalous fingers can develop too. Here again, the wire may introduce an
anisotropy in the surface tension and allow the growth of fingers of relative width less than 1/2
i.e. fingers scaled with their own tip radius as it is the case for a dendrite. However,
differences exist between viscous fingering and crystal growth because of Peclet number
effects. This can be simply observed in a rectilinear geometry. In the Saffman-Taylor
problem, linearly stable steady states growing with constant velocity exist whatever the
driving force. The presence of anisotropic surface tension is not necessary and only changes
the allowed values for the growth velocities. In crystal growth, steady states exist only for
sufficiently large undercooling. The steady state branch is two valued. Only the upper branch,
corresponding to dendritic growth is stable. Thus, transition between unsteady behaviour and
growth at constant velocity can be induced by increasing the supersaturation.

6. The dense-branching regime.

At large supersaturation (à &#x3E; 0.6), it is impossible to get a stable dendrite because its tip is
unstable with respect to tip-splitting instability. In this regime, the germ is very dense and it is
often impossible to recognize the axes of dendritic growth (Fig. 12). The germ is globally
circular although the front is very unstable with respect to the tip-splitting instability. Because
of the huge rate of nucleation of new germs, it is quasi impossible to obtain large domains. It
is also very difficult to measure accurately the supersaturation and an evolution in time of the
area of the germ because the temperature of the hot stage is not well stabilized just after the
cooling of the sample (20 to 30 s are necessary to stabilize the temperature of our system). By
tracing concentric circles and by counting how many times a given circle intersects the
interface, it is possible to estimate a characteristic size A of the cells. We found that À is
independent (at about 20 %) of the radius (Fig. 13) and of the order of the most unstable
wavelength of the planar front Ac = 2 ’TT (3 do D/V)1/2. In figure 11 for instance, we measure
À - 7 &#x3E;m and V - 1.2 J.Lmls. By taking do - 200 Â and D = 1.2 x 10- 7 cm2/s we calculate
Ac -- 5 )Jbm which is well of the same order of magnitude as A.
The transition between dendritic regime and dense branching regime is more difficult to
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Fig. 12. - Dense branching regime (0394 = 0.7 ).

explain. From figure 8, it appears that new dendrites are formed with the sidebranching of the
six main dendrites. This process appears in directional solidification too. In this case, the

wavelength of the dendritic array decreases with the pulling velocity. If this velocity suddenly
increases, the reduction of wavelength occurs with the development of the sidebranching of
the initial dendrites [18]. The theoretical understanding of this process is not achieved for the
moment.
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Fig. 13. - Characteristic size À of the cells versus radius r in the dense branching regime.

Concluding remarks.

We observed, described and discussed the different morphologies that a liquid-liquid crystal
interface growing from a supersaturated solution can exhibit at different supersaturations.
At low supersaturation, the growth is unsteady, self similar in B/7. The interface, initially

circular, destabilizes to form six petals, whose tip radius grows in à, like the envelope of the
germ. At larger supersaturation, each petal destabilizes to form a dendrite, i.e. a single crystal
growing with constant velocity. We discuss the transition between the two regimes in
connection with the graph « velocity versus supersaturation » computed for a crystal growing
in a rectilinear channel. At larger velocity a dense branching regime is observed. The
reduction of wavelength of the pattern appears to be due to the development of the
sidebranching and to the tip-splitting of the six primary dendrites.
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