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L03B1 to L3 : a topology driven transition in phases of infinite fluid
membranes
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Groupe de Dynamique des Phases Condensées, U.S.T.L., place Eugène Bataillon, 34060
Montpellier Cedex 01, France

(Reçu le 1er décembre 1988, accepté le 2 février 1989)

Résumé. 2014 La structure de la « phase isotrope anormale » L3 du système cétylpyridinium
chlorure/hexanol/eau salée est discutée à partir de données de diffusion de neutrons. A l’échelle
locale, l’élément de base est la même bicouche que dans la phase lamellaire gonflée
L03B1 voisine. A plus grande échelle, les données suggèrent une topologie bicontinue où la bicouche
infinie sépare deux domaines eau salée équivalents imbriqués l’un dans l’autre. On propose que la
transformation de structure de L03B1 à L3 est principalement contrôlée par la valeur du module de

rigidité de courbure gaussienne K, K étant déterminé par la courbe spontanée de chaque
monocouche constituant la bicouche. Ce mécanisme plausible est confronté au comportement de
phase du système ainsi qu’à l’étude en diffusion de lumière de la phase L3 en fonction de la
dilution.

Abstract. 2014 The structure of the anomalous isotropic phase L3 in the system cetylpyridinium
chloride/hexanol/brine is discussed on the basis of neutron scattering data. On a local scale, the
basic building unit is the same bilayer as in the neighbouring swollen lamellar phase
L03B1. On a larger scale, the data suggest a bicontinuous topology where the infinite bilayer
separates two interwoven equivalent self connected brine domains. It is argued that the

L03B1 to L3 structural transformation is mainly triggered by variations of the saddle splay rigidity
K of the bilayer, K being determined by the spontaneous curvature of each constituting
monolayer. This plausible mechanism is checked against the general phase behavior of the system
and additional light scattering data collected in the L3 phase at various dilutions.
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Introduction.

In the recent years, increasing attention has suddenly been focused on diluted phases
consisting of infinité bilayers dispersed in large amounts of brine (or eventually oil) in
surfactant systems [1-7]. A particular opportunity of these phases is that the bilayers are fluid
bidimensional objects having an intemal structure symmetric with respect to their mid-
surface. Therefore, they bear no spontaneous curvature and the most general expression for
their bending elasticity takes the very simple form [8] :
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In (1) Ebilayer is the density of elastic energy (per unit area). c and g are respectively the local
mean and Gaussian curvatures :

where 7?i and R2 are the two principal radii of curvature. K and K are the bending rigidity
moduli respectively associated to the mean and Gaussian curvatures. K thus expresses the
resistance to spherical splays and K is associated to the energy cost involved in saddle like
deformations.
At the present time, two different diluted phases have been well characterized as consisting

of bilayers. The first one is indeed the well known lamellar phase (La ) which consists of a
regular stack of parallel bilayers (smectic order). In some interesting cases [2-4],
La can be swollen enormously by appropriate addition of solvent (water or brine). The
average interlayer distance d can so be made very much larger than the thickness

do of the bilayers. In the high dilution regime, it has been shown that the properties of the
phase are basically determined by the so-called steric interaction between membranes [9].
This interaction arises from the steric hindrance to the spontaneous bending fluctuations of a
given membrane induced by the presence of the adjacent bilayers. The corresponding free
energy per unit area of membrane has been derived by Helfrich [9] :

where ao is a numerical constant of order 1.

Interestingly, K is alone involved in [2] but not K. This is directly related to the Gauss
Bonnet theorem which states that the integral of the Gaussian curvature over a given
structure only depends on its topological type. In a lamellar phase, each fluctuating bilayer
keeps the topological type of a flat plane. The contribution of the Gaussian term in (1) for the
lamellar stacking remains therefore constant all along the swelling process and K has no
incidence on the physical properties of the phase.
The later phase has been investigated in some details only recently [5-7]. It is usually called

the « anomalous isotropic phase » (L3). It is commonly encountered in many systems amongst
which non ionic surfactant/water binary systems, ionic surfactantlalcohollbrine ternary
systems and also brine rich or oil rich microemulsions. It is optically isotropic at rest but
exhibits stricking streaming birefringence upon gentle shaking. In the most interesting cases,
it can be swollen enormously just like the neighbouring La phase [4, 5].

In a recent article [6], a modified version of the well known model of de Gennes and Taupin
[10] for microemulsions has been developed in order to describe the structure and the physical
properties of L3. The structure is there pictured as a connected random surface, the basic idea
being that, upon dilution, the ordered La phase should melt at some stage into a phase with a
higher symmetry (more disordered). In this approach K remains the main control parameter,
little attention being paid to K.
The purpose of the present article is to propose a different description of the

La to L3 phase transformation where the triggering quantity is rather the Gaussian curvature
rigidity modulus K. In order to settle our approach on experimental grounds, we briefly recall
in section 1 the phase behavior of the system cetylpyridinium chlorideln-hexanollbrine

(0.2 M NaCI) as reported in more details in [5]. The scattering data, collected for the L3
phase, strongly suggests a topology similar to this of the « molten cubic » model first proposed
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by Scriven [11] to describe the structure of bicontinuous microemulsions. The topological
genus - i.e. - average density of « handles » per unit volume - of such a structure varies

quickly with the dilution. K is therefore expected to play a significant role in the physical
properties of the phase.

Following reference [12], we relate in section 2 the Gaussian rigidity K of the bilayer to the
spontaneous curvature co of each constituting surfactant monolayer and thus obtain a simple
explanation of the relative positions of La and L3 in the phase diagram of our system.

In section 3, a general scaling law for the free energy of phases consisting of one self
connected single bilayer is worked out. Its main implication on the osmotic compressibility of
the L3 phase is then checked against additional light scattering data.

1. Phase behavior and structure

The system CPCllhexanollbrine (0.2 M NaCI) has been presented in details in previous
articles [5, 13-15]. It is a quasi-ternary system - i.e. the brine can be considered as a single
component at least in the diluted phases of interest here (CPw &#x3E; 0.8 where 0,, is the volume
fraction of the brine). For such systems, the phase behavior is usually examined within the
conventional triangular representation. Here, it is more illustrative to use rather the

representation of figure 1 for the diluted part of the phase diagram : the horizontal axis being
the volume fraction 0 of surfactant + alcohol (0 = 1 - 0,,) and the vertical axis being the
alcohol to surfactant ratio in the solution (OA/OS)- In this representation the phase
boundaries approximately correspond to horizontal straight lines over quite a large range of
dilution 0.02 : (1 - 0,) : 0.2. This indicates that in the dilute regime, the phase transfor-
mations are mainly triggered by the variations of cP AI CPs and are quite insensitive to the degree
of dilution 0 . The phase sequence taking place while cP AI CPs increases is quite rich.

First, one meets the LI micellar phase. Within this phase, a neutron scattering investigation
[5] has shown that the micelles undergo a globule to rod shape transformation when
cP AI cP s increases.
For intermediate values Of 0 A/ OS, we find the domain of stability of the swollen lamellar

phase La . The neutron scattering study performed with well oriented samples has shown that
it consists of parallel bilayers bearing no noticeable density of structural defects such as pores,

Fig. 1. - Brine rich part of the phase diagram of the system CPCllhexanollbrine (0.2 MINaCI). The
phase behavior of very diluted samples (CPw::&#x3E; 0.98) is hardly observable : dotted lines.
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fractures or passages. Its swelling behavior upon dilution as revealed by the variation of the
Bragg maximum position qB versus CPw :

is regular indicating an apparent thickness do for the bilayer (do = 26.5 À ) independent of the
dilution 0 , -
The I phase (denoted te in [5]) of interest here, takes place beyond the La phase within a

very thin range for the cf&#x3E; AI cf&#x3E; s ratio. On the other hand, it extends over a very large range of
dilution in the 0 direction. Below its lower phase boundary L3 coexists with La, the biphasic
region being extremely thin. Beyond the upper phase boundary, 1-,3 collapses and shrinks
spontaneously expelling excess brine (L3/Ll biphasic domain). L3 being stable against
dilution for the appropriate cf&#x3E; AI cf&#x3E; s ratio, its swelling behavior can be readily investigated just
like that of the La phase. Neutron scattering data have been collected over a very large q-
range so that the different characteristic lengths of the structure can be evidenced.
The typical scattering profiles obtained (Fig. 2) exhibit a low q broad maximum at

qc followed by a long decreasing tail at higher q. The quantitative analysis (in absolute units)
of the high q decay showed that on a local scale the structure consists of bilayers of thickness
do - 25 A (very similar to do in the La phase) with random orientations. On the other hand,
the position q, of the broad maximum at lower q, is of the same order of magnitude as this of
the Bragg wave vector in La at the same dilution. q, can therefore be interpreted as the
signature of the average distance d between the bilayers in the I structure : q,

2 11" /d.

Fig. 2. - Typical neutron scattering pattem of a L:3 sample : 0 = 0.156.

The variation of qc versus cp (Fig. 3) is linear over a full order of magnitude for the dilution :

But, in contrast with La , the numerical constant a involved is close to 1.5 (a is indeed 1 in
La). As discussed in details in [5], the swelling relation is closely related to the average
topology of the investigated phase (a being a measure of the average degree of connection
between small brine domains of side d in the mixture). In contrast with other topologies,
bicontinuous structures where one single infinite bilayer, self connected throughout the
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Fig. 3. - Swelling behavior of L:3: q, versus Ow.

sample, separates two equivalent self connected interwoven brine domains were found
consistent with the actual value of a (1.5). As an illustrative example of such a topology, the
classical Schwartz periodic minimal surface is very often presented [11] (Fig. 4). Indeed we do
not mean that I presents such a well ordered cubic structure. Actually, the scattering pattern
(Fig. 2) rather indicates a strongly fluctuating structure with no long range order. However,
the schematic drawing of figure 4 helps to visualize two essential features of bicontinuous
structures.

i) Everywhere the two principal radii of curvature have similar magnitudes but opposite
signs. The mean curvature of the bilayer is therefore everywhere, and not only on the average,
weak (c d- 1). It is even exactly zero for periodic minimal surfaces.

ii) On the other hand, the Gaussian curvature has almost everywhere a high magnitude and
a negative sign (g __ _ d- 2 ).
As a direct consequence, the mean curvature contributions to the elastic energies involved

on one side in the lamellar structure and on the other side in the bicontinuous structures are

basically comparable. And the main difference between La and 1-13 then arises from the
Gaussian term in (1). A considerable opportunity is brought in by the Gauss Bonnet relation :

Fig. 4. - Schwartz’s primitive periodic minimal surface, with simple cubic symmetry.
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for any self connected closed surface of area A and genus N (N is the number of handles or
the « holeyness » of the surface). So finally, the difference in elastic energy per unit area
between La and L3 is basically of order - 4 7T Kn where n is the number of handles per unit

area of bilayer. We therefore expect that negative values of K stabilize La while positive
K’s favor L3.

2. Mechanical interprétation of K [12]. -

We here consider separately the two monolayers constituting the complete bilayer. These
substructures are asymmetric with respect to their mid surface and are hence expected to bear
some spontaneous curvature co. Accordingly, we write their density of elastic energy as :

where we drop out the Gaussian term for the sake of simplicity (but with no loss of
generality). As pointed out in a former section, increasing 0 A/ Os results into a morphological
sequence - i.e. globule - rod - bilayer - corresponding to decreasing effective curvatures
for the monolayer. Accordingly, we assume that 4&#x3E;A/os actually controls co. This assumption
corresponds to a very general trend in ternary system as revealed from a detailed survey of the
current literature [16, 17]. When stuck opposite to each other in the complete bilayer, each
monolayer « feels frustrated » [17, 18] for any finite value of co. Using [6] and counting the
radii of curvature of each monolayer at a distance E (of order 1/2 do) from the mid surface
Z of the bilayer (Fig. 5) one obtains :

where c and g for the bilayer are counted at the mid surface 1.
As a consequence of the frustration of the monolayers, Kbilayer is found in general finite even

when gmonolayer is neglected in the starting expression (6) :

Fig. 5. - Schematic structure of a bilayer. The surfaces of inextention of each monolayer stand at a
distance e (- do/2 ) of the mid surface X of the bilayer.
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According to our basic assumption, when 0 A/ 0 S is moderate co is positive : Kbilayer is

negative and stabilizes rather La . Increasing 4&#x3E; AI 4&#x3E; s results in a monotonic decrease of

co which becomes at some stage negative : Kbil,, yer is positive and rather favors L3 with a high
density of handles.
A basically similar interpretation but expressed in more geometrical terms has been

proposed by Anderson et al. in a very recent article [7].

3. cfJ dépendance of the free energy in La and L3.

To proceed beyond a purely mc,-hanical description and to check the consistency of our
approach with the phase behavior exhibited by the real system (Fig. 1), we need reliable
scaling laws for the free energies of both La and % as a function of the dilution. For
La, using the expression of Helfrich (2), we immediately obtain :

where

For the L3 phase, our argument roughly parallels the derivation proposed by Huse and
Leibler [19] for cubic bicontinuous structures with long range order but it is applicable to any
self connected surface of given genus with no respect to its eventual order (« presumably »
liquid like structure of I,3). We consider a large enough bilayer (thermodynamic limit) of area
A, first in a reference state where it is flat on the average and fluctuates freely in the 3D space
and then in a final state where its topological genus N is ascribed (Fig. 6). For the sake of
concision we denote this system as the 1-system and the free energy variation between its
reference and final state as AF, (K, 9, T, N ). We also consider the À-system of total area

Fig. 6. - The 1-system and the k-system.
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Ax = À 2Al in the same reference and final states (same N). Our purpose is to compare
,AF, 1 and AFA. From the Gauss Bonnet theorem we can write :

In the final states, N defines the average distances d - A and i, =-e k A -N N

À dl. Following Huse and Leibler [19], we realize that small ripples of wavelength smaller than
d are basically not affected by the topological change fro n the reference to the final state :
they do not contribute to AF’. For larger spatial length scales deformations, we associate to
any configuration of the 1-system a « dual » configuration in the A-system by simple spatial
homothety of ratio À. The mean curvature elastic energy of the given cl (r) configuration of
the 1-system is :

and for the dual configuration in the A-system :

Since :

we have :

Dual configurations have the same elastic energy and hence the same probability of
occurrence :

where aF’ does not depend on À. Noting, on the other hand, that AF is an extensive quantity
we get immediately :

and finally :

Now, since each handle corresponds to an average area of order d2 and using relation (4),
one derives easily the free energy of % per unit area of bilayer :

where X depends on the exact structure of L3 (e.g. for the periodic minimal structure of
figure 4 we get X %,% 1/27 do).
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Note that the scaling law (17) is only based on the invariance of the elastic energy with

respect to simple homothety. (We neglect here the renormalization of K and K with the
length scale and the approach is valid only for rigid bilayers : K &#x3E; AT). As a counterpart of
the wide generality of this approach, we cannot obtain the dependance of B (K, T) on K and
T. (Actually, we can proceed a little further when noting that K and T appear in the form of
their ratio K/ T in the partition functions associated to OF’. Hence, B (K, T) has the form
TB’ (KIT). But still, the KIT dependance of B’ remains unknown at the present time).
Nevertheless (17) can be checked against experimental facts. From (17), one obtains the

scaling law of the osmotic compressibility versus the dilution :

at constant K, K and T .

The light scattered at very low q (I (q - 0 ) ) by 1,3 should therefore increase dramatically
when 0 decreases :

Figures 7 and 8 represent the light scattering profiles of two L3 samples (0 =
0.183 and 0 = 0.0237). For the more concentrated samples (0 &#x3E; 0.07, Fig. 7) no appreciable
q dependance is observed. On the other hand, for the more diluted samples (Fig. 8),
I (q ) is peaked towards the low q’s. We here do not try to interprete this feature. But in order
to derive consistently the 7 (q --+ 0 ) all profiles are fitted to the very general expression :

and the obtained I (q --+ 0 ) are then plotted versus 0 in figure 9. As expected from the model,
I (q - 0 ) indeed diverges at high dilution but the exponent is somewhat different from the
expected value :

Fig. 7. - Light scattering pattern of
a 1, sample with 4) = 0.183.

Fig. 8. - Light scattering pattern of a
1-,3 sample with 0 = 0.0237.
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Fig. 9. - 1 (q -+ 0) versus P in the L3 phase. The continuous line corresponds to the best fit with a
power law : I - -v = 1. 3.

However we guess that this deviation is simply related to the divergence of the osmotic
compressibility at high dilution. Just like in the vicinity of a critical point, the mean field
approach then becomes inappropriate and an Ising like exponent ( v = 1.28) is rather

expected.
Comparison of (9) and (17) allows to derive the geometry of the phase boundaries of I in

the coordinate system where the horizontal axis corresponds to 0 variations and the vertical
axis to K(OA/OS) variations (Fig. 10). Since both expressions scale like 0 2 , the phase
boundary between La and L3 at constant T and K is a horizontal straight line. On the other
hand, when K becomes larger than B (K, T)/4 7r the osmotic compressibility of L3 becomes
negative and the structure shrinks spontaneously expelling excess brine solvent. Here again
this upper phase boundary of 1-,3 is a horizontal straight line (as long as we neglect anharmonic
terms of higher order in cp which are expected to be significant at higher 0). So finally, the
general geometry of the experimental phase diagram (Fig. 1) around the domain of existence
of the 1-,3 phase finds a quite natural explanation within our approach.

Fig. 10. - Phase behavior of L3 and La as function of 0 and K.

Discussion.

The basic scientific interest of the swollen La and L3 phases is that the characteristic lengths of
the structure - i. e. d and local radii of curvature - are very large compared to the lengths
that are relevant at the molecular level : i. e. the thickness of the bilayer do and the range of
the molecular forces. All molecular specificities can thus be included into the phenomenologi-



1345

cally defined curvature elasticity of an equivalent ideally thin surface : (K and K). This
provides a very safe ground for any attempt of a statistical description of fluctuating surfaces.
The model of reference [6] for the L3 phase is such an attempt.

It is built up according to the following procedure. A simple cubic lattice is drawn with unit
cell of size d. The cells are then randomly filled up with two fictitious different components A
and B with adjustable proportions, and the bilayer is forced to lie at the interface between A
and B. Forgetting afterwards the fictitious difference between A and B, one so obtains a
« random bidimensional walk » with no rims. The next step is then to relate the structural

length d of the model to the elastic persistence length 9K of the flexible bilayer [10]. The
driving idea of the model is thus to generalize the classical picture of flexible rods with a given
persistence length eR to the case of flexible surfaces. However important differences exist
between the unidimensional and the bidimensional cases.
For a flexible thread the rigidity constant K has the dimension the product of an energy by a

length. The persistence length gRis therefore very naturally introduced by the ratio :

For flexible surfaces, K and K have the dimension an energy. Their ratio with

kB T are pure numbers, and no typical length can be derived readily from the analytical form
of the curvature energy. The persistence length eK first introduced intuitively by de Gennes
and Taupin must be understood as a consequence of the renormalization of the modulus
K(f) by the small wavelength bending fluctuations :

where Ko is the bare rigidity constant, f is the scale length of observation, q is a numerical
constant of order one and a is a length of order a molecular size. This effect is noticeable over
reasonable distances (f = 102 Â) only for very flexible membranes (Ko = kB T or less). In the
case of our system, this possibility is ruled out by the exceptional stability of the lamellar
phase La with respect to high dilution [5]. The de Gennes-Taupin persistence length

is therefore expected to be very large ( K &#x3E; 103 À) while values of order 102 Á are typically
measured for d in the L3 phase.
The second difference is related to the definition of the local curvature. In case of a thread,

it is defined by one quantity which is the radius of curvature R. The ground state of minimum
elastic energy is single and corresponds to the all straight configuration. For a surface, the

local curvature is defined by the two quantities R1 and R2. Then, in the particular case where
K is zero, all configurations with 1 IR, + 1/R2 = 0 correspond to a ground state - i.e. - the
plane configuration but also at least all known periodic minimal surfaces (whatever the size of
the unit cell). So bicontinuous sponge like structures can occur even with very rigid
membranes (K/kB T &#x3E; 1 ). Closely related to this high level of degeneracy, we expect (at
finite temperature) the bilayer to explore randomly all these ground states and to exhibit a
liquid like structure with no long range order. But still its local conformation is far from
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random since local curvature with R, and R2 having similar magnitude but opposite signs will
be strongly favored. ,.

As a consequence of the Gauss Bonnet theorem, K acts as a topological chemical potential.
, 

Finite values of K in fact remove the degeneracy between the plane and the saddle like
conformations. Within this frame, the basic difference between the La phase and the Lg phase
is not so much the number of accessible configurations gained when melting the smectic order
of La but rather the respective topological types (« holeyness ») of the two competing
structures. In the case of the system investigated here, this point of view is strongly supported
by the phase diagram geometry. The La to L3 phase transformation is triggered by
cp AI cp s variations and is insensitive to dilution. A natural explanation is here readily provided
by considering in a first step the general effect of OA/OS on the spontaneous curvature
co of the monolayers and by expliciting, in a second step, the relation between

co and the Gaussian rigidity K of the bilayer.
However, different phase behaviors are sometimes observed with other systems [7, 20]. In

particular, the La to L3 phase separation is obtained by increasing the dilution at constant

temperature (presumably constant K and K) in the case of the C16EO3/water binary system
[20]. For such situations our description indeed does not apply. We therefore guess that a
comprehensive approach of L3 accounting for all known particular situations should involve
at least both the renormalization of the rigidities as emphasized in [6] and the topological
analysis of the structure as underlined herein. Several regimes are then expected :

i) - 2 K  K  - K ; locally bent conformations with R, and R2 having the same sign are
rather favored. At very high dilution, La should disrupt directly into a dispersion of vesicles,
and a bicontinuous structure should be unstable at all dilutions ;

ii) K = - K ; the elasticity of the bilayer becomes simply :

The probability of a given local conformation -only depends on the magnitude of

R, and R2 but not on their relative signs. The modelization of L3 as a « random bidimensional
walk » is then consistent and the prediction of [6] that L3 replaces La at very high dilutions
should be valid in this particular case ;

iii) R &#x3E; - K ; beyond some particular (presumably positive) value of K, L3 takes place at
all dilutions rather than La. But saddle like local conformations are strongly favored and the
structure of L3 is now far from totally random. This is the situation investigated here.

In conclusion, the most distinctive property of infinite non intersecting fluid films is their
ability to accommodate various conformations having different topologies but similar low
(everywhere) mean curvatures. The basic implications of this property were actually well
understood and clearly presented in the pioneering articles of Scriven [11]. In the present
article, we simply apply them to the structure and properties of L3 where the bilayers are
known to bear no spontaneous curvature. Thus we obtain a simple explanation of the phase
behavior of this model bicontinuous structure.
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