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On the hydrodynamic stability of curved premixed flames

Guy Joulin

Laboratoire d’Energétique et de Détonique, U.A. 193 C.N.R.S., E.N.S.M.A., rue Guil-

laume VII, 86034 Poitiers Cedex, France

(Reçu le Il avril 1988, révisé le 21 novembre 1988, accepté le 5 janvier 1989)

Résumé. 2014 On propose une équation non linéaire modèle qui décrit la dynamique de
perturbations d’amplitude finie superposées à une flamme faiblement instable et de forme

parabolique. Montrant que des solutions admettent une décomposition en pôles, on illustre
comment les effets de courbure locaux, la non-linéarité, et l’étirement de la flamme dû à la

géométrie rivalisent avec l’instabilité hydrodynamique. Des situations stables, métastables ou
conduisant à des structurations latérales sont mises en évidence. Dans le cas de perturbations
spatialement périodiques, un analogue non linéaire du critère de Zel’dovich et al. (C.S.T. 24
(1980)) est obtenu. On montre aussi que les dédoublements symétriques et permanents du
sommet de la flamme sont non génériques dans la classe de solutions envisagée.

Abstract. 2014 We propose a non-linear, model equation describing the dynamics of finite

amplitude disturbances superimposed to a two-dimensional, weakly unstable, flame tip of

parabolic shape. By showing that solutions of this equation admit a pole decomposition, we
illustrate how the local curvature effects, non-linearity and the geometry-induced flame stretch
compete with the hydrodynamic instability. Cases of stability, of metastability or leading to « side-
cusping » are exhibited. For spatially-periodic disturbances, a non-linear analog to Zel’dovich et
al.’s criterion (C. S. T. 24 (1980)) is obtained. The appearance of steady tip-splitting is also shown
to be non-generic in the class of pole-decomposable solutions.
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1. Introduction.

Carefully conducted experiments [1-3] show that curved flames propagating in not too wide
tubes may exhibit a smooth steady front, even though they fulfill the two apparently
incompatible conditions : (i) their typical transverse dimensions (tube radius, tip radius of
curvature) are much larger than the wavelength À c corresponding to the most amplified
disturbance of a planar front and (ii) they are locally nearly planar. That such smooth steady
curved fronts of large lateral extent also exist for upward propagations [3] clearly shows that
gravity is not the mechanism responsible for the flame stability, since body forces are then a
destabilizing factor.
A geometry-related mechanism has been proposed by Zel’dovich et al. [4] to explain this

anomalous stability on the basis of a WKB-like linear analysis. According to [4] the curved
flame is seen as stable despite the Landau-Darrieus [5, 6] hydrodynamical instability, for two
complementary reasons : (i) because the flow velocity component parallel to the flame
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increases with increasing arc length counted from the tip, the flame shape disturbances of
comparatively short wavelengths (- A C ) are stretched and are driven to nearly planar ones,
which are marginally stable, so that their overall growth is notably reduced ; (ii) again because
of the tangential flow, the shape disturbances are advected while they grow, and may impinge
the tube walls before having had time to reach a noticeable amplitude. Upon the assumption
that thermal noise and À c respectively give the initial amplitude and wavelength of the
disturbance, Zel’dovich et al. [4] estimated the transverse flame dimensions (e.g. radius of
curvature at its tip) beyond which instabilities may be observed. These arguments and criteria
have recently been extended [7] to other curved interfaces (bubbles, Saffman, Taylor finger,
etc.) which share this property of anomalous stability with flame fronts ; a recent synthesis
and a compilation of related topics can be found in Pelcé [8].

It appeared interesting to us to try extending the above results on flames, at least

qualitatively, to the non-linear domain. To this end, we propose a model equation (Sect. 2)
derived from the so-called Michelson-Sivashinsky equation [9, 10], after having briefly
recalled some properties of the latter. Displaying properties of the model equation in the
linéar domain (Sect. 3) we further show that it admits a pole-decomposition (Sect. 4), on the
basis of which we study the response of a parabolic flame-tip to pulse like disturbances of
finite amplitude (Sect. 5). We then study spatially-periodic flame shape disturbances of finite-
amplitude (Sect. 6) and we obtain non-linear analogs to the results of reference [4] (Sect. 7) ;
the phenomenon of tip-splitting is finally investigated in the class of pole-decomposable
solutions (Sect. 8). The paper ends up with a few concluding remarks, open problems and
suggestions (Sect. 9).

2. The M.S. and model equations.

We found it convenient to use as a starting point the Michelson-Sivashinsky (M.S.) equation
[9, 10], viz. :

in which the singular integral operator 1 ( . , X) is defined as :

The M.S. equation governs the dynamics of a premixed flame front subject to a weak Landau-
Darrieus instability [5, 6] and has originally been deduced as a leading order result in the limit
of weak combustion - induced changes in the mixture density across the flame (hence a weak
instability) ; nonetheless, it has recently been shown to resume the same structure as (2.1)
when the asymptotic analysis is made one step further [11]. In (2.1), t is a scaled time, X is a
scaled transverse coordinate parallel to the unperturbed flame front ( f= 0) and f (X, t ) is
the flame displacement. The non-local term 1 ( f , X) measures the change in flow velocity just
ahead of the flame front. Since the LHS of (2.1) is the small change in absolute flame velocity
normally to itself, tifxx accounts for the local variations in normal flame velocity relative to
the unburned gas, which are due to coupled chemical, diffusive and hydrodynamical
phenomena taking place within the flame front thickness. Details on this curvature effect
(first introduced phenomenologically by Markstein [12]) and theoretical expressions of the
Markstein number U can be found in [13, 14] and recent experimental values are available in
[24] ; it is enough for our present purpose to consider li as a given constant characterizing the
mixture, and to assume that it is positive.
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Upon linearization about zero, (2.1) admits solutions of the form j.Lr(k, t) exp(ikX).
Since 1 ( . , X) corresponds to the multiplication by k | 1 in Fourier-space, the non-dimension-
al amplitude T (k, t ) is given in terms of the wavenumber [ k 1 by :

with f = dfldt. One recognizes the destabilizing contribution Ikl [ of the Landau-Darrieus
instability, and the cut-off by the stabilizing Markstein effect (provided that IL &#x3E; 0) when the
wavelength of the disturbance is short enough. We note that two marginal modes are obtained
from (2.3), viz. : k = 0 (translation mode) and 1 k | = 1 / g (cellular mode) whereas the
wavelength À c of the most amplified disturbance here corresponds to [ k 1 IL = 1/2.

Upon numerical integration with periodic boundary conditions [10], the M.S. equation
often ultimately leads to steadily propagating patterns, viz. : f (X, t ) = - Ut + F (X), where
U &#x3E; 0 is the instability-induced increase in flame speed ; F (X) is then a time-independent
(but possibly initial-condition-dependent) periodic function consisting of wide parabola-like
arcs, the tips of which are convex towards the negative values of f (fresh side), joined by cusp-
like thin regions (Fig. 1). Let - Ut + F (X) be such a « steady solution » to (2.1), or even of
its inhomogeneous version obtained by adding a time-independent forcing term u (X) to the
RHS (e.g. so as to model a spatial modulation of the incoming fresh flow). Writing
f (X, t ) as - Ut + F (X) + 0 (X, t ), one readily obtains :

About the tip of its parabola-like parts, F (X ) is well approximated by SX2/2, where
S&#x3E; 0 (at least for SX  1). Motivated by the form that (2.4) then takes, we propose the
following equation :

as a model to get better insights into the dynamics of finite amplitude wrinkles superimposed
about the tip of a curved steady flame of a (nearly-) parabolic shape (Fig. 2).

Fig. 1. - Shape of a « steady », 2 u/K-periodic solution to (2.1), when v - gK is small.

Fig. 2. - Definitions of the function 0 (X, t) involved in the model equation (2.5) and of the
background parabolic flame shape.



1072

Due to the very way it has been obtained (2.5) can give valuable information on the
anomalous stability of the « steady » solutions - Ut + F(X) to (2.1) itself and on their

response to disturbances of finite amplitude, especially when the period 2 7T’ / K of
F (X) is such that v = KJ.L is small ; even though two parameters U and K appear at first
glance to control the shape of F(X), it is indeed readily seen, upon an adequate rescaling
(X, &#x3E; KX) that v = M,K is in fact the only independent parameter (- Markstein length to
wavelength ratio). In the limiting case v --&#x3E; 0, F(X) reads as g(x)/K, with x = KX ; for
future reference we note that g (x ) is then given by :

This limiting form is due to Thual et al. [15] who, using the result of Chen and Lee [16] to
exploit the fact that (2.1) admits a pole decomposition (see Sect. 4), obtained « steady »
periodic solutions to (2.1) when v --&#x3E; 0. One has also to recall that the experiments of Uberoi
[1] did display very nearly parabolic flame shapes and gave a tangential component of the flow
velocity which increases linearly with the arclength counted from the tip. Upon use of
adequate scalings on t, X, 0, equation (2.5) can thus be viewed as a model to understand the
stability of actual flames as well, provided X is interpreted as an arclength ; S would then be
only proportional to the tip curvature (or to the tangential velocity gradient), the

proportionality constant being given by an analysis of the steady front shape and flowfield.

3. Linear analysis.

Once linearized for small enough cp’s, (2.5) admits elementary solutions of the form [25] :

Given an initial wave vector 1 k 1, the small amplitude 1 ’ (k, t ) is then determined by :

(q = dq/dt ). The amplitude thus follows an equation similar to (2.3), but it involves an
instantaneous wavelength 2 ’TT / q = 2 ’TT eSt / 1 k 1 which is stretched by the « tangential
velocity » component SX. Results similar to those of references [4, 8] are recovered from
equations (3.2), (3.3) by noting first that F(k, t ---&#x3E; oo) saturates to a finite value, since
q (t ) is driven exponentially rapidly to the marginal state q = 0 :

F (k, oo ) is maximum when g 1 k 1 = 1, i.e. when 0 (0, X) is the non-trivial marginal mode
corresponding to (2.3). In accordance with [4], there exists a critical value of the tip curvature
S, for a given initial amplitude T (k, 0), such that the curved flame is stable (T (k, t ) remains
small when r (k, 0 ) is) if S &#x3E; Sc. The critical value Sc depends on the initial amplitude and is
estimated from (3.4), as :

since the appearance of a noticeable instability roughly corresponds to 1,(k, oo ) _
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O(1). According to (3.5), and in accordance with Zel’dovich et al., a weakly curved flame
(S « 1 ) can be stable in an almost noise-free situation, even when its typical transverse
dimensions (- 1 / S) are well larger than the wavelength (here 4 7ri£) of the most rapidly
growing disturbance of a planar front. When interpreted in the context of an inhomogeneous
version of (2.1), this result suggests that the « average wavelength » (- 1 / Sc) of f (X, t) could
be selected by the amplitude and the wavelength 2 7T / 1 k 1 of a forcing term, added in the
RHS of (2.1) to simulate the response of an unstable flame to a weak incoming turbulence,
since wider cells would presumably be destroyed by the instability. We note, however, that
the weak, logarithmic dependence of Sc on r(k, oo ) could be difficult to appreciate even by
numerical experiments ; the consequence of its dependence on IL 1 k 1 is more likely to be
attainable.

Conversely, for a given tip curvature S, there exists a wavenumber-dependent amplitude
Tc(k) required to trigger noticeable, O(1) wrinkles : 

The most dangerous disturbance of course corresponds to u 1 k = 1. r c (k) could be
exceeded as a consequence of a forcing term simulating an incoming turbulence in (2.1).
Other unwanted possible candidates for the excitation of shape disturbances with supercritical
amplitudes are the truncation and/or rounded off errors in numerical studies of the M.S.
equation when it is integrated over an interval which is large compared to U. Under such
circumstances, (2.6) enables one to compute the tip curvature, upon differentiation and
calculation of the resulting integral at x = ’TT’. One obtains g xx ( 7T) = 1 / -rr, whence :

Assuming that some numerical noise is generated at the most dangerous mode 1 k 1 =
1 /U , (3.7) and (3.6) give :

Michelson and Sivashinsky [17] made one of their numerical integrations of (2.1) on an
interval 2 7r IK which is forty times as large as the wavelength (4 ’TT IL ) corresponding to the
most amplified disturbance of a planar flame, i.e. for ILK = 1/80 (SU = 1/80 7r m 5 x
10- 3). Then (3.8) gives r * = 0 (e- ’ ’ ) = 0(10-55). Even if a very accurate numerical

scheme is employed so as to avoid significant truncation errors, one must be careful to prevent
the rounded off errors at the mode 1 k 1 = 1/ U from exceeding this very small value of
r *. Therefore, the chaotic travelling waves « issuing » from the cell tips which have been
obtained in reference [17] when integrating (2.1) for K = 1/80 IL may well be numerical noise-
induced patterns. Even if this is true, these conjectures would not mean that such simulations
are meaningless, since noiseless experiments do not exist either but, instead, that they should
be re-made (and the above conjecture tested) with a better controlled source of noise than the
numerical one. A numerical investigation of this kind has very recently been initiated by
Denet [26], who found that the criterion (3.8), deduced from (2.5), is indeed quite relevant,
even quantitatively. As pointed out by an anonymous referee, this is a bit surprising, given
that (3.8) is based upon the value of T(1/U, oo ) : approximating the steady solution to (2.1)
by a parabola SXZ/2 requires that the instantaneous wavenumber q (t ) of the disturbance
remained much larger than that (K) of the solutions to (2.1), whereas q goes exponentially to
zero as t - oo, by equation (3.3). However, in the limit K IL -+ 0 (hence S IL -+ 0, owing to

(3.7)) it is readily seen that the times t at which q (t ) =U -1 exp (- St ) gets of the order of S,
are such that T (1/U, t ) 0 (F(l / U , oo)). Accordingly, since T. is defined only up to within
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an O (1 ) factor, the above result (3.8) is relevant in the context of a stability analysis of steady
solutions to (2.1) : the maximum growth of T (1/U , t ) is almost completely achieved before
(2.5) ceases to be valid, at least in the limit SU -&#x3E; 0. Of course if r *  F(1/U, 0)  1, the
non-linear effects must come into play at earlier times than t.

4. Pole decomposition.

In addition to giving qualitatively similar results as Zel’dovich et al.’s in the linear domain, the
model equation (2.5) has also the pleasant property that it admits a pole decomposition, i.e.
solutions in the form :

The complex numbers xa (t ), a = 1 ... 2 N, are the locations of the (movable-) poles of
cp x in the complex X-plane, which appear in conjugate pairs for 0 to be real. One already
knew that the M.S. equation is pole decomposable [15, 16]. This was due to a conjunction of
the following properties.
- The Fourier transform of Log (X - x a ) vanishes for k  0 or k &#x3E; 0, depending on the

sign of the imaginary part Im (xa ) of xa. Therefore, applying I ( . , X ) to this function yields a
result which is proportional to the derivative 1 / (X - x a) since, in Fourier space,
1 ( . , X) is the multiplication by 1 k 1 whereas d/dX corresponds to i k.
- In (2.1) (hence in (2.5)) the most divergent terms of 1/2 Q2X and U~xx cancel (1),

leaving only terms proportional to 1 / (X - x a ) which are of the same type as those coming
from 0 t and 1 (~, X). Since all terms must cancel for (2.1) (or (2.5)) to be met, equations
were found for the xa’s.
That (2.5) also admits a pole decomposition follows from the trivial identity :

and the corresponding evolution equations for the poles read as (a = 1 ... 2 N) :

Besides the constraint that they must appear as complex conjugate pairs, the poles may be
arbitrarily numerous. Their number (a constant of motion) and their initial locations depend
on the initial condition 0 (X, 0) ; when not present at t = 0, the poles may presumably be
created at t = 0+ by a mechanism similar to that evidenced by Bessis and Fournier [18] for the
Burgers’ equation. The existence of a pole-decomposition, which enables one to study a
continuous non-linear system as a discrete N-body problem for movable singularities, is a

rather exceptional event : besides the Burgers, M.S. and Benjamin-Ono equations, which are
particular cases of Lee and Chen’s [16] non-linear models, pole decompositions have only
been obtained for the KDV equation [19] and for a fully non-local problem of interface
motion [20].

(1) It may appear surprising that the terms Oxx (a stabilizing one) and 1/2 ~x2 (without which (2.1)
has no bounded solution) compensate each other. Actually 02 also brings in a destabilizing effect, which
is responsible for the formation of cusps of 0 when the RHS of (2.1) is set equal to zero.
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5. Two-pole dynamics.

The first two terms featuring in the RHS of (4.2) have already been interpreted in [15]. The
second one comes from the Landau-Darieus instability, via 1 (~, X) ; it tends to make the

poles collide with the real axis, and to produce logarithmic real singularities in 0. The first
term comes from the stabilizing influence of 02 , and tends to repel the poles off their complex
conjugate, thereby preventing a logarithmic singularity of 0 to appear on the real line. The
only new, innocuous-looking term introduced by the curved tip geometry is the last one

Sxa which, if alone, would give za = Sxa. Since S is positive, Sxa tends to shift the poles along
the real axis at a speed proportional to their real distance to the origin ; by the same token
Sxa tends to make their mutual distances increase (stretching the disturbances) and competes
with the formation of condensations [15]. At the same time, the new term in (4.2) tends to
push the poles off the real axis (stabilizing influence of stretch). As an illustration of its overall
influence, we consider the situation where only two poles x1 = a + i b (b &#x3E; 0, without loss of
generality) and x2 = a - ib exist. Then (4.2) gives :

the corresponding expression for ~&#x3E;x being :

The solution to (5.1), a = a (o ) exp (St ), clearly displays the disturbance drift in the

Lagrangian frame of reference defined by X = SX. About the evolution of b (t ), two cases
have to be distinguished :

i) 4 &#x3E;S &#x3E; 1
If the tip curvature and/or the Markstein number 1£ are large enough (&#x3E;S &#x3E; 1/4),

b (oo ) = o0 obtains whatever the value of b (0), since the RHS of (5.2) is positive for any
positive b. The disturbance is then damped to zero while being shifted to X = ± oo ;

ii) 4 uS «-- 1
The equation :

has now two real positive roots :

If b (o ) &#x3E; b+ , then b (oo ) = o0 obtains and the disturbance is again ultimately damped to
zero, like in the previous case. If b (o )  b+ , however, b (t ) tends to the stable root

b_ and 0 (X, t ) tends to a steady profile while being shifted ; however, at any fixed value of
X, Ox(X, t --&#x3E; oo) - 0. Consistently with the linear analysis of (2.2), a weakly curved tip is
meta-stable against pulse-like disturbances.

It would be interesting to define a threshold initial disturbance amplitude, below which the
final amplitude vanishes. However, this is not an obvious task, since the flame front

disturbance 0 (X, t ) diverges logarithmically as (X - a )/b 1 - oo (Eq. (5.3)). We therefore
suggest a tentative criterion based upon the shape of ox. Since the latter achieves its extrema
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at X - a = ± b, and the values ± 4 U / b obtain, one may define the threshold amplitude of
the pulse-like disturbances as that for which /~x/ | exceeds 4 U/B+ at X - a | = 0 (b+ ). One
has to realize, however, that the pulse-like disturbances which we consider here are rather
peculiar : for them, the terms « weak » and « broad » are synonymous. At any rate, a
comparison of this result to (3.8) suggests that the disturbance amplitude needed to ultimately
trigger a noticeable pattern depends on the disturbance shape.

It is also worth mentioning that the new term SxA tends to push the remote poles to infinity
in the imaginary direction quite rapidly ; it seems to be even more legitimate than in the
S = 0 case to only consider a finite number of xa’s.

6. Spatially periodic disturbances.

Equation (3.1) indicates that a spatially 2 7T /1 k 1 -periodic initial pattern generates a periodic
solution to (2.5) with q = 1 k 1 exp (- St ) as wavenumber. We now change the variable from X
to Z = X exp (- St ), thereby modifying (2.5) into :

where If (03C8, t ) stands for 0 (Z e , t ). Besides the solutions obtained from (4.2) (4.3) by
changing the independent variable, (2.5) also admits spatially 2 TT / k 1 -periodic solutions of
the following type :

where zl, ..., z2 N again correspond to the poles of ~X = 03C8z exp (- St ). This result, which is
an extension of reference [15], can be obtained directly from (6.1) by employing the
functional equation :

fulfilled by cot (Z) to transform the non-diagonal terms involved in the expression of
03C8Z, or from (4.1) by extensive use of the known [21] pole-decomposition of cot (Z). The
ODE’s giving the pole motions are now :

The number of poles per cell of 2 7T / 1 k 1 lateral extent is again arbitrary, as well as their
initial locations.

7. Two poles per cell.

When only two poles z1= A + i B (B &#x3E; 0) and Z2 = A - i B are involved in each cell, (6.4)
yields :

the corresponding form of 4&#x3E; (X, t ) being :
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Once a definition of the mean value of ~ is provided, the function h (t ) can be computed, by
averaging (6.1) over Z. For future reference, we note that the peak-to-peak amplitude of 4) is
given by :

where, consistently with (3.1), 2 JL times the peak-to-peak amplitude T stands for the

difference between the maximum and minimum values of 0 (X, t ). In accordance with (5.1 ),
Re (z1 ) stays fixed since the disturbance drift along the X-axis has been absorbed into the
definition of Z. About the ultimate fate of B = Im (zi1, several cases have to be

distinguished, depending on the values of JL, 1 k 1, S and the initial value of B (or n.
Undoubtedly B (oo ) must be finite, since coth ( 1 k 1 B ) is bounded when B &#x3E; q &#x3E; 0 : the

RHS of (7.2) is then bounded by a function independent of B, which is itself bounded at
t = o0 once integrated. However, B(oo ) may also be zero, as it is to be seen in a moment. To
examine the transition between the two cases, we consider situations in which B (t ) tends to a
small value (possibly zero) as t - oo. In the long time limit, th ( [ k 1 B) == 1 k 1 Band (7.2) is
solved to give :

where to is a constant and t is large by assumption.
If 4 Sw &#x3E; 1, the RHS of (7.5) diverges if and only if B est -.&#x3E; co (even though

B 1 k 1 « 1) since (5.4) has no real root in this case. Upon evaluation of the divergent integral
in (7.5) one obtains :

Therefore B (oo ) is not allowed to vanish if 4 S IL &#x3E; 1 and the peak-to-peak amplitude r
saturates at a finite value while the periodic pattern is stretched and its wavelength grows
exponentially rapidly as time increases.

If 4 SIL  1 however, (5.4) has the two real positive roots b+ given by (5.5). Then, either
(7.6) holds if the initial value of B is large enough (B esT‘ &#x3E; b+ ) or B es’ tends to the stable root
b_. In the latter case, B(t --. oo ) = O (e- ST‘ ) and F(t , 00) = O (St ). One may note that r
increases as the logarithm of the wavelength 2 1T est/ 1 k 1 ; this could have been guessed
beforehand, since B - 0 implies that each pole mainly interacts with its complex conjugate,
and the disturbance ~ (X, t ) corresponding to a two-pole dynamics diverges logarithmically
with X (see (5.3)).
On the other hand, whatever 4 US, B (oo ) may also be non-zero if B (0 ) is large enough.

Indeed, for a large value of 1 k 1 B, coth 1 k 1 B --- 1, and the following value of B (oo ) obtains :

Since B (o ) = 0 obviously gives B (oo ) = 0 if 4 SU  1 (B es’ is initially less than b+), - one
concludes that

- if 4 U S 1, then B (oo ) &#x3E; 0 for B (o) &#x3E; 0
- if 4 ILS  1, there exists a critical value Be( 1 k 1 S, U) , and the corresponding amplitude

r C( 1 k 1, S, g), such that B (0)  Bc (or T &#x3E; rj implies B (oo ) = 0 and a diverging peak-to-
peak amplitude of the wrinkles. Otherwise, for 4 US &#x3E; 1 or B (o ) &#x3E; Bc, r always is finite.
Bc is easily computed via a numerical integration of (7.2). Typical graphs of B (oo ) as a



1078

function of B (0 ) are plotted in figures 3a, b. Given the relation (7.4) B, also gives the critical
amplitude 7c. As far as a two-pole-per-cell dynamics is concerned, these are the non-linear
analogs of (3.4) and (3.6).

Fig. 3. - Final value of 1 k 1 B, as given by (7.2), in terms of 1 k B (o ) ; figure 3a : 1 k 1 IL =
0.1, Su = 0.1 ; figure 3b : 1 k 1 g = 0.1, S,u = 0.3.

For very small values of S, 1 k Bc has to be large and can be estimated from (7.7) by
requiring that B (oo ) has to be « not-so-large », e.g. 0 (1 ), when B (0) = Bc + 0 (1 ). This
gives :

and, by (7.4) :

This is of course the result of the linear analysis, since 1 k 1 B &#x3E; 1 implies T (t )  1 and a
nearly-sinusoidal disturbance. The similarity between (7.2) and (3.2) is best displayed by
combining (7.2) and (7.4) to yield :

where q (t ) still stands for 1 k | e- S‘ ; clearly, (7.10) parallels (2.3) and (3.2).

8. On tip-splitting : stretch vs condensation.

The front shape disturbance corresponding to (5.3) and to 4 ILS : 1 may stay about
X = 0 when growing. What could be interpreted as the tip-splitting of an insufficiently curved
flame is a rather improbable event however, since it would require the condition

a (0 ) = 0 to be met. When many (2 N ) poles are involved, one may use (4.3), and a
summation over the a’s, to show that :
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Accordingly, for any positive S and generic initial conditions ( Y (Re xA (0 )) # 0) at least
«

one pair of poles must escape to X = ± oo as time elapses. It is believed that they actually all
escape ! As an heuristic argument, we provisionally assume that only one pair of poles moves
to infinity, the remaining 2 N - 2 poles staying at finite real distances from X = 0 for
t &#x3E; 1. For t ---&#x3E; oo, and because the poles undergo 1/Z-interactions, the remaining
2 N - 2 poles would satisfy equations similar to (4.3) (with a = 1 ... 2 lV - 2), with small
0 (e- S‘ ) corrections added to the RHS’s. This could not prevent at least one pair of the
remaining 2 N - 2 poles from escaping to infinity if they do not satisfy :

The whole process can start all over again, until ultimately all the poles have escaped to
X = ± oo, except if (8.2) is automatically met once the interaction with the escaping pair(s) of
poles is over. We have not been able to rule out the last possibility, but we checked our
conjecture against numerical integrations of (4.3). Figures 4a, b, c, d show snapshots of the
pole population when (4.3) is integrated numerically with N = 6, Su = 0.1 and initial
conditions Xa (0) distributed randomly about the imaginary axis.

Fig. 4. - Snapshots of the pole evolutions, as given by (4.3), for N = 6, SU = 0.1 and different values
of T = tlg.

We thus conclude that a symmetric permanent tip splitting is non generic for the class of
solutions given by (4.1), no matter how large the number of poles, and whatever the smallness
of S ! This does not imply that either the phenomenon of pole condensation along parallels to
the imaginary axis [15, 16] cannot occur (since solutions of the form xa = a (0) eSt +
i Ya (Ya real) are fully compatible with (4.3)) or the steady pole condensation may not exist at
X = 0 for a while. Pole alignments parallel to the imaginary axis may exist after a transient :
when two poles xl, x2 are close to each other, (4.3) gives (xl - x2 ) (x2 - x1 ) m 4 IL whatever
the value of S and the trend to form vertical alignments [15] is thus preserved. However, the
whole pattern(s) must ultimately move to X = ± oo.

In other words, our result indicates that such condensations at X = 0 cannot be reached
from generic initial conditions on the pole locations.
Once interpreted in the context of the MS equation, it implies that cellular 2 TT’ / K-periodic

steady patterns with an extra crest located at X = -ff IK correspond to unstable steady
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solutions to (2.1), in full accordance with the findings of reference [15] obtained by a pseudo-
spectral method. This is also qualitatively compatible with the fact that the steady flames,
which propagate in tubes fast enough not to be affected by gravity, do not exhibit split tips
permanently, but a single nearly-parabolic tip. Our conclusion, however, disagrees with the
results of a simulation quoted in [17], where a two-crest periodic flame pattern was obtained
numerically from (2.1) for i£ K = 1/10 and certain initial conditions. It is unclear at the present
time whether this discrepancy is due to :
- the choice in [17] of a symmetric initial disturbance, or of an insufficiently long

numerical experiment ;
- the class of meromorphic functions ox that we consider here, which could be not wide

enough to allow for such tip-split solutions.
A somewhat exotic possibility to reconcile the two viewpoints, which has so far not been

tested, could be that the lifetime of a « quasi-permanent » split tip increases very rapidly with
the number of poles involved at t = 0. One has also to recall the following fact : using (2.5) as
a model to study the stability of steady solutions to (2.1) requires that the latter be seen by the
finite-amplitude disturbances as a parabola SX2/2, centered at X = 0 and with S as curvature
irrespective of the disturbance evolutions. In other words, the singularities of the solution to
(2.1) are assumed not to move as those corresponding to (2.5) do. Thus, even though the
results of this section actually only depend upon S being positive and bounded away from zero
and are exact as far as (2.5) is concerned, the above restrictions suggest that they may be
applied to the M.S. equation only when the disturbance amplitude is small compared to the
peak-to-peak amplitude of the solutions to (2.1).

9. Concluding remarks.

The proposed model equation (2.5) seems to be a rather good starting point for studying the
non-linear dynamics of curved flame tips and for obtaining non-linear analogs of the
conclusions reached by Zel’dovich et al. [4]. Unfortunately we have been able here to display
a few of its properties only in a restricted class of exact solutions. Besides this class of pole-
decomposable solutions, (2.5) undoubtedly also allows for localized disturbances : this is

already true for its linearized form, as is shown by adequately superposing elementary
solutions of the form (3.1). If true, this conjecture would imply that mild generalizations of
(2.5) or (6.1) would describe the dynamics of localized front distorsions about any weakly-
curved flame, in a suitably defined lagrangian frame of reference. Whether the fact of being
localized changes the way in which the disturbances evolve (as it turned out to be the case for
the Mullins-Sekerka instability of an Ivantsov parabola [22]) is still an open problem. In
connection with the last point, we further note that mild generalizations of (2.5) exist for
which the mode k = 0 is weakly stable, instead of being merely marginal. The related
phenomena of a transient amplification of strong enough disturbances and of a possible
balance between disturbance stretching and harmonic generation by non-linearity have been
evoked about the flame instability of diffusive origin (U  0), in the framework of a

generalized Kuramoto-Sivashinsky equation [23] ; studying them in the context of the

Landau-Darrieus hydrodynamical flame instability is a worth investigating, yet unsolved,
problem which could be important to understand the dynamics of unstable flames embedded
in non-uniform incoming flows.
A last remark is in order. We have so-far considered initial-value problems only ; however,

in the context of turbulent flame theory it would also be very interesting to study the flame
response to external disturbances. For example, this could be done by adding a random
forcing term u (X, t ) to the RHS’s of (2.1) or (2.5) so as to mimic the influence of small
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velocity fluctuations in the incoming far upstream flow. Such a task has recently been
undertaken numerically by Denet [26] about the M.S. equation (2.1), in situations where
u (X, t ) is a harmonic function of time and space : for several realizations of weak amplitude
noises, a quantitative confirmation of the criterion (3.8) was obtained, at least in the cases of
not too large cells, for which the numerical noise is indeed negligible and a steady-state,
background profile F(X) can be obtained numerically. We also recently proposed a

complementary model [27] in which u (X, t ) represents a special, spatially inhomogeneous
shot-noise that is compatible with a pole-decomposition of (2.1) ; its influence is merely to
implant new complex-conjugate pairs of poles, at random locations am ± ibM (m =
1, 2, ...) and times tm, without changing the pole-dynamics between the implants. When a
spatially-periodic version of this noise is included in (2.1), u(X, t) reads as :

( . ) denoting a space-average and the functions t/1 m (X) being defined according to :

Spatially non-periodic noises are also readily constructed, upon use of Log (X - am -
i bm) functions.

This rapid-distorsion-model is similar in spirit to what was proposed by Chaté [28] and
numerically studied in the framework of a discrete model of flame propagation along a 2-
dimensional lattice ; the present suggestion, however, includes the Landau-Darrieus insta-
bility as well. The expression (9.1) can also be used as a noise to include in the Burgers’
equation (viz. (2.1) without the integral term) which possesses pole-decomposable solutions
within the same class as (2.1 ) does : a comparative study would then give quite interesting
information on the role played by the Landau-Darrieus instability in the flame response to a
given noise. Similarly, given (4.1) (4.3), one could account for an overall parabolic flame
shape, at least in the case of spatially non-periodic noises, upon use of the modified M.S.
equation (2.5). Studying whether the same kind of trick can also be extended to spatially-
periodic noises, via equation (6.1), is the subject of current work, along with the applications
of the above studies to unsteady, expanding flames [29].
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