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Phyllotaxis or the properties of spiral lattices.
II. Packing of circles along logarithmic spirals

F. Rothen and A.-J. Koch

Institut de Physique Expérimentale, Université de Lausanne, CH-1015 Lausanne-Dorigny,
Switzerland

(Reçu le 2 février 1989, accepté le 30 mars 1989)

Résumé. 2014 La phyllotaxie est l’étude des réseaux spiralés qui servent de modèles à de

nombreuses structures botaniques (inflorescences de la marguerite, écailles de l’ananas...). Nous
en considérons ici une idéalisation géométrique : un réseau de cercles tangents alignés le long
d’une spirale logarithmique. Nous fondant sur les conditions de l’empilement compact de tels
cercles, nous montrons que les nombres parastiques doivent appartenir à une suite de Fibonacci
généralisée. De plus, si seules des transitions « régulières » de parastiques se produisent dans le
système, la divergence tend vers un nombre noble. C’est au contraire un nombre rationnel qui est
atteint au terme d’une suite infinie de transitions singulières.

Abstract. 2014 Phyllotaxis can be identified with the study of spiral lattices which are useful as
models for many botanical structures (arrangements of the inner florets of a daisy, of the scales of
a pineapple...). We consider a geometrical idealization of such networks : a lattice of tangent
circles aligned along a logarithmic spiral. using conditions for close-packing of such circles, we
show that the parastichy numbers belong to a generalized Fibonacci sequence. Moreover, if
« regular » parastichy transitions only occur in the lattice, the divergence tends to a noble
number. On the contrary a rational number is reached after an infinite sequence of singular
transitions.

J. Phys. France 50 (1989) 1603-1621 1er JUILLET 1989,
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Physics Abstracts
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1. Phyllotaxis, an exotic form of crystallography.

1.1 AN OLD SUBJECT. - The geometry goveming the arrangement of some botanical
structures is called phyllotaxis : it concerns for instance the inner florets of a sunflower or a

daisy (spiral phyllotaxis). An other example is cylindrical phyllotaxis which characterizes the
arrangement of the scales on a pineapple or on a fir-cone.

In a previous paper [1] hereafter referred to as I, we recall that many mathematicians,
physicists and crystallographers have studied phyllotaxis (historical references can be found in
1 or directly in papers by Adler [2] or Rivier [3] (1). The subject is, however, rather exotic

(1) General references on phyllotaxis are given in I, where we emphasize the difference between
conceptions of people from exact sciences (physicists, mathematicians, crystallographers) and those of
biologists. A botanist [4], however, has made long ago a work presenting some of the material contained
in this paper. An excellent review of geometrical models can be found in Erickson [5]. To our
knowledge, the present paper gives nevertheless the first derivation and analysis of the number-
theoretical properties involved in the models of spiral lattices.
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among physicists. We therefore gave an introduction to it in I. Next section summarizes what
is necessary in order to understand the present paper.

1.2 SPIRAL LATTICES AND PHYLLOTAXIS. - Consider a logarithmic spiral defined in polar
coordinates (r, 9 ) by

where ro, z and x are three real constants. The spiral lattice L, is obtained by choosing along
this curve a discrete set of points according to

The curve defined by (1) is generally called ontogenic spiral ; x is the divergence and z the
plastochrone ratio. Their geometrical meaning is immediate. Take two consecutive points of
Ls along the ontogenic spiral, say IIn = (rn, On ) and IIn + 1= (rn + 1’ On + 1). The divergence x
is linked to the angular distance separating the two considered points :

On the other hand, the plastochrone ratio z corresponds to the ratio of their radial distances :

Figure 1 visualizes these concepts : notice that the eye is not drawn toward the ontogenic

Fig. 1. - The dotted curve is the ontogenic spiral r = ro Z8/(2"’x). Filled dots have been placed on the
sites of L,. Linking neighbouring points of L,, one gets the parastichies which have been visualized by
continuous and dashed lines. The sites of the lattice L. have been numbered along the ontogenic spiral,
starting from an arbitrary point ; notice how numbers increase regularly along parastichies which, on
this figure, belong to the 3- and 5-families (respectively right and left handed).
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spiral but rather toward those whorls connecting neighbouring points : these curves are
named parastichies.
Once the points of the lattice have been numbered along the ontogenic spiral, an obvious

fact comes into sight : a given parastichy connects successive points whose indexes always
differ by a constant and integer value. For instance, a parastichy could connect points with
indexes n, n + r, n + 2 r ... The value of r in this arithmetic sequence characterizes some
family of parastichies we naturally call the r-family and which is constituted of r members
identified by the different values of n = 0,1, ..., r -1. As a matter of fact, the distribution of
the points of a spiral lattice among the members of a r-family is isomorphic to the
classification of the integers into classes of residues modulo r.

Since Kepler [2], there is a well-known fact about phyllotaxis : the couple (or triple) of
integers {k, $ } (resp. {k,l , m}) which characterizes the families to which belong the
parastichies on a daisy (on a sunflower, ...) are very often successive members of the

Fibonacci sequence

whose members obey the recursion formula

Less often, the couple {k, l} is constituted by two successive members of a generalized
Fibonacci sequence {gn} whose elements still satisfy (3) but with different « initial con-

ditions » ; for instance, the Lucas sequence is given by

The ratio of two successive members of a (generalized) Fibonacci sequence tends to the
golden ratio T :

(notice that T = 1 + T -1). The development of T-1 as a continued fraction is well known (2) :

Hereafter we shall encounter a class of numbers intimately linked to T : noble numbers. These
are irrationals whose developments as continued fractions allows only a sequence of ones
after a definite stage :

(2) The notations and properties of continued fractions to be used in this paper are recalled in I. Well-
known references on the subject are the books of Khinchin [6], Lang [7] or Perron [8].
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As can be noticed, continued fractions will play an essential role in the present paper and
especially the notion of principal convergent. Let us remember that the nth principal
convergent xn of a number x in the range ]0,1] ] is obtained by truncating its expansion as a
continued fraction to the n first terms :

The values of Pn and qn may be calculated by use of the recursion formula

One shows without difficulty that any number x = [a,, ..., an + y] with 0 , y « 1 has the
same first n convergents as xn = [a,, ..., an].

1.3 PARASTICHY TRANSITIONS. - Before going on, let us shortly describe what happens on a
daisy (Fig. 2). The size of the florets increases with the distance to the centre of the flower ;
we shall see, in section 2, that their growth rate is equal to the plastochrone ratio z (which
corresponds to the rate of increase of the overall pattern). This growth, however, is not

exponential, so that if we want to represent a lattice of florets with the help of (2), we have to
assume that z is no longer constant but decreases radially outwards. The value of the

Fig. 2. - A daisy has been pictured. Florets are the units constituting the centre of the flower. They are
regularly disposed along parastichies which in this case belong to the 13- and 21-families in the middle
part of the flower and to 21- and 34-families in the outer part (some parastichies have been outlined by a
full line). Circles of defects are marked, consisting of pentagonal (0) or heptagonal (+) florets ; they act
like dislocations allowing the transition between parastichies of the 13-family and those of the 34-family.
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divergence x, on the other hand, seems to be fairly constant throughout the botanical lattice
(i.e. the daisy). One clearly distinguishes in the whole arrangement annular zones separated
by circles of defects. Within each ring, one finds easily two parastichy families, say
ki and (where i indexes the rings from the centre outwards). When one passes from a given
region to the outer adjacent one, the {ki, fj -families are replaced by the {ki + 1, fi + 1} ones ;
the new parastichy numbers are linked to the former ones by

(one recognizes immediately the similarity of this expression with (3)). It appears that, by
going from one ring to the next one, the li-family runs continuously across the boundary
region, while the ki-family disappears, being replaced by the fi one. We call this parastichy
transition.

Transitions are made possible by defects which act like dislocations and which have very
interesting properties. We shall not study them here ; let us however mention that structural
defects have been described in a very similar case by Rivier et al. [9].

In I, we have investigated the modification of the neighbourhood induced by a decrease of
the plastochrone ratio z. We showed that this change is of less importance (being even
vanishing if the parastichy numbers {k, Q } increase) whenever the divergence is a noble
number. As the shape of the botanical units (here florets) constituting the lattice is rather
stable, it is clear that a divergence preserving the shape of lattice sites is favorable for such
arrangements.
A natural question then arises : is there a geometrical mechanism which allows a « noble »

divergence to emerge ? In order to give an answer, we shall hereafter construct a geometrical
model of phyllotaxis which should be considered as an idealization of botanical structures.

1.4 PACKING OF CIRCLES ALONG A LOGARITHMIC SPIRAL. - The model we propose is based

on circles packed along a logarithmic spiral. It will fulfill the following requirements :
A) a circle is centred around each point of L, (defined by (2)) ;
B) each circle is tangent to its four (or six) neighbours ;
C) there is no overlapping among the circles.
The result to which we shall be lead is pictured in figure 3. Tangent circles align with spirals

which can be identified with the parastichies mentioned in section 1.2. The two parastichy
numbers {k, Q } of such spirals are relative prime integers. We shall show that there
corresponds a finite range both for the divergence x and the plastochrone ratio z which are
compatible with the choice of {k, Q } and the construction of a lattice of circles satisfying
conditions A, B, C.
The next section is concerned with the construction of circles tangent along logarithmic

spirals. We shall determine the divergences compatible with two given parastichies
{k, Q } along which circles are tangent ; in section 3, parastichy transitions and occurrence of
noble numbers will be investigated. We shall show (Sect. 4) that conformal mappings provide
a powerful tool to construct similar structures on other surfaces than the plane ; at last, we
shall briefly examine what happens if k and f are no longer required to be relative prime
numbers.

2. Constructing tangent circles along two families of logarithmic spirals.

Let us consider the spiral lattice Lg of points lln = (rn, On), defined by (2). The divergence x
and the plastochrone ratio z are arbitrarily fixed. For every value of the index n, we want to
draw a circle Cn centred on lln whose radius Rn is proportional to the distance
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Fig. 3. - A circle is drawn around each site (filled dots) of the spiral lattice LS. By suitably choosing
their radii, it is possible to get a lattice of tangent circles verifying conditions A, B, C of section 1.4. The
lines along which they are in contact are identified with the parastichies.

rn between IIn and the origin (r = 0) of LS. According to (2), we require

Ro is still an undetermined length. Our aim is to find a relation between x, z,

ro and Ro in such a way that a given circle Cn is tangent with Cn + k and Cn + f, k and f being
relatively prime integers (0  k  Q ).

In cartesian coordinates, the vector dn, n + m joining the centres IIn and IIn + m of two circles
Cn and Cn + m writes

The distance between IIn and IIn + m is therefore equal to

If we require that circles Cn and Cn + m of respective radü Rn and Rn + m are tangent, we have to
impose that the distance dn, n + m between their centres equals the sum of their radü. Using (5)
and (6), we get

As a consequence, the condition of tangency between Cn and Cn + m depends only on the
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difference m of their ranks along the ontogenic spiral and on Ro/ro, the ratio between the
radius Ro of an arbitrary circle of the lattice and the distance ro of its centre to the origin. Let
us define

If x is given, the value of z such that circles Cn + k and C,, , e are both tangent to

Cn is determined by

These two equations fix Ro/ro and z as functions of x, k and f. The latter parameters are no
longer independent if we require that circles do not overlap in the lattice. Thus we shall give a
link between x, k, f in order to construct a network satisfying requirements. A, B, C of
section 1.4. The following theorem states the conditions under which the construction of a
lattice of tangent circles is possible. It states the relation between the parastichy numbers k, f
and the divergence x.

Theorem 1. Let k, f be two relatively prime integers, 0  k  f, and x = [a,, a2, ... ] a real
number in the interval ]0, 1]. The construction o f a non overlapping lattice o f tangent circles is
possible for a continuous range of x if and only if

or

where q,, qr + 1 and qr + 2 are the denominators o f three successive principal convergents of x.

The proof of theorem 1 is outlined in the appendix. Suppose that x is given ; by use of this
theorem, we can find all couples {k, Q } allowing the construction of a lattice of tangent
circles. Conversely, if {k, l} are given, we may calculate a divergence x allowing the
construction of a non overlapping lattice of circles. We show in appendix that, under the
conditions of theorem 1, equations (8) admit two and only two roots zo and 1/zo ; solution
zo insures the tangency of circle Cn with Cn + k and Cn + e ; due to the existence of the second
solution, namely 1/zo, Cn - k and Cn - 1 are also tangent to Cn. Notice an important fact : since
the condition of tangency does not depend on the index n (see (7)), the previous statement is
true everywhere in the lattice, giving rise to « chains » of tangent circles which are nothing but
the parastichies. Due to theorem 1, the divergence x is of the form (cf. Appendix).

or

where y is a number in the range [0, 1 [ and where coefficients am, p. and qm are related by
(4).

If x is given, all couples {k, Q } are found by direct application of (4). Conversely, if

{k, l } is fixed, one determines x = [a,, a2, ... ] by use of the recurrence relation for

qm, with the conditions k = qr and i = qr+1 1 (or k = 7r, Î = qr + 2 and ar + 2 = 1) -
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3. Transitions between close-packed lattices.

3.1 REGULAR AND SINGULAR TRANSITIONS. The previous construction insures that, for
any n, Cn + k and Cn + e are tangent to C,,. However, the relative position of circles

Cn and Cn + k + e is still free and they can become tangent. In the latter case, Cn is in contact
with six neighbouring circles : this is what we call close-packing of circles. It happens that a
parastichy transition occurs each time close-packing is realized. Conditions under which this is
possible are given by theorem 2..

Theorem 2. Close packing of circles occurs in L, if and only if

where qr, q, + 1 and q, + 2 are the denominators o f three successive principal convergents o f the
divergence x. If close-packing takes place in the lattice, the values o f the plastochrone ratio z and
of the divergence x are completely and uniquely defined by k and f.

The proof is sketched in appendix. As an immediate consequence of (4) and (13), the
(r + 2 )th coefficient of the development of x as a continued fraction has to be equal to one :
ar+2 = 1.

Starting from a situation where the parastichy numbers are {k, e} , a progressive reduction
of the plastochrone ratio z leads to a situation of close-packing where three parastichy
families, namely {k, f, k + f }, are visible. A slight decrease of z induces a transition : one of
the former families, either k or f, has to disappear (the process is illustrated in Fig. 4). There

Fig. 4. - Starting from a given configuration (a) with parastichy number, f ) (here k = 5, f = 8), the
plastochrone ratio z is slowly reduced. The lattice becomes more and more compact, up to close-packing
(b) where the three parastichy families {k, £, k + £ } = {5, 8, 13 } are apparent. Further decrease of z
leads to a transition which is either regular (c) with parastichy numbers {£, k + £} = {8, 13 } or

singular (d) where the couple of parastichy numbers is {k, k + £} = {5, 13 } .
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is a kind of « bifurcation » where the system can proceed along two different ways : if the k-
family vanishes (Fig. 4c), we have a transition

which we shall hereafter call regular transition, in opposition to the case where the 1-family
disappears (Fig. 4d)

which is called singular.
A regular transition is characterized by the fact that the couple of parastichies

{q" q,+l} = {k, f} is replaced by the couple {q’+l’ q,+2} = {f, k + f} (so that a, + 2 =1).
According to (11), the divergence, up to the transition, is equal to

and is defined for 0 _ y  1; xk, e (y ) is compatible with the choice of Cn + k and

Cn + l as circles tangent to Cn (overlapping of Cn and Cn + l - k (or Cn + p + k) can and does occur
for y close to 0 or 1). For some Ye, there is simultaneous tangency of Cn with

Cn+k’ Cn + e and Cn+k+l. The corresponding value of the divergence Xk,l(Yc) must then be
equal to a divergence xe, k + t (y R) for which Cn + t and Cn + k + t are tangent to Cn ; the value of
ycR must be such that

which yields

This shows that yc belongs to the interval 1,1 [ (since 0 _ y R  1). Notice that a regular1 2 c

transition (RT) allows us to fix one more term in the development of the divergence x as a
continued fraction :

In the case of a singular transition (ST) the situation is different. To analyse the transition in
the same way, we ought to claim that the transition is characterized by the substitution of the
couple {k, $ } by {k, k + l } . If we apply the algorithm (4), there is no difficulty in finding the
sequence of am corresponding to the new set of parastichies ; we get

so that the number of known coefficients am is the same before and after a singular transition.
There is another important difference with respect to the case of a regular transition ; when
circles Cn + k, Cn + e and Cn + k + 1 are simultaneously tangent to Cn, (14) shows that

yS satisfying
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is given by

This means that our artificial substitution of (k, f) by {k, k + e} as two successive
denominators of the principal convergents of order r and r + 1 is not allowed since

ysc should be positive. Figure 4d shows the geometrical expression of this oddity : the 5- and
13-parastichies have the same chiralities which clearly shows that 5 and 13 cannot correspond
to denominators of two successive principal neighbours of the divergence (in which case the
chiralities should be opposite [1]). As a matter of fact, k and f correspond to bisuccessive
convergents of the divergence, as stated by (10).
However, the difficulty just mentioned is not a serious one. If we go away from the

transition point by modifying the divergence x and keeping both circles Cn + k and

Cn + k + e tangent to C,,, the situation gradually changes : y" increases and soon gets positive,
showing that Cn + k + e revolved around Cn and crossed the axis going through the centre of
Cn and the origin of L, : now k and k + f actually correspond to denominators of successive
principal convergents of the divergence x.

3.2 CASCADE OF BIFURCATIONS. - We are now able to get a general picture of the process
occuring when z is reduced (Fig. 5). Let us start from an arbitrary couple { k, l } of relatively
prime integers. We can determine the values of x and z corresponding to the divergence and
plastochrone ratio of a spiral lattice of circles such that Cn + k and Cn + l are both tangent to
Cn for any integer n. Moreover, we can always choose (x, z ) so that there is no overlapping in
the lattice : this corresponds to a point of the diagram z - x in figure 5. For instance, the curve
{2, 3 } gives the set of points (x, z ) compatible with the choice k = 2, f = 3. If we reduce z,
we follow this curve until we reach a bifurcation which corresponds to the simultaneous
tangency of Cn + 2, Cn + 3 and Cn + 5 with Cn. At this stage, we have the choice to follow either
curve {2, 5} or {3, 5 } ; in both cases we shall reach again and again new bifurcations. If we
reduce z to the limit value zL = 1, we shall overstep an infinite sequence of bifurcations.

Figure 5 illustrates some general properties which can be deduced from the material
enclosed in the previous sections :

w after a regular transition RT, the sense of variation of the divergence x always changes.
Moreover, a RT adds a new step in the fixed part of the development of the divergence as a
continued fraction :

after a singular transition ST, the sense of variation of the divergence does not change. A
ST never adds a step to the fixed part of the development of the divergence :

As a consequence, an infinite sequence of regular transitions necessarily leads to a noble
number as the limit divergence :

Between two regular transitions, the divergence always crosses the limiting noble divergence :
it oscillates closer and closer to xk, f (T -1).
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Fig. 5. - The curves mark the value of x and z for which the construction of a lattice of tangent circles is
possible. Starting with a system characterized by parastichy numbers {k, e } (hère {2, 3} ), a reduction
of z leads to close-packing of circles. A further decrease of z may then produce two different situations :
either the k-parastichies disappear (regular transition {k, f} -&#x3E; {f, k + f} ), or the Q-parastichies
vanish (singular transition {k, f} -&#x3E; {k, k + f}). In both cases, further reduction of z leads to new
transitions.

On the other hand, an infinite sequence of singular transitions leads to a rational limit

Each real number 0 -- x 1 can be reached through a cascade of transitions (one can show
that the way a number is reached is unique if it is irrational ; on the other hand, there exist two
different paths if the number is rational). For instance, the cascade of transitions leading to
the number x = [ai, a2, ...] is obtained through the following recipe.

2022 Choose an arbitrary value for r.
. Calculate the values of both rational fractions [aI, ..., a,] = Pr/qr and

2022 Call k = q, and f = q, , 1 ; choose a couple (x, z ) along the segment {k, f} of the
diagram z - x.

2022 Let the point (x, z ) follow the curve (k, f) in the direction of decreasing z ;

(x, z ) undergoes a cascade of bifurcations according to the code

where R(S) symbolizes a regular (singular) transition.
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Let us come back to phyllotaxis ; there is no reason to assume that the probabilities of either
transitions are equal among plants. There are at least two arguments which strongly favour
regular transitions :

. As discussed above, a spiral lattice undergoing a regular transition jumps fromv

) with Z1 &#x3E; z, and Such a jump
can be considered as a finite transition. In I, we called it standard transition and showed that it
is characterized by the fact that the Voronoi polygon around each point of the lattice

L, changes the less ; we used this argument of shape invariance to favour phyllotaxis with
noble divergences (a singular transition cannot lead to a standard transition !). Thus shape
invariance of the environment of a circle (corresponding to a floret or a scale in a plant)
favours regular transitions.

2022 A cascade of regular transitions leads to oscillations of the divergence x with ever
decreasing amplitude. On the other hand, a cascade of singular transitions leads to a steadily
increasing (or decreasing) divergence. Thus regular transitions need less important rearrange-
ment of the structure than singular ones.

In the theory of approximation of irrational numbers by rational fractions, noble numbers
(and among them the golden section T) are in some respect the « opposite » of rational
numbers because they are most slowly approximated by rational numbers. We find here an
analogous property in phyllotaxis : noble and rational divergences result from « opposite »
cascades of merely regular or singular transitions. On the other hand, any other real number
corresponds to an intermediate case as the result of a cascade of both types of transitions. For
instance, quadratic algebraic divergences result from a cascade characterized by a periodic
sequence of regular and singular transitions.

This discussion may seem of little interest for the phyllotaxis or related physical systems.
However, models of packing of growing discs [10] show important differences in the stability
of the system according to the parameters involved. We shall discuss in a future paper [11]
how their stability is related to the algebraic character of the limit divergence.

4. Conformal applications.

Up to here, we have been concerned only with plane phyllotaxis. One may ask whether it is
possible to reproduce the same results (lattice of tangent circles, parastichy transitions...) on
other surfaces like spheres, cones, cylinders...
The transposition to the sphere is immediate : the stereographic projection which maps the

sphere on the plane is the ideal tool since it is a circle preserving transformation (Fig. 6b).
Let us now shortly describe the method to construct lattices of tangent circles on a cone

(Fig. 6c). The transformation

maps the strip - 1T s 0  1T on an angular region

which can be thought of as a cone with apex angle 03C8 unwrapped on the plane. By use of this
transformation, any point (rn, On) of the plane lattice Ls is mapped on a point (un, vn ) of the
cone. The condition of tangency of circles Cn and Cn + m on a cone, is then readily found to be
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Fig. 6. - By use of conformal transformations, one easily gets lattices of tangent circles on other
surfaces than the plane (a), here a sphere (b), a cone (c) and a cylinder (d).

Fig. 7. - A {k, l} phyllotaxis has been drawn on a cone with apex angle equal to 2 arcsin (1/m ).
Unrolling m times this cone on a plane produces a phyllotaxis characterized by parastichy numbers
{ k’ , f’} = {mk, mf }. On this picture, m = 3 and {k, f} = {5, 8 } .
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This equation generalizes (7). One notices immediately that it contains the plane phyllotaxis
(Fig. 6a) as well as phyllotaxis on a cylinder (Fig. 6d) as limiting cases when 4r - 7r or
t/1 ---&#x3E; 0 respectively. Moreover, the construction on a cone provides the key to the following
question : is it possible to find spiral networks without the restriction that k and f are
relatively primes ?

Let us take {k’, l’ ) , two such numbers. One writes k’ = mk and f’ = mQ, m being the
greatest common divisor of k’ and Q’. One can then draw a lattice of tangent circles
characterized by the parastichy numbers (k,l) on a cone with apex angle
t/1 = 2 arcsin (1/m). Unrolling this cone m times on the plane gives rise to a phyllotaxis with
circles tangent along k’- and f’ -parastichies (Fig. 7). Such structures are often encountered in
phyllotaxis and are called decussate if m = 2, trieussate if m = 3, ... (m corresponds to the
jugaey introduced by Turing [5]).
Many other mappings produce funny results which are, however, of little use in phyllotaxis.

Let us mention that one obtains a generalization of Coxeter’s loxodromic sequences o f tangent
circles by inversion of L, in an arbitrary circle [12].

5. Conclusions.
The results of this paper are of purely geometrical nature. They complement the conclusions
drawn from I. It has been shown that a phyllotaxic pattern constructed along a logarithmic
spiral has peculiar properties, related to the reduction of the plastochrone ratio z. If we
decrease z, a parastichy transition eventually occurs. In I, we have shown that the transitions
which happen in a lattice with noble divergences x = [a,, a2, ..., ar, 1, 1, 1, ... ] are charac-
terized by a peculiar symmetry : local shape invariance is best preserved in this case. In the
present paper, we have reached the same conclusions by studying a geometrical idealization
of phyllotaxis.
The latter values of the divergence are precisely those for which the two parastichy numbers

correspond to successive numbers of any sequence obeying the recursion formula

Actually, most plants precisely belong to this category. Now arguments using such simple
concepts as « non-overlapping circles » and « shape invariance of the pattern » are certainly
required in order to understand the meaning of the occurrence of phyllotaxic networks. For
instance, usual crystallography makes an extensive use of similar concepts such as compact
stacking of spheres or invariance through some space transformation.
However, using and recognizing some symmetries or geometrical properties is not

equivalent to bringing forward a precise mechanism. In this work, we have tried to show that
if the plastochrone ratio, identified with the growth rate of the unit cells, decreases radially
outwards, parastichy transitions have to appear. Coupled with some geometrical constraint
analogous to the absence of circle-overlapping, this occurrence of transitions leads to noble
divergences.
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Appendix.
Let us precise the notations and concepts which will be used throughout the present appendix.
References to paper 1 will be made in the form (I . j ), where j points to the numbering of the
formulas therein. We shall consider a real number x (to be identified with the divergence) in
the interval ]0,1] and its development as a continued fraction
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The rth principal convergent of x is given by

and the intermediate convergents (if they exist) are

We shall consider two relatively prime and positive integers k and f verifying

A lattice of circles such that circles Cn + k and C,, , e are both tangent to Cn for any integer n has
to verify (8) or, more explicitly

where

The condition of non overlapping expresses the fact that, for two arbitrary circles

Cn and Cn + m , the distance separating their centres has to be greater than or equal to the sum
of their radii. This, if Cn + k and Cn are tangent, is equivalent to

We shall successively show under which conditions equation (15) admits positive real
solutions z, how many such solutions exist and how k, f, x have to be related in order to satisfy
(17).

Proposition 1. Equation (15) admits solutions if and only if COS2 7TkX:5 COS2, rfX. If this is
verified, there exist two and only two positive real solutions zo and 1 /zo.
Proof. By use of (16), equation (15) rewrites

Suppose x fixed. Since k  f, the right hand side of this relation is, for z &#x3E;_ 1, an increasing
function of z, its lower bound being equal to 1. It is then clear that (18) admits a solution
zo if and only if COS2 7Tkx:::; cos2 7lx and that this solution is unique in the interval

1 :::; z  oo. By symmetry, if zo is a solution of (18), so is 1/zo. This completes the proof.

Proposition 2. The construction o f a non overlapping lattice o f tangent circles is possible only if
k and f are denominators of two principal convergents of x.

Proof. We shall show that if k and f are not related to principal convergents of x, condition
(17) cannot be satisfied for any value of m. Let us first suppose that k (or f) is equal to the
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denominator qr,j of an intermediate convergent of x. Due to properties (1.20) and (1.21), one
has

which induces

Since qr + 1  qr, j, the following relation holds

This last inequality, introduced in (17), expresses that, if k (or f) is related to an intermediate
convergent of the divergence x, the lattice presents necessarily overlapping among the circles

since F2q + 1 (x, z )  Fq , J (x, z ). 1 » 

Suppose now that k (or f) is neither related to a principal nor to an intermediate convergent
of x ; let qr be the greatest denominator of a principal convergent of x verifying
qr  k and let p be the nearest integer to kx. The following inequality holds (see (1.21)) :

This leads to

Again, (17) is not verified : circles Cn + qr and Cn overlap for any n.
As a conclusion, if k and f are not both equal to denominators of principal convergents of x,

overlapping occurs in the lattice.

Proposition 3. A non overlapping lattice of tangent circles can always. be constructed if

Outline o f the proo f. We shall consider successively the three cases {k, l} = {qr qr , 1 } with

The divergence is equal to (see (1.15))

Let us take y = T -1 and suppose that (15) is verified. One calculates without difficulty that, for
j ± 1, one has [7]
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We shall prove that

Due to (19), one can take benefit of the concavity of cos « (0 _ a _ ’TT /2) and of the
convexity of cosh {3 in order to write

So that (17) is true for any m = q’+j’, j 2: 0. The proof is immediately extended to any integer
m &#x3E; qr (the demonstration uses the same tools as the one of proposition 2). The self-similarity
of the lattice L, [1] allows to conclude that, if no overlapping occurs for m &#x3E; qr, the same

remains true for m  q,.

The divergence writes

We shall prove that y = 0 leads to a non overlapping lattice of tangent circles. The divergence
x (0) is rational and its last convergent is Pr + 1/ qr + 1. Since f &#x3E; 2 k, ar + 1 is greater than one ;
this means that there are intermediate convergents between pr/qr and pr + 1 /qr + 1 whose
denominators are determined by

and which verify

so that the following inequality is true :

Introducing this in (17), one finds that circles Cn+qr-1,j and Cn do not overlap. The proof is
immediately extended to any integer m (see case (a)).
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We shall admit without demonstration that a,,, 2 has to be equal to one in order to avoid
overlapping : there are no real difficulties to prove it, but the demonstration is too long to be
given here. The divergence is, in this last case, given by

The choice y = 0 leads to a non overlapping lattice as we shall show hereafter. Let us first
prove that Cn + qr + 1 and Cn are not in contact, by direct computation, one finds that

so that (17) is verified for m = qr+ 1. Now x (0 ) is rational, its last convergent being
Pr+2/qr+2. The remaining of the proof can be copied on case (b).

This completes the « demonstration » of proposition 3.

Proposition 4. A non overlapping lattice of tangent circles cannot be constructed if

Outline of the proof. A demonstration of this statement being rather long, we shall only
outline an intuitive argument in order to make the proposition plausible from a geometrical
point of view.

Considere two adjacent parastichies belonging to the k-family. The first one is composed
with circles Cn + jk (j = ..., - 1, 0, 1, ... ) ; circles Cn + l + jk (j =..., -1, 0, 1, ... ) form the
second one (by adjacent, we mean that Cn + jk and Cn + t + jk are tangent for any j). Due to (4),
one can always write

where s and t are two integers, t being greater than 1. This means that Cn + l - sk and
Cn (which are lying on two adjacent k-parastichies) are located on the same qr + 1-parastichy.
This last spiral, from Cn + l - sk up to C,,, remains located between the two adjacent k-
parastichies : as a consequence, all circles Cn+ jqr+1 (j = 1, ..., t ) overlap necessarily with
those of the two chosen k-parastichies.
Proof of theorem 1. Theorem 1 is a mere corollary of the four propositions stated above !

Proposition 5. The following two equations

admit two and only two solutions, namely (xo, zo ) and (xo,1 /zo ).
Outline of the proof. By use of (16), the two equations may be written as

These equations admit a unique common solution (xo, zo ) with zo ± 1 (the demonstration uses
the same arguments as the proof of proposition 1). It is immediately verified that, by
symmetry, (xo,1 /zo ) is also solution. This ends the « proof ».

Proof of theorem 2. Theorem 2 is a direct consequence of theorem 1 and of proposition 5.
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