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Walk inside Hofstadter’s butterfly
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(Reçu le 15 février 1989, révisé le 3 avril 1989, accepté le 19 avril 1989)

Résumé. 2014 Cet article est une invitation à comprendre à l’aide de dessins calculés numériquement
les propriétés du spectre de l’équation de Harper dans l’esprit du célèbre dessin dû à Hofstadter.
On cherchera ainsi à expliquer certains résultats récents de mathématiciens et de physiciens sur la
structure cantorienne de ce spectre.

Abstract. This paper describes with help of numerically computed pictures the fascinating
properties of the spectrum of Harper’s equation in the spirit of celebrated Hofstadter’s picture.
We hope to explain recent results obtained by mathematicians and physicists about the Cantor
structure of this spectrum.
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Introduction.

In 1976, the physicist Hofstadter [1] produced in his thesis a beautiful butterfly in order to
describe the dependence of the spectrum of a finite-difference equation discovered by Harper
[2] with respect to some parameter a. This equation appears in the study of the Schrôdinger
equation with constant magnetic field (or more generally periodic magnetic field) in
dimension 2. More precisely, if we consider the following operator in R2:

where B &#x3E; 0, h &#x3E; 0, R &#x3E; 0 and VR is C °° periodic on a lattice RT, the reduction to Harper’s
equation appears in many asymptotic situations according to the different relative values of B,
h, R. Let us recall briefly some of these contexts :
- the weak magnetic field limit (treated by Peierls approximation) : B ~ 0
- the strong magnetic field limit : B - oo
- the semi-classical limit : h - 0
- the tight binding approximation : R ~ oo .
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In all these cases, the parameter a appears to be equal (or the inverse of) the product of the
magnetic flux through a lattice cell OR (B) divided by a flux quantum (hcle). It is not possible
to give here a complete list of references but let us mention some works of physicists or
mathematicians : Chambers [3], Kohn [4], Landau [5], Luttinger [6], Novikov [7], Peierls [8],
Lyskova [9], Bellissard [10], [11], Wilkinson [12], Helffer-Sjôstrand [13-15], Nenciu [16].

Let us now define Harper’s equation more precisely ; we look at the following family of
bounded operators on f2(Z) (where f2 (Z ) is the set of the square summable sequences) :

and we study the spectrum Z§J&#x3E; ’ of H:’ IL and more precisely the set :

By definition the spectrum Z§J&#x3E; ’ is the complementary of the set of the real E such that the
operator (H;’ IL - E ) has a bounded inverse in C (f2(Z), f2(Z»). For a rational, a way to
determine the spectrum is to look for the generalized eigenvectors, that is to determine the
value of E for which there exists a bounded sequence (i.e. in fOO(Z» (u(n)neZ of :

In the case where a is rational the set ,¡a, IL is the union of q bands and the idea of Hofstadter
was just to show how the repartition of these bands depends on the expansion of a as a
continuous fraction (which is of course finite in the case where a is rational). This picture
permits to imagine the structure of the spectrum in the irrational case which is usually
assumed to be a Cantor set (for the mathematicians, this property is a conjecture of Kac and
Simon [17] called it the 10 Martinis conjecture). From a careful analysis of the butterfly,
Hofstadter gave some precise rules for the repartition of the bands in the rational case.
Another complementary description was given by Wannier [18] (see also Claro-Wannier
[19]) ; it is related to considerations on the integrated density of states (see the discussion
following picture 12). In the last ten years, this problem has inspired many contributions from
mathematicians who tried to explain different properties which appear on Hofstadter’s
butterfly ; let us mention : Bellissard-Simon [20], Helffer-Sjôstrand [13, 14, 21], Van Mouche
[22], Choi-Elliott-Yui [23] ; these mathematicians were quite often inspired by earlier

partially heuristic but fundamental results by physicists as for example : Claro-Wannier [19],
Wilkinson [12], Azbel [24]... It is indeed in these papers that appear the basic ideas of

renormalization, microlocal techniques, role of the density of states which will be described
later.

What follows is neither a mathematical article nor a physical article. We just intend to
present some properties of the butterfly and to expose what is, to our knowledge, actually
proved. All the results we are speaking about are illustrated by pictures computed
numerically. We have computed many zooms inside classical Hofstadter’s butterfly and we
hope that this article could be an introduction through pictures to all above mentioned

articles. All the pictures are obtained by combination of adapted zooms, variation of the
parameter li and particular choices of sequences of rationals :

When mathematical proofs exist, we try to give precise references.
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1. Butterfly’s programm.

We want to study the spectrum Ea0 of Harper’s operator :

and more precisely we look at the set :

u is a real parameter in [0, + oo [ and a is in [0, 1]; (J belongs to [0, 2 -ff
Let us recall the following properties of £:

(1.1) If a z is rational, the spectrum is the union of q disjoint bands (the only
exception is for the even q’s for which the two central bands touch at the middle of
£a, IL) (see [20, 22, 23]). Moreover the length of the gap between two bands is
minorized by 8- q [23].

(1.2) If a is irrational the spectrum £a,,,, is independent of 6 (see for example a proof in
[13]).

This is no longer true in the rational case ; because we want to understand Ea0 for a
irrational from numerical computations for a rational, we have to use some continuity
properties of the spectrum with respect to a which are only true for Z"&#x3E; IL.

(1.3) The spectrum is symmetric by the map : E ~ - E.
(1.4) The spectrum is contained in [-2-2u, 2+2u].
(1.5) ’-Vg = 1££’/g (this is Aubry’s duality, see [25, 17, 20]).
(1.6) For some families of irrational a, the spectrum 2; is a cantor set :

[1.6a] Liouville numbers (see (23)), i.e. such that :

Vu&#x3E;0 , 3p lq such that 1 a - plq 1  C - q

(more intuitively, the Liouville nrimbers are transcendental numbers which can be
very well approximated by rational numbers)

or [1.6b] (see [13, 14, 21]) numbers whose expansion as a continuous fraction satisfies the
following condition :

(for some C large enough) (this is only proved in the case &#x3E; = 1)
or [1.6c] for a G8-set which can not be explicited of a (cf. [20] in relation with the more

recent result by Van Mouche [22]). (Recall that a Gs-set is a countable intersection of
dense open sets and that this set is dense ; this is a useful concept to describe the

instability of the spectrum).
(1.7) Ea,u - _y 1 -a, g.
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THE BUTTERFLY. - For each rational value of a, we present on a vertical line of abscissa a
the spectrum Z downwards. Up to some rotation, this is classical Hofstadter’s butterfly. After
Hofstadter, many physicists or mathematicians have produced similar pictures (let us mention
Claro-Wannier [19], Wilkinson [12], Van Mouche [22], Bellissard [10, 11]). We have
reproduced some of these pictures here. But the originality of some other pictures presented
here is perhaps in the introduction of particular zooms and subpictures corresponding to
special sequences of rationals in order to follow the dependence of the spectrum with respect
to the expansion of a as a continuous fraction.

REMARKS ON THE NUMERICAL METHOD. - In a concrete way, we start from a given
« e Q fl ]0,1 [, and we are looking for values of E and 0 such that :

has a solution in l~(Z) (cf. [20]). To realize this, we write (*) on the form :

with : O O

If a = p /q, we remark that with :

we have :

and we are reduced to the study of :

If one remarks that det M = 1, we shall get a solution in eOO(Z) for the problem (*) if :

Consequently E will belong to 2 if and only if there exists 0 such that (**) is satisfied.

Actually, the following relation has been observed by Chambers [26] (see also Butler-Brown
[27] and Obermair [28])

So we can transform the criterion of belonging to 03A3 into the following simpler criterion :

We use this criterion for the numerical computations.
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SEMI-CLASSICAL APPROACH AND RENORMALIZATION. - Wilkinson’s work [12] is based on a
WKB analysis with infinitely many « potential » wells in the space T * R. It is first observed
that the spectrum of H§J&#x3E; ’ is the same as the spectrum of the pseudo-differential operator :

associated by the Weyl quantification with the Hamiltonian p (x, g) = 2 cos x + 2 IL cos e.
This means that for each u e 8 (R ) (where 8 (R ) is the space of the C °° rapidly decreasing
functions), we define p (x, hDx) u by :

If we have E:0 0, - 2 - 2 E -«--- 2 + 2 g, the WKB technique consists in looking first at
the set : p -1 (E ) in T * R. p (E) is a union of infinitely many compact components
Cf3 (E) (/3 E l 2 ) (called the wells) where Cf3 (E) is obtained from Co(E) by translation of
2 7T (3. For each of these wells, there is a standard way to determine near E semi-classical
eigenvalues modulo O(hOO) Àj(h) determined by a Bohr-Sommerfeld type condition and a
corresponding quasimode 0 9 (x ; h ) living essentially in CO(Àj(h». In doing this construction
we forget the tunneling interactions between the wells which modify completely the nature of
the spectrum but not the localization modulo 0 (h °° ) (actually modulo an exponentially small
term of order exp (- S/h )). Of course, because of the translation invariance in x and e, we can
associate with each well C{3(Àj(h)) a quasimode :

Let us now observe that the spectrum is localized in small intervals Ij (h) around the
À (h ). In each of these intervals (of length less than Ch 2), we can understand the spectrum as
follows ; let Xj (h ) the spectrum inside [(h) and Ej (h ) the corresponding spectral space. Then
starting from the 4&#x3E;f(x; h ), we can construct an orthonormal basis z ; h ) with essentially
the same properties as the 4&#x3E; f (x ; h ) (localization in e f3 (À ¡ (h ), invariance by the translations :
es (x ; h ) - e- i (2 -) XP21h e7(x - (2 17") (31 ; h )) and such that (ef(x; h) - 4&#x3E;f(x; h ) ) is quite
small in a sense which can be specified. The study of the spectrum is then reduced to the study
of the infinite matrix :

This infinite matrix has the following invariance properties :

where h’ is related to h by the following relation :

and :

The principal term is the diagonal term fj (0, h ) which is not far of À j (h ). The other terms
corresponding to j6 # y correspond to the interactions between the different wells and
Wilkinson suspects that, in the case where g = 1, the most important terms are obtained for

1 y - f3 1 = 1 (the mathematical proof is given in [13]).
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The important remark is now the following ; if 1£ = 1 and if h is small enough, the study of
the spectrum of the infinite matrix Mys is equivalent to the study of a pseudodifferential
operator with parameter h’. Moreover, this pseudodifferential operator is given by :

S (E ) is an action measuring the minimal « distance » between two different components of
p- l(E).
What we find in this correspondence is just a perturbation of Harper’s equation with the

same symmetry properties and if h’ is small we can iterate the procedure. This is the
semiclassical version of the renormalization procedure. This approach was proposed by
Wilkinson and was mathematically justified in [13].
We omit here to explain the problem occurring for E near 0 and which was treated

heuristically in Azbel’s paper [24]. The new problems are that, for E = 0, p-’(E) is not a
union of compact components and the traditional WKB construction fails. This problem is
treated mathematically in [21].

FURTHER REMARKS ON THE NUMERICAL ASPECTS. - Let us first remark that we observe (for
example in picture n° 1) artificial white vertical bands near a = 0, 1, 1/2..., due to the

repartition of the rationals a with bounded denominator (for example we take the

denominator less than 50).
As proved in [13] (which is inspired by the heuristical semi-classical approach given by

Wilkinson in [12]) and explained before, most of the bands have an exponentially small length
as a tends to 0 (i.e. comparable with exp (- 2 7rS / a )). This is due to the tunneling effect.
This phenomenon is quite visible on Hofstadter’s butterfly ; this is however no longer true
when you approach the middle of the spectrum i.e. for the bands near the 0 energy, because
the tunneling between the different connected compact components of the energy level (for
E #= 0) is not small when E approaches 0. This exponential length of the bands leads to
numerical difficulties if we want to visualize the picture without missing too many bands and if
we want to avoid exponentially increasing time of computation (when we consider rationals
with large denominators). To get good pictures with a reasonable time of computation, we
have added to the criterion (***), a criterion of change of sign (which detects the presence of a
band when P p.,p, q (E) changes sign). This criterion is apparently not used in [22] whose
butterfies are amputed from many bands. The improved criterion is quite efficient for
a =1 /q. But for a in the form 1 / (q + 1 /2 n ) (n cz N ), the criterion is again bad because the
spectrum appears as a union of tiny packets of an even numbers of bands (in fact,
q - 1 packets of 2 n bands + in the middle one packet of 2 n + 1 bands) (see pictures n° 26
and 27).

2. Description of the pictures.

Picture n ° l. This is the reproduction of the famous Hofstadter’s butterfly. IL is chosen equal to
1. We consider all the rationals a between 0 and 1 whose denominator q is less than 50 (we
have written a = p/q as an irreducible fraction).

Pictures 2 to 6 are inspired by those of Van Mouche [22]. The idea is to follow the

dependence of the spectrum with respect to 1£ as u goes from 1 to 0. According to property 1.5
in section 1 this is sufficient. The spectra are represented in the rectangle
[0,1 ] x [- 2 - IL, 2 + IL ] (the picture corresponds to the couple (a, E) with E e JS").
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Picture n ° 2. We take 03BC = 0.75 and we consider all the rationals a between 0 et 1 whose
denominators are less than 30.

Picture n ° 3. We take 03BC = 0.5 and we consider all the rationals a between 0 et 1 whose
denominators are less than 30. Outside large gaps around the diagonals of the rectangle, the
other gaps are narrower.

Picture n° 4. We take 1£ = 0.25.

Picture n 5. We take &#x3E; = 0.125.

Picture n° 
° 

6. We take 03BC = 0.0625. We consider all the rationals of denominators

, 40.
Pictures 7 to 12 show corresponding negatives. On each vertical line of abscissa a, we put

the complementary of the spectrum a. To allow a better visualization, we have amplified the
gaps by modifying the numerical procedure. Consequently, one can see in the picture an
artificial horizontal line of gaps with ordinate 0 corresponding to the points where the central
bands touch in the even case (see [20]).

Picture n° 7. We take g = 0.5.

Picture n ° 8. We take J.L = 0.25.

Picture n 9. We take 03BC = 0.0625.

Picture n 10. We take 03BC = 0.001.
Pictures 2 to 10 show the evolution of the spectrum with respect to 03BC The set of the gaps is

distorted continuously and at the limit we get the graphs of E = cos wia (f EN*) et
E = cos ir (1 - l a ) (1 e N * ) which are reproduced in :

Picture n° 11. Graphs of E = cos irf a (f E N ) and E = cos ir (1 - fa) (f EN) with
1 -- f -- 12.

This is related to the computation of the integrated density of states. The structure of this
graph is homeomorphic to the following picture introduced by Claro-Wannier [19] :

Picture n " 12. x = E [f a + m ] (E [y ] is the fractional part of y ; f, m E Z). This picture is
obtained by drawing in the square [(0, 0), (1, 0), (1,1 ), (0,1 ) ] the lines starting from the
points (0, 0 ) and (0,1 ) of equation x = fa and x = 1 - fa ( 1, l 12 ) and the reflected
rays in the square according to the billiard reflection rule.

In order to understand the previous pictures better, let us recall :
Some properties of the density of states.
The integrated density of states Da was introduced a long time ago by physicists (cf. [17, 29,

30]... for references). If Xe is the operator of multiplication (operating on f2 (Z » by the
characteristic function of l n 1 - f -- n -- f , we can define it by :

where Pa (H) is the spectral projection of H on the interval 1Il. It has the following
properties :
PO E --+ D", e (E) is independent of E in R / £ ", ". It does not either depend on 0 if a is

irrational.
Pl E --+ Da, e (E) is continuous, constant in each gap of the spectrum.
According to PO and Pl, we shall denote it by Da when it does not depend of 0 (i.e. for a
irrational or for E in R / Z " 03BC). In the other cases you can think to D as the mean value over 0
of Da, e.
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P2 For E in H / X «, l, there exists 2 integers m and n in Z such that : Da (E ) = m a + n (cf.
[10, 11] for a presentation and references). Moreover, if avaries, one can find m and n
independent of a if E remains in R/X", ’.

P3 For E in R /Z"&#x3E; ’ and a = p lq, Da (E) can be computed as the number of bands in
{y :s: E ) divided by the total number of bands ( = q ).

P4 Da (E) is independent of03BC as E remains in R / X a, ,,.
All these properties are fundamental. However the conjection of P2 and P3 does not permit
to compute m and n exactly. The following result is announced in [20] and used in [23] (but
the proof is not detailed). The convenient m is determined for a rational by choosing in all the
pairs (m, n ) such that : Da (E) = ma + n the m with minimal module. The deformation from
IL = 1 to u = 0 respects all the gaps of R /Z" &#x3E; ’ for a rational and consequently one can use
P4 for the computation of the integrated density of states. We tend to the situation where the
gaps are concentrated around the points of intersection of the line : a = p /q and of the
graphs represented in picture n° 11. This picture is sent into picture n° 12 by the map A cos.
At this point of intersection the pairs (m, n ) such that : D« (E ) = m + n a , are represented by
the lines : x = m« + n and the canonical pair corresponds to the line with minimal slope.
According to P3 the knowledge of the canonical pairs (m, n ) corresponding to the different
gaps in R / 2 ",," for some a = a 0  = 1 / (qo + 1 / (q 1 + (qn _ 1 + 1 /qn ) ) ) allows to describe in a
precise way how each of these bands is split when we consider :
à =1 / (qo + 1 / (ql + (qn -1 + 1 / (qn + 1 /q ) ) ) ) at least for large 1 q 1. . We get the following
rule.

Rule 1. Each band of 03A3a0,03BC splits into  q 1 + et bands where :

Vi (which is independent of q) can be easily computed from the pair (m, n ). It can also be
expressed as an integer related to the computation of a Chern class (cf. [11] or [31]). This
explains the integer character and many properties of stability by deformation but does not
seem to give a way to compute the integrated density of states explicitly. We shall see many
examples in the different pictures which we shall present later.

Picture n° 13. Spectrum for « near 0.
We make a left zoom of the spectrum near 0 (see picture n’ 5). g is equal to 0.125 but we

stay in a region where a is small with respect to 1£ and this is the semi-classical behavior with
respect to « which permits to understand the picture. Here we have considered the part of the
spectrum which is between - 2.25 and - 1.5 and the rationals a whose denominators q
satisfies : 10 , q , 55 and 0 , a 0.1.

Picture n° 14. Spectrum for a near 1.
We take &#x3E; = 1, a =1 / (1 + 1 /q ) with 2 , q , 80 and 0. 93750 -- « ,1. We observe the

spectrum in the intervall (- 0.5, 0.5 ). This picture describes partly the structure of the
spectrum in the middle. The reader can see the difference between the case q odd

(corresponding to an even denominator !) where the central band must be thought as a union
of two touching bands and the case q even (odd denominator), where the central band is an
isolated band which is symmetric around 0.
The study of the spectrum near 0, which corresponds to a saddle point of the hamiltonian

cos x + cos e associated to the Harper’s operator (whose spectrum is the same as the

spectrum of the pseudodifferential operator on L2(R) : cos x + cos (2 iradx» is realized

carefully in [21] (see also the old paper by Azbel [24]). One of the difficulties is that the
energy surface corresponding to E = 0 is no more a union of connected compact components
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(in the opposite of the case when E * 0), and locally we have to solve some microlocal
branching problem.

Picture n 15. Spectrum for a near 1 (bis).
It has the same characteristics as the picture ri 14 but we consider all the a with :

a = p /q with 2 , q , 80 and 0.9375 , a ,1.
Picture n ° 16. Spectrum for a near 1/2.
In this picture we intend to show the asymptotic behavior as a tends to 1/2. For that we

consider the following sequence of a : a =1 / (2 + 1 /q ) with - 30 , q , 30,
0.39 -- a -- 0.61. g is equal to 1. The picture is symmetric with respect to the line
E = 0 and a = 1/2. For a = 1/2, the spectrum is the union of two touching bands. Each of the
two bands is the set generated by one of the eigenvalues of a family of 2 x 2 matrices
depending periodically of the two Floquet parameters : x, e:

For a rational near 1/2, the bands constituting .!a are concentrated around lines or parabolic
paths tending as a tends to 1/2 to the ends of the two bands corresponding to

a = 1/2. In fact, the problem is reduced in this case to the semi-classical analysis of the
pseudo-differential 2 x 2 system :

with h/2 ir = a - 1with h /2 TT’ = 2’
All these properties are rigorously studied in [13] and [11].
Picture n* 17. Spectrum for a between 1/2 and 2/3.
We take &#x3E; = 1, a rational with denominator less than 50 and 1/2  a 2/3. This is a zoom

corresponding to the left part of the spectrum that is - 3 -- E -- - 1. The bands corresponding
to 1/2 and 2/3 are easily guessed. If one compares with picture n° 1, one observes the recursive
structure of the picture. One observes also the same type of asymptotic behavior of the bands
near 1/2, 2/3 and 3/5 (where two bands are visible). This is studied in detail in [14] and [11].

Picture n&#x3E; ° 18. Spectrum for a around 1/3.
IL = 1. We consider the rationals of denominator less than 55 with 0.266 a 0.401.

Once again the asymptotic behavior of the spectrum as a tends to 1/3 is organized around the
three bands. The bands are concentrated around half-lines starting from the ends of the bands
corresponding to a = 1/3. The slope of these half lines (corresponding to a  1/3 and
a &#x3E; 1/3) are not necessarily symmetric with respect to the line a = 1/3. This effect is studied
in [11] and [14] in relation with the Rammal-Wilkinson formula (see [12]).
The next three pictures try to explain the structure around 1/(3 + 1/3).
Picture n&#x3E; ° 19. Spectrum for a around 1/ (3 + 113 ) : overall view.
We consider the a of the form 1/(3 + 1/(3 + 1/q)) with -12 _ q _ - 3 }

U {q = + oo} U {2 , q ,12 } . We can describe the spectrum corresponding to a by
analyzing its expansion as a continuous fraction. The spectrum corresponding to 1/3 has 3
bands. The spectrum corresponding to 1/(3+1/3) has ten bands corresponding to the
repartition 3 + 4 + 3 (downwards). We have (with the notation preceding the picture n° 13) :
vl=0, V2 = 1, V3 = 0.

As q = - 3 (corresponding to the last vertical line on the left), the counting of the bands
JOURNAL DE PHYSIQUE. - T. 50, N. 15, 1-1 AOÛT 1989 119
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downwards, which can be made with help of pictures n° 20 and 21 gives that the corresponding
indices v j, k associated to 1 / (3 + 1/3 ) are given by :

V2,23 is an index corresponding to the double band. This gives the following repartition :

according to the rule preceding picture n° 13.
Picture n 20. Spectrum for a around 1 / (3 + 113 ), upper zoom.
We amplify picture n° 19 for : - 3  E  -1.5. For q = - 3, the band (1,2) splits in two

subbands which seem to touch together. By examination of q = - 4, where you can see 3
subbands, we can be sure that the two subbands are distinct for q = - 3.

Picture n° 21. Spectrum for a around 1/(3 + 1/3), central zoom.
We amplify picture n° 19 for : - 1  E  + 1.
Let us now consider the spectrum for a around 1 / (3 + 1/2).
Picture n 22. Spectrum for a around 1 / (3 + 1/2 ), global view.

j 
We consider the a of the form 1/(3+1/(2+1/q» with ( - 12 * q * - 5 )

1 U {q = + oo} U { 5 -- q -- 12 . We can describe the spectrum corresponding to a by
analyzing its expansion as a continuous fraction. The spectrum corresponding to 1/3 has 3
bands. The spectrum corresponding to 1/(3 + 1/2) has 7 bands corresponding to the

repartition 2 + 3 + 2 (downwards). We have (with the notation preceding the picture n° 13) :
V 1 = 0, v2=1, V3 = 0-
As q = - 5 (corresponding to the last vertical line on the left), the counting of the bands

downwards, which can be made with help of pictures 23 and 24 gives that the corresponding
indices Vj,k associated with 1/ (3 + 112 ) are given by :

This corresponds to the repartition : (5 + 4 + (5 + 4 + 5 + (4 + 5 7 1 q 3 = 32
according to the rule preceding picture n° 13. Let us observe that the two bands in the middle
touch actually because the denominator of a is even for q = - 5.

Picture n° 23. Spectrum for a around 1/(3 +1/2), upper zoom.
We amplify the picture n° 22 for : - 2.75  E  2.4. For q = oo, one can see two bands

almost touching (this is the beginning of the semiclassical behavior for a of the form
a =1 / (n + 1/2) with large n, here n = 3).

Picture n ° 24. Spectrum for a around 1/ (3 + 112 ), central zoom.
We amplify the picture n° 22 for : - 1  E  + 1.

Picture n° 25. The transition between 1/ (3 + 1/2) and 1/ (3 + 1/3
We present the spectrum for 0.285 -- a -- 0.305, a = 1/(3 + 1/(2 + 1/q)) or

1/(3+1/(3-1/q)) with 1,q,20.
Picture n ° 26. Study of the sequence a =1 / (q + 1/2).
We present the spectrum for 0 « a  0.3, a =1 / (q +1/2). The spectrum appears as a

union of packets of two subbands which almost touch. This corresponds to the fact that, in the
renormalization procedure described (and proved) in [13], the spectrum is given near each
semiclassical eigenvalue corresponding to ao =1/q (and far from E = 0), up to some dilation
and translation, by the spectrum of (a tiny perturbation of) an Harper’s operator,



2029

corresponding to a new parameter a’ = 1/2. This « tiny perturbation » is quite important
because according to [22] and [23], there exists effectively 2 q + 1 disjoint bands. Without the
perturbation, we should have observed q - 1 double bands. Let us observe that according to
[23] the distance between these two subbands is minorized by 8- (2q + 1 ), which is compatible as
q tends to 0o with the majoration of the perturbation (related to a measure of the tunneling
effect) deduced from the results of [13]. It could be interesting to try to optimize the two
different methods to get simultaneously better minoration and majoration. We have limited
the numerical computations to 2 , q , 20 and we loose some bands as explained in section 1.
The picture is limited to E  0.

Picture n ° 27. Study of the sequence a =1 / (q + 1/3 ).
We present the spectrum for 0  a  0.33, a =1 / (q + 13 ). The spectrum appears as a

union of packets of 3 subbands which almost touch, but now the size of the gaps is of the same
order as the length of the subbands. This corresponds to the fact that, in the renormalization
procedure described in [13] and recalled in section 1, the spectrum is given near each
semiclassical eigenvalue corresponding to a o =1 /q (and far from E = 0), up to some dilation
and translation, by the spectrum of (a tiny perturbation of) an Harper’s operator,
corresponding to a new parameter a’ = 1/3. But this operator has now 3 distinct bands. Here
we have 3 , q , 30 and we present E  0.
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Picture 1. - IL = 1 ; the Hofstadter’s butterfly.
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Picture 2. - IL = 0.75.
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Picture 3. - 1£ = 0.5.
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Picture 4. - IL = 0.25.
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Picture 5. - IL = 0.125.
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Picture 6. - IL = 0.0625.
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Picture 7. 2013 03BC = 0.5, negative.
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Picture 8. 2013 03BC = 0.25, negative.
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Picture 9. - 1£ = 0.0625, negative.
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Picture 10. - g = 0.001, negative.
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Picture 11. - The limit model, 1£ = 0+ , E = cos (ir la ) or cos (ir (1 - la ) ).
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Picture 12. - The Claro-Wannier representation of the integrated density of states.
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Picture 13. - Spectrum for a near 0, 03BC = 0.125, zoom in [0, 0.1] ] x [- 2.25, - .5 ].
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Picture 14. - Spectrum for a near 1, 03BC = 1, partial sequence a = q /q + 1, zoom in [0.9375,1 ] x

[- 0.5, 0.5 ].
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Picture 15. - Spectrum for a near 1, 03BC = 1, zoom in [0.9375,1 ] x [- 0.5, 0.5 ].
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Picture 16. - Spectrum for « near 1/2, 03BC=1, partial sequence a = q /2 q + 1, zoom in

[0.39, 0.61 ] x [- 4, 4 ].
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Picture 17. - Spectrum for a between 1/2 and 2/3, IL = 1, zoom in [0.49, 0.667 ] x [- 2.9, 0 ].
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Picture 18. - Spectrum for a near 1/3, IL = 1, zoom in [0.266, 0.401 ] x [- 3, 3 ].
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Picture 19. - Spectrum for « near 1/ (3 + 1/3 ), global view, ,u = 1, partial sequence
a =1/(3 + 1/(3 + 1/q)).
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Picture 20. - Spectrum for a near 1/ (3 + 1/3), upper zoom, g = 1, partial sequence
a = 1/(3 + 1/(3 + 1/q)).



2050

Picture 21. - Spectrum for « near 1/ (3 + 1/3), central zoom, g = 1, partial sequence
« =1/(3 + 1/(3 + 1/q)).
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Picture 22. - Spectrum for a near 1//(3 1/2), global view, 03BC =1, partial sequence
a =1/(3 + 1/(2 + 1/q)).
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Picture 23. - Spectrum for a near 1/(3+1/2), upper zoom, 03BC=1, partial sequence
a = 1/(3 + 1/(2 + 1/q)).



2053

Picture 24. - Spectrum for a near 1/(3 + 1/2), central zoom, u = 1, partial sequence
« = 1/(3 + 1/(2 + 1/q)).
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Picture 25. - Spectrum for « near 1/(3 + 1/2) and 1/(3 + 1/3), 03BC=1, partial sequence
a=1/(3 + 1/(2 + 1/q)) or 1/(3 + 1/(3 -1/q)).



2055

Picture 26. - Spectrum for a near 0, IL = 1, partial sequence a =1 / (q + 1/2).
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Picture 27. - Spectrum for a near 0,03BC=1, partial sequence a =1 / (q + 13 ).
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