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Résumé. 2014 Nous analysons par des techniques de théorie des champs le comportement
thermodynamique de membranes polymérisées fluctuantes, en l’absence de répulsion stérique, et
soumises à des conditions aux limites libres ou contraintes. La nature de la transition de

froissement est précisée en montrant que la tension engendrée par des conditions aux limites
contraintes peut être considérée comme le champ conjugué au paramètre d’ordre correspondant à
la transition. La phase « plate » de basse température, existant pour des membranes avec
conditions aux limites libres, correspond à la phase critique associée à une transition de flambage.
Nous présentons la solution explicite, dans la limite de grande dimensionnalité d de l’espace, du
modèle élastique des membranes fluctuantes, et nous présentons un traitement complet de la
renormalisation des fluctuations dans la phase plate.

Abstract. 2014 We analyze by field theoretical methods the thermodynamical behavior of

polymerized membranes, fluctuating without excluded volume interactions and in presence of
either free or constrained boundary conditions. We highlight the nature of the crumpling
transition, by showing how the tension arising in the presence of constrained boundary conditions
may be considered as the field conjugate to the corresponding order parameter. The low
temperature flat phase of membranes with free boundary conditions is viewed as a critical phase
corresponding to the buckling transition. We present the explicit solution, in the large d limit, of
the elastic model of fluctuating elastic membranes and we complete the renormalization of the
fluctuations in the flat phase.
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1. Introduction. 

z

The thermodynamical behavior of membranes is strongly influenced by their internal

structure. Indeed, recent theoretical studies have shown that polymerized membranes, in
contrast to linear polymers, remain flat at sufficiently low temperatures [1-5]. Thus there
exists a finite temperature crumpling transition between this flat phase and the high-
temperature, crumpled phase. The presence of this transition makes the behavior of
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polymerized and fluid membranes qualitatively different. Although the notion of the

crumpling transition was in fact first introduced for fluid membranes [6] one can show that in
these systems the flat phase could be stabilized only in the presence of the long-range forces
(or for abstract, theoretical membranes, whose intrinsic dimension D exceeds two). In a
sense, the coupling of bending or « undulation » modes with the elastic « phonon » modes,
present for polymerized membranes, induced such effective long-range interactions.
The very existence of a flat phase at D = 2 is surprising. In fact, it is possible to consider the

flat phase to be one, in which the Euclidean symmetry with respect to the space in which the
membrane is embedded is broken. Since this symmetry is continuous, one would expect the
Mermin-Wagner theorem to forbid such a spontaneous symmetry breaking for bidimensional
systems [7]. This paradox can be lifted in two ways : on the one hand one might argue, as we
have just mentioned, that the effective phonon-mediated interaction among undulations is
long-range, and does not fall therefore within the scope of the Mermin-Wagner theorem ; on
the other hand one may, perhaps more interestingly, draw the conclusion that the elastic
coefficients are nontrivially renormalized, in contrary to the regularity assumptions usually
made in the elastic theory of membranes [8-10]. From both points of view the nature of the
flat phase is worth investigating.
The up-to-date studies always considered a fluctuating membrane with free boundary

conditions. We find that the nature of the crumpling transition and of the flat phase is made
much clearer, if one considers constrained boundary conditions, in which the boundary of the
membrane is attached to a rigid frame [11]. With a suitable choice of the frame, this induces a
homogeneous tension or compression on the membrane. The tension applied to the frame can
be considered as the field f conjugate to the order parameter describing the crumpling
transition. Thus we consider as the parameters of the model both the temperature and the
field f. The case of free boundary conditions, considered by the previous authors [3, 4, 9, 10],
corresponds to the line f = 0. The consideration of new directions in this space, beyond
allowing for the introduction of new critical exponents for the crumpling transition, allows us
to consider the flat phase from a different point of view. Indeed, when a homogeneous
tension f is applied, the membrane is stretched and flat at all temperatures. However, if the
temperature T is lower than the crumpling temperature Tc, the membrane remains flat also
when fi 0, and the membrane relaxes to its equilibrium size. If we now imagine to attempt
to reduce further the size of the membrane by acting on the frame, the membrane buckles,
assuming an inhomogeneous state and exerts a pressure on the frame. The flat phase at
f = 0 can be thus considered as describing the buckling transition which separates stretched
from buckled membranes. The buckled state can be considered as a thermodynamical mixture
of flat states with different orientations.
The resulting phase diagram is similar to that of O (n ) symmetric magnetic systems, with f

playing the role of the magnetic field, and Tc that of the critical temperature. The flat phase
lies on the « coexistence curve » corresponding to f = 0, T  T,. It is different from the

corresponding line of magnetic systems since it is described by an interacting effective theory,
which implies a nontrivial critical behavior. As a consequence, classical elasticity theory
breaks down on the coexistence curve.
We have investigated the phase diagram of polymerized membranes and the nature of the

flat phase by two approaches :

(i) we have solved a model of fluctuating polymerized membranes with inner dimension D
in the limit in which the dimensionnality d of ambient space goes to infinity ; we have found a
crumpling transition for Du 2 and a non classical behavior, both at the crumpling and at the
buckling transition, for Du 4 ;

(ii) we have renormalized the effective theory for a stretched membrane for small, but not
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necessarily vanishing, « tension » f for D near the upper critical dimension four. We are
therefore able to give the values of all the most relevant critical exponents of the buckling
transition, to first order in an E-expansion, where e = 4 - D. In addition we argue that one of
the unstable fixed points found in the E expansion describes the buckling transition for fluid
membranes.

The plan of the paper is the following : the continuum elastic model which we adopt is
introduced in section 2 ; the known results on the crumpling transition for membranes with
free boundary conditions are briefly reviewed in section 3. The conjugate field f is introduced,
by means of constrained boundary conditions, in section 4, where the phase diagram is
discussed. Section 5 contains the derivation of the effective Hamiltonian for flat membranes
in the general case. The results of the renormalization group calculations on this effective
Hamiltonian are reported in section 6. Section 7 contains conclusions and perspectives.
Appendix A contains the d = 00 treatment of the elastic continuum model. Appendix B
contains the renormalization scheme for the effective Hamiltonian of flat membranes, and the
derivation of several scaling laws. Appendix C contains the calculation of the buckling
transition exponents to first order in e = 4 - D.

2. Model.

We define here the continuum model [3, 4] of the elasticity of polymerized membranes we
adopt and we discuss the relevant boundary conditions. As mentioned in the introduction, it is
convenient to consider at once the general case of our elastic manifold, whose internal
dimension D may be different from two.
The configuration of a polymerized manifold is given, once the location in the d-

dimensional ambient space of each of its molecules is known. We identify the molecules by
means of a D-dimensional coordinate system

The configuration of the membrane is therefore identified by the embedding a - X (a ),
where

We assume that the configuration XO ( u ) of minimal energy (« at rest ») is flat. It is therefore
possible to choose the coordinate system u in such a way that

The induced metric tensor gij is defined by

For the minimal energy configuration X°(u ) one has, in this set of coordinates,

The curvature tensor Kij is defined by

where Di denotes the covariant derivative. One has at rest



1790

The elastic energy density Je of an arbitrary configuration X (u ) can be expressed, in the
spirit of elasticity theory, as a Taylor series in ai X and its derivatives. In this expansion only
terms which are Euclidean invariant in the ambient space Rd and scalar in the manifold space
RD may appear. We have therefore

where

The terms neglected here are of higher order in X or involve higher derivatives, and may be
shown to be irrelevant. Other terms may be reduced to the above ones by partial integration.
The fact that X°(a ) corresponds to an energy minimum imposes the following relation :

If we now choose JCo so that the elastic energy vanishes at rest, we can write equation (2.9) in
a more compact form. We introduce the strain tensor Uij :

measuring the local stretching of the membrane. We then have :

where à is the ordinary Laplacian. The coefficient K o is the (bare) rigidity, and

Ao and go are the bare Lamé coefficients. The first two terms represent the stretching
elasticity, while the third one corresponds to the bending elasticity. Remark that since we use
a set of coordinates satisfying equation (2.5) we do not distinguish between covariant and
contravariant indices. The case of manifold with internal constraints, introduced e.g. by
disclinations, could be handled by considering a metric at rest gp. which is not flat. In this case
it may be helpful to consider more general coordinate sets. The expression of the elastic
energy H then becomes

where g° = det (g° ) and JC is given by

All indices are raised or lowered according to the metric g9., and Ao is the corresponding scalar
Laplacian.
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We consider the D-dimensional manifold of linear size L. We assume two types of

boundary conditions :

(a) free boundary conditions : the sides of the fluctuating manifold are free to move about ;
(b) constrained boundary conditions : the sides are instead attached to a D-dimensional

frame, which is assumed to be a hypercube of linear size eL.
The factor (is called the extension factor. When it exceeds 1 the membrane is stretched.

Thus the equilibrium configuration Xeq ( u) is no more a minimum of H, and linear terms
appear in its expansion around Xeq. These terms represent the internal tension introduced by
the boundary conditions.

3. Crumpling transition.

In this section we review some results conceming the thermal behavior of elastic membranes,
with free boundary conditions. We discuss the nature of the crumpling transition, which
separates a regime in which the membrane is flat from one in which it is crumpled and highly
folded.
The property which distinguishes elastic membranes from shells is the value of their elastic

constants, e.g. of the bending rigidity K o. In shells, K o is large and thermal fluctuations can be
neglected. For real two-dimensional molecular membranes K o is of the order of kB T, and
thermal fluctuations play an important role in their behavior. They have two important
consequences, namely to renormalize the elastic constants, and thus produce a breakdown of
classical elasticity theory [8-10] or to completely suppress the average planar shape of the
membrane and to induce a crumpling transition [3, 4, 10]. The notion of such a transition was
introduced in the context of the thermal behavior of fluid membranes [6]. It was shown that a
model of fluid membranes, whose inner dimension D is larger than two, exhibits a crumpling
transition at a finite temperature T,. This temperature vanishes for the realistic case of two
dimensional membranes, which are therefore crumpled at any nonzero temperature.

It was soon realised, however, that two-dimensional polymerized membranes may remain
flat at finite temperatures, yielding a finite T, [1]. This is a consequence of the interplay
between shape fluctuations (« undulations ») and elastic in-plane degrees of freedom

(« phonons »). Integrating out the phonons introduces an effective long-range interaction
among undulations, which stabilizes the flat phase even for D = 2.
Although a real, physical system exhibiting a crumpling transition has not yet been built, it

has been possible to observe it in a computer simulation. A Monte-Carlo study of « tethered
membrane » (without excluded volume) showed a finite temperature transformation, with a
pronounced peak in the specific heat [2]. This suggests that for D = 2, d = 3, the transition is
continuous or weakly first order. Monte Carlo simulations done on similar models [5] suggest
either a third order crumpling transition, or continuously varying critical exponents below the
critical temperature T,. These discrepancies may be the effect of the discretized nature of the
models (finite size effects), or of crossover effects. Clearly more detailed investigation of
larger systems are needed. Thus in the following we shall assume that a crumpling transition
takes place in D = 2, d = 3 according to the mechanism discussed in references [1, 3, 4].
The crumpling transition can be investigated by means of the elastic continuum models

described in the previous section [3, 4]. In the presence of fluctuations the average

configuration of the manifold will be different from the one at rest, with free boundary
conditions the manifold will in general shrink from its configuration at rest. This effect can be
aptly described by introducing the vectors
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where the average is taken with respect to the Boltzmann weight defined by H (Eq. (2.8)) :

we use units in which the Boltzmann constant is equal to 1. The average extension factor, i.e.
the ratio between the actual linear size of the fluctuating manifold and its size at rest, is given
by

At low temperatures, (sp (T) is nearly equal to one. As T increases, (sp (T ) becomes smaller
and smaller. Above a certain temperature Tc, (sp (T) vanishes : this means that the actual size
of the membrane is no more proportional to its size at rest. This identifies 7c as the crumpling
transition temperature, and esp (T) as the corresponding order parameter. Above the

crumpling transition, the effective Hamiltonian describing the manifold reduces to

The behavior of such Gaussian elastic manifolds has already been thoroughly investigated [12,
13]. In the absence of excluded volume interactions, they fold into very convoluted

configurations [12]. A way to describe them is to define their fractal dimension dF, which
measures the way the size of the embedded manifold increases with the increasing linear size
L of the membrane at rest. The size of the fluctuating membrane can be estimated by the
radius of gyration RG, defined by

The fractal dimension dF is defined by

One obtains

which is compatible with the well known result dF = 2, valid for linear polymers
(D = 1). On the other hand, one obtains dF = 00 for D = 2, which corresponds in fact to

If the crumpling transition is continuous (1) critical exponents can be defined in the usual
way. Most of them involve the consideration of constrained boundary conditions and will be
discussed later. One can however define in a straightforward way
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In a similar way, one can introduce the correlation length e, which measures the range of the
correlation function

Note that this range is measured in the coordinate system at rest. One sets by definition

The behavior of the correlation function G at T = Tc allows one to define the exponent q. If
F(2)(p) is the inverse Fourier transform of G with respect top - o-’, one has

Actually the fractal dimension dF and the exponent q are related by

Below the crumpling temperature, the membrane is flat on average, and its extension factor
equals ’sp(T). This phase has been investigated in references [9, 10]. It is remarkable, since it
may be described at all temperatures below Tc as a critical phase. In fact, it is possible to
conceive the crumpling transition as one, below which the Euclidean symmetry in ambient
space is spontaneously broken.
The deformations :

can be therefore decomposed into parallel deformations ui (« phonons ») and transversal
deformations h (« undulations ») by means of :

where

The fields (ai h ) play the role of Golstone modes and are thus « massless » (the kinetic energy
of h is proportional to k4) . In contrary, the fields (aiuj) get a « mass » (the kinetic energy of
Ui is proportional to k2) . Equation (3.14) is analogous to the decomposition of the spin field
into cr and 7T fields in the low temperature phase of 0 (n ) symmetric magnetic models. In that
case, the effective Hamiltonian for the (n - 1 ) Goldstone modes 7T, which governs the
infrared behavior of the model, is the free one :

and the corresponding exponents can be obtained by power counting. This is not the case for
the rigid phase we are discussing. The Goldstone modes (ah ) are now interacting in this
phase, i.e. the effective Hamiltonian at large distances is no more the free one. One can
define the exponents q’, n’u by means of the behavior of the inverse propagators
rh(h2)@ F (2) of h and u respectively :
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These exponents can be also interpreted in the following way. Since the fields h,
ui are interacting, the elastic constants K, À, 1£, are nontrivially renormalized and turn out to
be dependent on the wave vector q. One has therefore

other exponents will be introduced in the next section.

The crumpling transition has been investigated :

(i) for D = 2, to first order in a 1/d expansion, by means of a nonlinear version of the
elastic model (2.12) [3]. This model is obtained by taking the limit Àü, bt 0 ---&#x3E; cc in

equation (2.12) and is analogous to the nonlinear u-model for 0 (n) symmetric magnetic
systems. In this limit, one introduces the constraint that the induced metric of the fluctuating
manifold be equal to the rest metric g?j. One obtains therefore the Hamiltonian

with the constraint

The model exhibits, to first order in a 1 /d expansion, an ultraviolet stable fixed point
describing a continuous crumpling. transition. The Hausdorff dimension dF is given by

and the exponents {3 and v are respectively given by

It is possible to exploit this calculation to show that the lower critical dimension

D1, below which the crumpling transition occurs at T = 0, is equal to

(ii) for general d, to first order in an E-expansion, where

It turns out that, to this order, the crumpling transition is continuous for d ± 219, and is first
order otherwise [4] (2).

(iii) in d = 3, D = 2 a real-space renormalization group calculation has been perfor-
med [14] which suggests that the crumpling transition remains continuous.
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The nature of the low temperature flat phase has been investigated :
(i) by a self-consistent approach, which assumed no renormalization of the phonon elastic

constants A, 1£ [1]. One obtained for D = 2, d = 3:

(ii) in an s-expansion, with E given by (3.26) [9]. It has been possible to identify a nontrivial
stable fixed point describing the flat phase, yielding the exponent values

where

Let us remark that the results of the 1/d expansion (Ref. [3]) imply for D = 2

To investigate further the nature of the fixed point describing the flat phase it is convenient
to introduce constrained boundary conditions.

4. The phase diagram.

To make the nature of the crumpling transition clearer, it is convenient to consider
constrained boundary conditions, in which the extension factor e may be different from its
spontaneous value (sp(T). We introduce therefore the (T, e ) plane, where we draw the curve
(F, sp(T)). We obtain therefore the diagram of figure 1.

1

Fig. 1. - Phase diagram in the (C, T ) plane.

The curve joining A to C corresponds to ( = (sp(T) and describes the « flat » phase. We
have also drawn its symmetrical one, joining A’ to C. Negative values of e correspond to
situations in which the orientation of the manifold is reversed with respect to the rest

configuration.



1796

Fluctuating membranes with free boundary conditions are described by points on the AC
curve, if T -- T,, and on the = 0 axis, if T &#x3E; Tc. We can thus call the curve ACA’ « the
coexistence curve ». But any point in the (T, ) plane can be obtained, if we consider
constrained boundary conditions. In this case, however, a tension (or a compression) is
exerted on the frame. It is convenient to characterize it by the quantity

where F is the Helmholtz free energy of the membrane. Although we shall call f the
« tension » it is useful to keep in mind that the physically measurable tension is given by

where = (e L)D is the actual volume of the membrane. One has of course

We can thus consider the phase diagram in the (T, f ) plane. It is drawn in figure 2.

Fig. 2. - Phase diagram in the ( f , T ) plane.

The « coexistence curve » ACA’ reduces to the segment 0  T  Tc of the f = 0 axis. The
only points realizable with free boundary conditions lie on the f = 0 axis.
The diagrams shown in figures 1, 2 closely resemble to those of ordinary critical

phenomena, with playing the role of the order parameter, and f that of its conjugate field. It
is known that in this case it is possible to produce states inside the coexistence curve, by
considering mixtures of thermodynamical phases. Physically this correspond e.g. to magnetic
domains, in which the order parameter is oriented in different directions in the sample. By the
same token, the points of the (T, , ) plane inside the ACA’ curve correspond to a mixture of
flat phases oriented in different directions. Physically this corresponds to a buckled manifold,
whose equilibrium shape is no more planar. We can thus view the ACA’ curve in a different
way. As we approach this line, e.g., along the arrow in figure 1, the « tension » f becomes
smaller and smaller, and eventually vanishes when , = ’sp(T). If we keep on reducing e, we
are actually compressing the membrane, which has therefore to buckle. We expect that in this
state the membrane is made of regions relatively flat and unstrained, separated by « domain
walls » with high stress. The detailed nature of the buckled state may depend on microscopic
details as well as on the way boundary conditions are imposed. We can thus consider the
coexistence curve in figure 1, on the ACA’ line in either figure 1 or figure 2, as describing the
buckling transition.
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Consideration of the enlarged phase diagram allows us to define new critical properties and
exponents, both for the buckling and for the crumpling transitions.
For the crumpling transition we may consider the relations between the « tension » f and the

order parameter Ç. At T = T,, we have in fact

which defines the new exponent 5. We may also introduce the susceptibility y

We have, for

On the other hand, for the buckling transition, consideration of a nonzero f allows us to move
away from criticality. Since (sp (T) is a regular curve (at least as long as T  Tc) the distance
from the buckling transition can be aptly measured by e - e,p(T). We can thus define the
exponent 8 ’ by

As soon as ( =F (sp(T), the correlation lengths e,, and eh, which describe the range of the
correlations of phonons and undulations respectively, are finite. We define therefore the
exponents v’u, vh’ by

The exponents for the crumpling transition can be easily read, in an E-expression, off the
results of reference [4], since ordinary critical scaling laws are valid. In appendix A we
perform a d = oo calculation on the model defined by equation (2.12) for 2  D  4. We are
able to obtain the results (3) :

Other exponents can be obtained by the usual scaling laws in D dimensions.
The properties o f the buckling transition will be investigated below in the framework of the

e-expansion (Sects. 5 and 6). In appendix A we also obtain the exponents for the buckling
transition in the limit d - oo

They satisfy a set of scaling laws which will be made explicit in the framework of the e-

expansion.



1798

5. The effective theory of stretched membranes.

We now derive the effective Hamiltonian of a stretched membrane. Let us assume that the
membrane is subject to constrained boundary conditions which impose an extension factor C
different in general from sp(T). We can thus consider small fluctuations around the stretched
configuration

We rescale the coordinates by in such a way that

We now consider the effective Hamiltonian governing the small fluctuations 5X around
Xs :

In the spirit of elasticity theory we assume that this Hamiltonian allows for an expansion
analogous to equation (2.9). However, since Xs is not necessarily an extremum of the effective
Hamiltonian, no condition analogous to equation (2.10) should be imposed. If we now define
the strain tensor Uij by means of

where gsij = aiXs . ajXs = 8ij, we obtain the following expression for the effective Hamiltonian
density Jeeff :

This expression is different from equation (2.12) because of the To ui i term. This term

corresponds to local isotropic tension or compression of the membrane, which endeavors to
move away from the reference configuration X,. In general, the case Top 0 corresponds to a
membrane under tension, which would spontaneously assume an extension factor smaller
than that imposed by Xg For To = 0, the reference configuration X, is an extremum of the
effective Hamiltonian. This corresponds to the case of vanishing (bare) tension. For

To  0, one applies a compression on the membrane. In this case the planar stretched
configuration Xs is unstable and the membrane takes on a buckled state. The identification of
the stable buckled configuration is a complex problem, whose investigation lies beyond the
scope of this paper.
We can now parametrize the fluctuations 8 X in terms of the phonon modes ui and the

undulation modes h :

where

Assuming that the fluctuations are small, we can drop terms quadratic in ui in the expression
of the strain tensor uij and of the bending energy. It can be shown in fact that these terms are
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irrelevant for the behavior of small fluctuations in the flat phase. We obtain therefore the
following truncated expression Jeflat for Jeeff : .

where

We now show that equations (5.8), (5.9) define a class of field theoretical models which
renormalizes onto itself near the upper critical dimension D = Du = 4. Let us remark that by
dropping higher order terms in ui we have explicitly broken the rotation invariance in d-
dimensional space still possessed by equation (5.5). On the other hand, equations (5.8), (5.9)
are still invariant with respect to the following symmetry groups : (i) translations in d-
dimensional space ; (ii) rotations in the (d - D )-dimensional space orthogonal to Xs ; (iii)
isometries in the D-dimensional space spanned by the internal coordinates of the membrane.
Moreover, although full rotational symmetry has been explicitly broken, one may check that
these expressions are invariant with respect to the transformations defined, for any set of D
vectors Ai with (d - D ) components, by

These transformations are linearized versions of d-dimensional rotations, represented in the
variables ui, h. The associated Ward identities for the effective potential r [Ui, h] are

The general solution (involving only terms relevant by power counting for D = 4) of these
Ward identities, satisfying the additional symmetries mentioned above, is given by
equations (5.8), (5.9), with arbitrary values of the coefficients T, K, À, g. This proves the
renormalizability of the model we had anticipated.
The presence of a term TUii in the general solution of the Ward Identities implies that such a

term will in general be generated by the renormalization, even if To is set to zero in the bare
Hamiltonian (2.9). This is an expression of the physical fact that even if the size of the frame is
equal to the size of the membrane at rest (at T = 0), the membrane will in general shrink
because of thermal fluctuations and an effective tension T will thus be generated. This

phenomenon is actually a consequence of the imposed boundary conditions. With free
boundary conditions, it is indeed possible to reset T = 0 by a suitable isotropic shift of
u ‘ (Ui -+ Ui + (1 - ’sp) ui). In particular, this is automatically performed if one uses a

dimensional regularization scheme. (It is a property of the dimensional regularization scheme
that if a strongly relevant field is set to zero in the bare Hamiltonian, it remains zero in the
renormalized one). Such a procedure is however only consistent when free boundary
conditions are adopted. The introduction of a frame implies imposing fixed boundary
conditions on the displacement u i (u 1 - 0 on the boundary of an hypercube of side

eL) and thus forbids us to perform any shift on ui. In that case, a non-vanishing tension
coefficient T must be considered and its renormalization has to be investigated.
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6. e expansion for the buckling transition.

The effective Hamiltonian Hflat for flat stretched membranes was derived in the previous
section (Eq. (5.8)). It allows to predict the properties of the buckling transition within mean
field theory. For this purpose, it is convenient to decompose the strain tensor uij into its
traceless part vij and its trace v

Uij = Vij and uij = 5ij vit correspond to pure shear and to pure compression (or dilation)
deformations of the membrane respectively. The Hamiltonian Hflat is given by :

where Ko is the compression modulus.

This Hamiltonian is bounded from below provided that

These conditions define the domain of stability for flat membranes with mean field theory.
For fixed Ko + 0 the boundary lines Mo = 0 and Ko = 0 correspond to isotropic elastic plates
with zero shear modulus (« liquid » state) and with zero compression modulus (« conformal »
plates) respectively. The mean field theory predicts the buckling transition at To = 0.

Equation (6.3) allows to obtain the classical results of the theory of elastic plates. For
instance, Hooke’s law with 8’ - 1 (where 8’ is defined by (4.7)) can be obtained. In the mean
field approximation, the exponents for the buckling transition are :

The mean field theory breaks down below the upper critical dimension Du whose value can be
obtained easily from the canonical dimension of the coupling constants which appear in (6.3).
After rescaling of the fields, the Hamiltonian depends on a bare tension parameter
7-0 = ïQ/Ko with canonical dimension 2 (in units of mass) (4) and on two coupling constants
À o = -to/ K6 and ÎKo = Ko/ K6, with dimension

At the upper critical dimension Du, flo and Ko become relevant and therefore Du = 4, as for
the crumpling transition. Below Du, the renormalization of the coupling constants may be
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studied in the standard E = 4 - D expansion. This study, including the renormalization of the
tension To, is detailed in appendix B. Here we present only the main results.

Let us first discuss some general features of the renormalization, which are valid to every
order in E. As discussed in section 5, the Ward identities (5.11) ensures that it involves only
four independent renormalization factors, (see appendix B, Eqs. (B9) to (B 13))
- a wave function renormalization Z for the fields h and ui ;
- two renormalization à and Zk for the coupling constants go and Ko ;
- a multiplicative renormalization ZT for To (its multiplicative nature is a feature of the e

expansion scheme).

The corresponding Wilson functions y, SA, {3 Îc and y T (defined by Eqs. (B 15) , (B 16))
permit to study the renormalization group flow for the renormalized coupling constants
il R, KR and T R. The general features of this flow are :

- the critical surface (corresponding to a flat membrane without tension) is as expected
defined by T R = 0 (vanishing renormalized tension) ;
- on the critical surface the R.G. flow has the following properties depicted in figure 3.

Fig. 3. - Renormalization group flow in the T R = 0 plane.

(i) The lines J1R = 0 and KR = 0 are « fixed lines », i.e. they are renormalized into
themselves. Thus they define the boundary of the domain of stability, which coincides with
the mean field domain of stability, and will be refered as the « boundary lines ».

(ii) There are four fixed points :
- one trivial infrared unstable fixed point Pi at J1R = KR = 0 ;
- two partially unstable fixed point P2 and P3 on each boundary line ;
- one infrared stable fixed point P4 inside the domain of stability J1R &#x3E; 0, KR &#x3E; 0, which is

its domain of attraction.

For KR &#x3E; 0, away from the critical surface (TR &#x3E; 0), the coupling constants flow away from

the critical surface in the infrared. On the boundary line ÊR = 0 (and in particular at the fixed
point P3), one cannot induce any tension by putting thé membrane on a frame. It is thus

impossible to move away from the critical surface T R = 0.
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For KR &#x3E; 0 the critical surface ïp = 0 corresponds to the buckling transition. The stable
fixed point P4 describes the generic large distance behaviour of isotropic elastic membranes in
the flat phase. The boundary fixed points P2 and P3 are somewhat special. P3 should describes
the large distance behaviour of an elastic membrane with no compression modulus. Such a
membrane has only shear modulus and arbitrary large dilations (and more generaly conformal
transformations) do not cost any energy. The fixed point P3 describes a « conformal
membrane » which seems a somewhat abstract object. For such a membrane, there is no

buckling transition since it can always adjust its size to that of the frame. The fixed point
P2 is more interesting. It describes the large distance behavior of an isotropic elastic
membrane with no shear modulus. Such an object is called a « fixed connectivity fluid » in [9].
However in the effective theory described by (6.3) no reference is made to the connectivity of
the underlying lattice. One assumes only that the membrane is isotropic. In our opinion an
isotropic elastic medium with no shear modulus is nothing but a liquid. Hence we conjecture
that the fixed point P2 describes nothing but the large distance properties of D-dimensional
fluid membranes in their flat phase for 2  D : 4. (The existence of a flat phase and of a
crumpling transition for Du 2 for fluid membranes was first predicted in [6]. This phase
disappears at D = 2.)
The critical exponents q’, nu,, 3’, -v’ and v h which characterize the buckling transition make

sense only for KR :&#x3E; 0 but may be also associated formally to the fixed point P3 (conformal
membrane).

In appendix B the scaling laws are derived, which provide the relation for the anomalous
dimensions of the fields, valid at the three nontrivial fixed points P2, P3 and P4.
The linearized rotational invariance (5.10) implies [9]

which relates the anomalous dimensions of u and h.
The exponents S’, v’ u and v h associated to the buckling transition are in fact not

independent from q’. Indeed one has

These relations which have no physical meaning at P3, are however formaly true at that point.
The scaling relation (6.9) connecting S’ to n’ was first derived in [10] in the following way.

One can introduce a tension by setting TR = 0 (thus considering the critical theory) and by
introducing a linear term 8H which breaks explicitly the symmetry (5.10)

In (6.11) the tension f appears as the conjugate of the field ui. Thus the anomalous dimension
of f is related to that of ui and, using (6.8), (6.9) can be easily obtained.

In our approach, where the tension has been introduced through the relevant coupling
constant To, the relation (6.9) follows from the fact that 8’ does not involve the anomalous
dimension of To (given by y, at the fixed point), but only the wave function renormalization
(given by y) . However in general the wave function renormalization (given by y) and the
renormalization of fo (given by y ,&#x3E; are independent and in principle they should lead to two
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independent critical exponents for the buckling transition. Actually one cannot find any other
independent exponent. One can indeed show (see Appendix B) that, as a consequence of the
equation of motion, the wave function Wilson function y and the To Wilson function

y T stop being independent at the two non trivial fixed points P2 and P4 corresponding to

KR &#x3E; 0, and satisfy the relation :

Thus, both for flat elastic and fluid membranes, the buckling transition should be
characterized by only one independent critical exponent (for instance q’). (6.12) does not
hold at P3 (KR = 0) in contrast with equations (6.9) and (6.10), but the critical exponents
have no physical meaning since there is no bukling transition in that case.

Let us end this section by giving explicit results for the critical exponents computed to first
order in E. These values are computed in appendix C, where the explicit form of the Wilson
functions {3 Il’ {3 f, y and y, in the minimal substraction scheme are also given. The position of
the four fixed points depicted in figure 3 are given in table 1 to first order in e.

Table I. - Fixed points at first order in (e = 4 - D, de = d - D).

The corresponding exponents for the nontrivial fixed points P2, P3 and P4 are shown in
table II.

Let us finally discuss the case of fluid membrane. It is worth mentioning that at order e the
critical exponents corresponding to the fixed point P2 are in agreement with the predictions of
the model of fluid membranes [6] for D &#x3E; 2. Indeed for D &#x3E; 2 this model predicts a flat phase
described by a Gaussian fixed point, and thus q’ = 0 for fluid membranes. As discussed in
appendix C, we expect that, in the model of elastic membranes, there should be no wave
function and (t renormalizations on the line fl R = 0. This implies that the critical exponents
for the fixed point P2 given by table II should be exact for 0 : s « 2. This corroborates our
conjecture that P2 describes the flat phase of liquid membranes.
Another interesting point can be raised on the structure of the R . G flow for the

rotationally invariant model of elastic membranes obtained in [4]. On the critical surface,
which corresponds then to the crumpling transition, the R . G flow has, at first order in

e = 4 - D and for d &#x3E; 219, the same global structure as the R . G flow for the buckling
transition depicted in figure 3. A fixed point P4 analogous to P4 describes the crumpling
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Table II. - Critical exponents for the buckling transition at first-order in e (e = 4 - D,
de = d - D).

transition for elastic membranes. Its domain of attraction is bounded by two lines which are
attracted toward two unstable fixed points P2 and P3 analogous to P2 and P3. For
d  219, P3 and P4 merge and disappear, leaving the unstable fixed point P2 alone [4]. We
suggest that, in analogy with P2, P2 describes the crumpling transition for fluid membranes for
2  Du 4. Although we have no other evidence for this conjecture than this analogy and the
fact that in the large d limit P2 should give the correct exponents (which are those of the
spherical model), we think that it is not completely unrealistic. In that case, at

D = 2 (which is the lower critical dimension for fluid membranes), P2 and P2 should give
identical critical exponents.

7. Conclusion and perspectives.

Elastic (polymerized) membranes have recently attracted a lot of attention both from
theoretical and experimental points of view [15]. The theory of such objects predicts for
instance a non-trivial crumpling transition between the low-temperature rigid phase and the
high-temperature crumpled phase. Although only few polymerized membranes have been
created up to now in a laboratory [16, 17], further theoretical investigations of the

thermodynamic properties of these systems seem important in view of future experiments.
In this paper we have generalized the theory of a fluctuating elastic membrane to the case

where a nonzero tension is exerted on its boundary. In the rigid phase this tension will
increase the lateral extension of the membrane (beyond its « spontaneous » value correspond-
ing to the free boundary conditions). An interesting phenomenon occurs if one decreases then
the tension so that the membrane relaxes to its spontaneous size. Such a relaxation can be
viewed as a critical phenomenon, with some characteristic non-trivial exponents. The fact that
the exponents do not have usual, « mechanical » values (e.g. like the linear Hooke’s law
between the tension and the extension) is one of the consequences of the breaking down of
the classical theory of elasticity. Indeed, thermal fluctuations do modify the classical behavior
of the elastic membranes. More interestingly, if the lateral tension was decreased further the
membrane would transform to a buckled state with coexisting rigid regions of different
orientations. Therefore, it is natural to call the critical phenomenon introduced above the
buckling transition.
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The field theoretical calculations presented here try to quantitatively describe the nature of
this transition. The simplest way to verify our results, and in particular the values of the
critical exponents, is to perform a Monte Carlo simulation of tethered surfaces similar the
simulations which observed the crumpling transition [2, 5]. Obviously, the experimental
situation is much more complex. It is probably too early to suggest the way in which the lateral
tension of the elastic membranes could be controlled. This would depend on the detailed
nature of the system under study : a « theoretical rigid frame » which we introduced in our
calculations cannot easily be created in the laboratory. Let us, however, attract the reader’s
attention to the case of polymerized phospholipid vesicles recently studied by Sackmann,
Ringsdorf and their collaborators [17, 18]. In such closed objects the tension can be
introduced by varying both the osmotic pressure difference Ap (between the interior and the
exterior of the vesicles) and the temperature. For instance, by decreasing the temperature one
can contract the polymerized network of the phospholipids by solidifying the membrane
components (5). One could also imagine that the polymerized vesicles will buckle if one
decreases their interior volume, V (e.g. by changing Op) [19]. This cannot happen in fluid
membranes, nor even in erythrocytes (note that the network of spectrins in the erythrocytes is
not polymerized but only forms a ionic gel [21]) since in these systems the changes in V will
simply provoke the global shape transformations [19]. Such global transformations, however,
are in general hindered if the membrane is covalently polymerized.
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Appendiai A

The large d limit.

A.1 THE EFFECTIVE POTENTIAL. - We report in this appendix the calculations concerning
the large d limit of the linear model defined by equation (2.12). This limit is obtained, as
usual, by taking the coupling constants a o, go to be of order 1 /d. The Hamiltonian (2.12)
takes therefore the form

We now introduce a dummy integration over the auxiliary variable À ij. Absorbing a suitable
constant into the definition of the functional integral we obtain

(5) Note : Some photographs of reference [17] show indeed the creation of « buckled » vesicles, with
coexisting smooth regions separated by the network of « defects » (with the linear extension
À = 100 Å) . Whether this phenomenon has anything to do with the described here buckling transition
needs to be proven by further experimental and theoretical studies.
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in which we have introduced the notations

The nonlinear model considered in reference [3] corresponds to the case ao = /3 0 = 0,
R o fixed.
The effective potential can be now computed in the standard way. We split X(a) into its

average Xav (a) and fluctuations,

and we performe explicitly the Gaussian integration over Xfl. In the large d limit, the
remaining integral over À ij can be performed by the saddle point method. The result for the
effective potential r [Xav] reads

The notation s.p. means that one has to evaluate the expression within curly brackets at its
saddle point with respect to À ij. An ultraviolet cutoff A is needed to regularize the trace. The
detailed cutoff procedure will be made explicit later.

A.2 PLANAR CONFIGURATIONS. - When the membrane is subject to isotropic stretching it is
natural to expect Xav ( u) to correspond to an isotropic planar configuration :

where

We thus expect À ij, at the saddle point, to be of the form

Looking for the extremum of the expression in curly brackets with respect to À c we obtain an
equation relating C to Ac :

We choose a simple regularization procedure, cutting off wavenumbers whose modulus
exceeds A. The « tension » f, conjugate top is defined by
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One has at the saddle point

We now expand the effective potential for small deformations from the planar configuration
(A7). We define

where h. ei = 0 (i = 1, ..., D ), and us, h, Â’j are small. The saddle point condition on
À ij allows us to express À’j as a function of u 1 and h. We can thus derive the following
expression for the inverse propagators T hh and r (2) of h and u respectively :

where Gij, kt (P) is the symmetrized inverse of the matrix Fij, kt (P) defined by

In the last expression, we have used the shorthands

A.3 FREE BOUNDARIES : THE CRUMPLING TRANSITION. - If the boundaries are free, no
tension is exerted on the frame. In view of equation (A12), this implies either C = 0, or
À c = 0. Now, if we let À c = 0 in equation (A10) we obtain

where we have defined T, by

Of course, equation (A19) has real solutions only if T:s= Tc. Let us denote by Csp (T) &#x3E; 0 the
solution of equation (A19) for T : Tc. In this case, the equilibrium configuration
Xeq (u) is given by equation (A7), with = ’sp(T). This describes the low temperature, flat
phase with free boundaries. As T increases, esp (T) decreases, and eventually vanishes for
T = T,. Above T,, equation (A19) cannot be satisfied, and we are forced to take

C = 0, k,, e 0. This introduces a term à aiX - aiX in the effective potential, which dominates
the large distance behavior of the membrane.
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We can thus identify T, with the crumpling transition temperature. The integral defining it
in equation (A20) diverges for D  2, yielding therefore a vanishing Tc. This identifies two as
the lower critical dimension Dl for d = 00, in agreement with the results obtained in

reference [3] for the nonlinear model.

A.4 CONSTRAINED BOUNDARIES : ÉQUATIONS OF STATE. - It is convenient to rewrite

equation (A10) with the help of the définitions of T, and f. One obtains

where

The function B (t ) approaches a nonzero constant B when t - 0 for Du 4. If one is interested
in small tensions (fle) « 1, the equation of state (A21) simplifies to

When D &#x3E; 4, the third term in equation (A21) becomes proportional to (f /’) and may be
absorbed into the regular terms. Classical values of the exponents are thus obtained. This
identifies four as the upper critical dimension Du. We assume in the following 2  D  4.

A.5 CRITICAL EXPONENTS. - The values of the critical exponents can be read off the

equation of state (A23) and the expressions (A15,16) of the inverse propagator, keeping in
mind the relation between f and Àc (Eq. (A12)).

(i) Crumpling transition. - The crumpling transition point is given by T = Tc, e = f = 0.
Letting f = 0, T : Tc in equation (A23) we obtain e - 1 Tc - T 1 10,
where

Letting T = Tc, we obtain - [1/8, where, for D  4,

Since 5 is larger than one the hypothesis that ( f / )  1 for small f is justified a posteriori. We
can also define the susceptibility X = a, laf. We have for T &#x3E; Tc, f = 0, X ’" T - Tc 1 - ,
where
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For T &#x3E; 7c, f = 0, we have’ = ’sp(T) = 0. Letting = 0 into equation (A16), we see that
the second term vanishes, and that rotational symmetry is restored. We have therefore

where

For T &#x3E; Tc, we can set’ = 0 in equation (A10), obtaining an equation relating À,, and
therefore e, to T. Keeping only the most singular term we obtain

By means of the definition (A20) of 7c this equation may be written in a more transparent
way :

The 1. h. s. behaves as e- (D-2) for § - oo. We have therefore e - ( T - Tc)-V, where

Remark that the scaling law y = (2 - q ) v is satisfied.

(ii) Buckling transition. - We now consider T : T,. First of all we obtain from

equation (A23) C - sp(T) - fl/8’, with

Since , -:1= 0, we see from equation (A12) that k, - f. On the other hand, equation (A15)
implies that the correlation length eh of h is given by 

"

we obtain therefore Hence

On the other hand, when f = 0 we have F hh(2) ~ p4, which yields
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For D  4, the second term dominates the first in equation (A16). One has in fact

Fij,kt(P)’"wpD-4 as p - 0. We obtain therefore, as f = 0, rJ)’"wp6-D, hence

(If D &#x3E; 4, Fij, kt (P) has a finite limit as p - 0 and one recovers q[ = 0). The correlation
length u is defined by

Equation (A16) implies

This confirms the validity of scaling near the buckling transition and yields

Appendix B

Renormalization and scaling relations for the model of flat membranes.

We start with the Hamiltonian (5.8) for the model of flat membranes

with the stress tensor

where

It is in fact convenient to decompose Uij into its traceless part

and its trace

so that (Bl) becomes
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with the compression modulus

In mean field, the classical domain of stability, where the Hamiltonian HFlat is bounded from
below, is defined by

and is bounded by the two lines A 0 = 0 (which describes an isotropic solid with vanishing
shear modulus) and Ko = 0 (which describes an isotropic solid with vanishing compression
modulus). Thanks to the Ward identities (5.11) associated to the linearized rotational

symmetry (5.10), BAat keeps its form under renormalization and may be written in terms of
renormalized fields ÛR, hR and of renormalized coupling AR, ÊR and T R

with

where the renormalization factors Z are defined by

and

By ignoring a possible additive term in equation (B13) we have assumed that we have used
dimensional regularization. M is the renormalization mass scale and

TR and ÊR are dimensionless coupling constants, fR has the dimension of a squared mass.
When using the minimal substraction scheme the renormalization factors Zp, ZR, Z and
Z, depend only on the dimensionless coupling constants ÂR and KR, and not on

T R. The Wilson functions are defined in the standard way.



1812

where o means that the bare quantities uo, Ko, To are kept fixed. Using (B13) we get

and

Let us first show a general feature of the renormalization of the model. On the critical surface

?o = 0,. the two instability lines ,10 = 0 and Êo = 0 are preserved by renormalization. In other
words

and the classical stability domain (B8) is globally preserved by the renormalization group
flow. This remarkable property is a simple consequence of the additional symmetries that the
action (B1) possess on the two lines. Indeed, if Ko = 0 (and To = 0), the action is invariant
under the global dilation.

In the standard way, the Ward identities associated to this symmetry are sufficient to prove
that ÊO and f 0 are not generated by renormalization. The same argument holds if

110 = 0 by considering the global shear transformations

where A’i is a traceless matrix.

Scaling relations and critical exponents. - We denote by Fe, N) the renormalized 1-particle
irreducible function with M external hR legs and N external ûR legs. It obeys the

renormalization group equation

and from scaling, pi denoting the D-dimensional momenta carried by the M + N external
legs,
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Thus for the free membrane with vanishing tension ( TR = 0 ), at a fixed point (il:, k:)
where {3: = Q p (fl £ , À£ ) = 0 and {3: = {3 Î (il:, k:) = 0, the two point functions (provided
that they are not singular), behave as

And we obtain the scaling relation

where

For a stretched membrane (ïR&#x3E;0) the effective potential T (hR, ùj) is now minimal at
a2hR = 0, 81ùi = (e - 1 ) Sij with C &#x3E; 1. The « tension » f defined by (4.1 ) is, using the Ward
identities (5 .11 ) 

’

From the R.G. equation (2.25) we expect that at any fixed point

where g is some scaling function, regular at p2 = 0. On thé other hand C - 1 should vanish
with f R - C - 1 is obtained by minimizing F (C ), where from (2.23) we expect the scaling form
at any fixed point (Y is some scaling function)

Minimizing r (,) with respects to Ç we obtain

and thus we get the scaling relation between 6’ and q’

Finally from (2.25) for ïp &#x3E; 0 at a fixed point the correlation lengths e, and

eh for ÙR and hR are finite and should both scale as
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Thus we obtain the scaling relations for v’u and vh

Relation between y, and y. - One may notice that in the scaling relations (B28), (B34) and
(B36), y * does not appear. Indeed, in [10] it was shown that the role of the tension may be
studied by considering free boundary conditions, instead of fixed one, and by adding an

external source of the form - f f dDu(ôù) to the Hamiltonian (B1) instead of a tension
term fo. It follows that critical exponents involving the tension f should depend on the
anomalous dimension of u (related to n) only, and not on the renormalization of the tension
7’0. The question is whether the exponent yf represents a new critical exponent at the
buckling transition or if there is a scaling relation between yT and y *.
We show here that in fact, for any fixed point corresponding to a compressible membrane

(KR # 0), the following scaling relation holds :

From (B33) this implies that e - 1 - TR. This relation is a consequence of the fact that
starting from the Hamiltonian (B1) with %o # 0, one can always perform a global dilation of
the form (B22) in order to make fo equal to zero (of course such a dilation changes the
boundary conditions on the field ù’). Indeed we have the relation

with

The same relation (B38) holds if we replace the Hamiltonian Hflat by the full effective

potential T. In terms of renormalized quantities it yields (using (B12) and (B13))

with

where ... denotes a constant which does not depend on the fields hR and ûR. Since

r R must be a regular function of the renormalized fields and couplings, we deduce
immediately that the function

is a finite function of the renormalized couplings even when e ---+ 0. Using (B15) and (B16) we
have
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Hence the relation between the -y functions is

At a fixed point (13: = It = 0), the scaling relation (B37) follows, provided that the
function a is not singular. As we shall see in appendix C, where the renormalization factors Z
are computed to one loop in the minimal substraction scheme, we expect that the factors Z
and Z, are singular only on the line Ko + 2 ( D D 1 4o = 0 which is outside the stability
domain for D &#x3E; 1. From (B42) the function a will be singular only on the line

Ko = 0, that is KR = 0 ! Thus the scaling relation (B37) should hold only for fixed points
inside the stability domain (fl R &#x3E; 0, KR &#x3E; 0 ).

Appendix C

e expansion for flat membranes.

In this appendix we compute the renormalization factors Z, Zî,, ZK and Z, at one loop in the
minimal substraction scheme and give the renormalization group flows to first order in

e =4-D.
From the Hamiltonian (Bl) we see that the diagrammatic rules of the perturbative

expansion for flat membranes are the following.
The ha hfJ) propagator is

The (Ùi ùi) propagator is

and is singular if flow = 0 or 2 À o + k 0 = 0. The vertices are of two types. One vertex involves
four h external legs

One vertex involves two À and one û extemal legs (C5)
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At D = 4 the one loop divergent diagrams are

Fig. Cl. - One loop divergent diagrams.

The Ward identities (5.11) ensure that the divergent parts of (a), (b + c) or (d + e + f ) give
the same renormalization factors for JLR and ÀR (or ÊR). Similarly, (g + h ) or (i) give the
same renormalization factor for T R. Finally the wave function renormalization is obtained by
computing (g + h ).
We first compute the one-loop renormalization for /1 and Â. Using dimensional regularization
we obtain the corresponding pole at e = 0 for r(O,2) given by (a)

with d, = d - D. This pole is cancelled by the counterterms
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or equivalently

Z, and Z are obtained by estimating the pole at e = 0 of the one loop contribution to
r (2, 0), given by (g + h )

This pole is cancelled by the counterterms

or equivalently

Let us stress that although the propagator (C2) diverges at flo = 0, the counterterms are
regular at JLR = 0. In fact, starting from the Hamiltonian (Bl), one can integrate explicitely
over the field ùi to get an effective potential for h a of the form

where Pij is the projector on transverse modes
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Gi, is only singular on the line A o + 2 flo = 0, and vanishes on the line flow = 0. From the

Ward identities (5.11) all renormalization factors can be deduced from h correlation

functions. Since for flow = 0 the effective theory for h is free we expect that Z = à = 1. It is
however a nontrivial result that for fl o = 0, Zg and Z, are still non singular and non trivial.
We now compute the renormalization group functions. Using (B17-19) they read

The corresponding renormalization group flow in the fR = 0 plane has four fixed points

Pl is the Gaussian fixed point and has two unstable directions, P2 and P3 have one IR unstable
direction and are located on the two boundaries of the domain of stability. P4 is IR stable and
inside the domain of stability. It govems the behavior of flat membranes. The anomalous
dimensions y * and y * are given for the three nontrivial fixed points by

One cheks that the scaling relation (B37) holds only for the two fixed points P2 and

P4 which are not located on the line ÊR = 0, as argued in appendix B. Indeed, from the
explicit expressions for Z, and Zg, the function a defined by (B42) is at one loop.
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M"AR--

In a is singular and the (r.h.s.) of (B44) is indeed nonzero for ÊR = 0.
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