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Résumé. 2014 Nous démontrons, sur la base d’une théorie de Landau-de Gennes, que les défauts
ponctuels des phases nématiques peuvent avoir un corps biaxial non singulier. A partir de ce
résultat nous calculons le diamètre critique de solitons topologiques linéaires. Les solitons de
petits diamètres peuvent se relaxer via une phase biaxiale en un état nématique uniforme, sans
avoir à franchir une barrière de potentiel.

Abstract. 2014 On the basis of Landau-de Gennes-theory it is demonstrated that point defects in
nematic liquid crystals may have a biaxial nonsingular core. From this result a critical diameter is
derived for linear topological solitons in nematics. Solitons of smaller diameter can relax to the
uniform nematic state without energy barrier via an intermediate biaxial phase.

J. Phys. France 50 (1989) 1027-1040 
’ 

1 er MAI 1989,

Classification

Physics Abstracts
61.30.Jf - 02.40. + m

1. Introduction.

Point singularities in nematic liquid crystals have found much attention recently due to their
topological properties [1] and their similarity with magnetic monopoles in non-Abelian gauge
theories [2]. There are arguments, that in bulk samples of nematic liquid crystals point
singularities do not exist, because immediately after growth they connect by linear topological
solitons with their antidefects or, close to free surfaces, with their mirror image. The solitons
then retract to thin strings and decay [3]. Homeotropic (orthogonal) boundary conditions,
however, either at the walls of capillaries [4] or on the surface of nematic droplets, enforce the
existence of point defects. Nematic droplets, immersed in a polymer matrix, are promising
candidates for window material of tunable light transmission [5].
The standard point singularity is the spherically symmetric hedgehog (Fig. 1), where the

director field lines stream away radially from the center in a scale-invariant, selfsimilar
fashion. A simple calculation yields a diverging Frank-Oseen elastic energy,

for a spherical volume of radius R, where K denotes the splay constant.
In the framework of Landau-de Gennes theory Schopohl and Sluckin [6] have studied the

core structure of the hedgehog by the following ansatz for the tensor order parameter Q :
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where ê, is a unit vector in radial direction. The ansatz describes a uniaxial nematic hedgehog
similar to that presumed in (1). The difference is that now the degree of order

Qo(r) = Tr Q2 is not constant, but varies, leading to an isotropic core as solution of the
Euler-Lagrange equation for Qo(r).

Fig. 1. Fig. 2.

Fig. 1. - The hedgehog singularity of a uniaxial nematic phase.

Fig. 2. - The core of the hedgehog singularity can be broadened to a 180°-disclination ring.

However, it is well known [1, 7], that a point defect may broaden out to a line singularity.
The spherical symmetry of the hedgehog is broken to cylindric symmetry by transformation of
the point defect into a 180°-disclination ring (Fig. 2). For this geometry Mori and Nakanishi
[8] have calculated the Frank-Oseen elastic energy in the director representation. A ring has
been observed by Lavrentovich and Terentev [9], but this structure arises when the center of a
hedgehog is changed from radial to hyperbolic, and it is of much larger diameter than the
broadened core (see discussion in Sect. 10).
Lyuksyutov [10] and later Meiboom et al. [11] have proposed, that the core of 180°-

disclination lines in uniaxial nematic liquid crystals is not an isotropic, but a biaxial phase. The
model has been confirmed quantitatively by Schopohl and Sluckin [12]. In the present article
we let the ring singularity of the nematic hedgehog escape to biaxiality and thus arrive at a
cylindrically symmetric droplet configuration with biaxial interior which nowhere is isotropic.
By a simple variational procedure it is proved that its energy is lower than that of

equation (1).
From the biaxial droplet configuration we derive a decay channel for linear topological

solitons. These are nonsingular director fields, which far away from a line are constant [1].
Under this boundary condition they cannot be deformed continuously to the uniform ground
state unless singularities are introduced or the order parameter space is left in between. In
reference [3] it was shown that the soliton is unstable with respect to a break-up into a chain of
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point defects. These altemate in sign and annihilate in pairs. Here we prove that linear
topological solitons vanish away if intermediarily their cores become biaxial. For the proof we
take advantage of the fact, that the director field on a cross-section of the soliton is identical to
that on a sphere enclosing the center of the hedgehog. By peeling off one shell after the other
of the biaxial hedgehog configuration and by flattening it out, we construct a continuous

sequence of order parameter fields which leads from the topological soliton to a constant
director field. Comparison of the field energies yields that below a critical diameter no energy
barrier obstructs the decay. Ostlund [13] has demonstrated in the director representation that
a linear topological soliton, which is spanned between two point singularities, contracts to
infinitesimal diameter. According to our results it then must decay. Thus the hypothesis, that
point defects in nematic liquid crystals of open boundary conditions are not existent, is

hardened by yet another argument.
Details of the present article are documented in reference [14].

2. The Landau-deGennes free energy density.

The basis of our discussion is the Landau-de Gennes-expansion of the free energy F in powers
of the tensor order parameter Q and its gradient grad Q. It consists of bulk terms

tv and elastic terms tel [15] :

Since in the following we compare order parameter fields which are identical at infinity, we
can omit the surface term of the Landau-de Gennes-theory.
The order parameter Q is a traceless, symmetric, real, second rank tensor of five

components. The tensor can be represented in the form :

where Qo is the modulus of the order parameter, Tr Q2 = Q2, and r1 and m are mutually
perpendicular unit vectors. The angle 0 describes the degree of biaxiality of the tensor Q.
When 0 = 0, Q is uniaxial, and n is denoted director.

In the free energy density one can establish a hierarchy of terms. In case of weak variations
of the order parameter field the elastic energy density lei is much smaller than the bulk energy
Iv.

In f, the quadratic term a Tr Q2 and the quartic term c (Tr Q2 )2 dominate in most cases2 4

over the cubic term - b Tr Q3. The last term is responsible for the transition isotropic-nematic3 p

to be first order. But according to experiment the latent heat [15] is small and the transition is
only weakly first order.
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Therefore we allow ourselves first to minimize the dominant part of the free energy

density :

We substitute Tr Q2 = u and minimize (9) with respect to u :

Within the set of order parameters satisfying Tr Q2 = Qô = const (these form a sphere in
the fivedimensional order parameter space) we now minimize the remaining terms of the bulk
free energy density. With equations (8) and (11) we obtain for an unstrained nematic liquid
crystal :

Further minimizing (12) with respect to 0 yields 0 = 0, provided b&#x3E;, 0. Thus for

b &#x3E;- 0, only the uniaxial prolate state is stable. The cubic term enforces the uniaxiality of the
system. If we represent the order parameter by an ellipsoid of three axes, then the eigenvalues
of the tensor field represent the length of these axes (more exactly : the deviation from the
mean axis length). In the uniaxial case two eigenvalues of the tensor field are degenerate ; in
case of weak distorsions the eigenvalues of the tensor field are constant in space, only the
orientation of the ellipsoid changes. Therefore a possible field representation is :

Close to defects the distorsion strongly increases, and it can happen that the elastic energy
overcomes the cubic term in the bulk energy, so that the system converts to biaxiality. The
length scale of the distorsion, where the escape to biaxiality occurs, depends on the ratio of
elastic energy to cubic volume term and is expressed by a biaxial coherence length :

For MBBA Çb is about 200 Â.
By further increasing the distorsion the elastic energy even may overcome the terms of

second and fourth order in the volume energy. The characteristic length scale :

is the well-known coherence length, which for MBBA is about 20 Â.

3. Cores of singularities.

Frequently, it is assumed that the core of singularities contains the isotropic phase (vanishing
order parameter). In references [10-12] it is proposed that the isotropic state is replaced at the
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expense of a biaxial phase. Following this view we study the core of a 180°-disclination by the
following ansatz, which admits eigenvalues to vary in space :

By appropriate choice of the scalar functions A and B we can keep Tr Q2 = const =

U.in (11).
Let the singular line be perpendicular to the paper plane and located at the origin. The

directors fi and lÎ1 are laying in the paper plane. Now consider a continuous change of the
scalar functions A and B along the x-axis. Far away from the singularity the tensor field is
uniaxial and for example represented by n for x - - oo and by m for x - oo. By diminishing
A and increasing B along the x-axis it is possible to change the direction of uniaxial ordering
from fi to m in a continuous way via a biaxial intermediate state. Thus the singularity on the
disclination line can be removed. This process is depicted in figure 3.

Fig. 3. - A 180°-disclination line of a uniaxial nematic liquid can be eliminated, if the phase escapes to
biaxiality close to the singularity.

In the present work we want to demonstrate that also the singular cores of the hedgehog
can be removed by escape to the biaxial phase.

Starting from the usual tensor order parameter field for such a defect :

we construct a biaxial core by broadening the point defect to a 180°-disclination ring (Fig. 2),
and then relaxing the disclination to the biaxial state according to figure 3.

4. Analytic model.

An order parameter field describing the situation of figure 3 is provided by the following
cylindrical ansatz :
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ez is the unit vector in z-direction, (r, 0, ~ ) are polar coordinates of the position vector,
Qo is given as in equation (11).

In (18) the homogeneous phase is superposed to the hedgehog. At the origin the uniaxial
homogeneous phase is weighted strongly, at infinity the uniaxial hedgehog. The weight
functions A and B have to satisfy the boundary conditions :

5. Scaling of the free hedgehog.

The functions A and B are determined by minimizing the free energy of the singularity
(preserving the boundary conditions). Since the energy of the whole system diverges we only
vary the energy difference between the hedgehog with biaxial core and the overall uniaxial
hedgehog:

This energy difference is a functional of A and B :

In principle the variational problem could be transformed into a system of coupled
nonlinear differential equations for A and B (these turning into the equation of Schopohl and
Sluckin [6] for B = 0). Because we only want to prove that a nonsingular biaxial core can have
less energy than the singular core of figure 1, we start from a variational principle in only one
parameter.

Apart from conditions (19) the weight functions A and B are also restricted by the
requirement : Tr H2 - Q2@ which leads to a relation :

Suitable functions satisfying (19) and (22) are :

The uniaxial hedgehog (Fig. 1) is invariant under radial scaling, but not the hedgehog with
biaxial core. Scaling changes the diameter of the disclination ring of figure 2. Below we will
show that the points of the ring are to be interpreted as loci, where the tensor ellipsoid has
changed its shape from prolate to oblate (for b &#x3E; 0) and hence the cubic bulk term is

maximum. As variational parameter we use the scaling length only and hence minimize the
free energy difference (20) with respect to a scaling parameter À.



1033

where

By the substitution r -&#x3E; rA the integral (25) becomes :
1

Inserting H and R into the free energy (3), we obtain a variational function :

where

are the volume energy difference, the gradient energy difference and the divergence energy
difference for À = 1 respectively. Variation with respect to À yields the equilibrium value for
the free energy of the biaxial hedgehog relative to the uniaxial hedgehog :

To calculate these integrals analytically, we used the software-package MACSYMA, and
arrived at the result :

We shall estimate the free energy for a typical nematic, MBBA. The elastic constants are
[16] :
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Using the same values for b and Qo as [10] and inserting b = 6 x 104 J and
m

Qo = 0.6 in (33), the calculated equilibrium scaling parameter then is Ào = 250 Â. The
energies are :

The behavior of I1F (À) is shown in figure 4. The hedgehog with biaxial core has a lower
energy and therefore is more stable than the uniaxial one.

Fig. 4. - Free energy difference between the hedgehog with biaxial core and the uniaxial hedgehog as
function of a scaling parameter.

6. The tensor field of the biaxial hedgehog. 

z

Looking at the eigenvalues of the tensor order parameter (18) for unscaled functions

(A =1 ) and variable 0  90° (Fig. 5), we recognize, that for increasing 0 the eigenvalues
deviate more and more from the uniaxial (constant) values - 1 1 and 2 . The greater the3 3 3 g

distorsion, the more the system converts to biaxiality. In figure 6 the behavior of the
eigenvalues at 0 = 90° is plotted. At r = 1 where the ring is to be located the two largest
eigenvalues are degenerate, the tensor order parameter is oblate uniaxial ; a director cannot
be defined in a consistent way. Therefore in the director picture the ring is a disclination line.
For scaled functions the ring radius is equal to the equilibrium scaling factor Ào.

7. Linear topological solitons.

Linear topological solitons in a uniaxial nematic liquid crystal are director fields, which far
away from a line are constant. A characteristic representation is the fountain (Fig. 7), where
1B points down along the z-axis, and up at the mantle of a cylinder at infinity. Due to these
boundary conditions, this soliton cannot be deformed to the uniform ground state, unless the
system intermediarily leaves the uniaxial phase.
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Fig. 5. Fig. 6.

Fig. 5. - Eigenvalues of the biaxial order parameter along a ray for different angles 0.

Fig. 6. - Eigenvalues of the biaxial order parameter along the ray for 0 = 90°.

Fig. 7. - A cross-section through the field lines of the director, forming a linear topological soliton of a
nematic liquid crystal. At infinity the director points up at the mantle of the cylinder, at the origin the
director points down along the z-axis.

Now we search for a director field, which has translational symmetry along the z-axis, and
minimizes the free energy in the one-constant-approximation [15] :
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As model field we take cylinder coordinates (p, 0, z) in the physical space and spherical
coordinates (e, 4» for the director :

The boundary conditions are :

The variation principle leads to the Euler-Lagrange equation [13] :

By substituing p = e’ and y = 20, one arrives at the Sine-Gordon equation [13] :

Equation (48) has the kink solution

where A is an arbitrary constant reflecting the scale invariance of the differential equation.
Taking the boundary conditions into account after resubstitution one obtains :

8. Topological solitons and the uniaxial hedgehog.

The linear topological soliton described by equation (50) is also obtained by unfolding the
uniaxial hedgehog. Put a sphere of radius a around the uniaxial hedgehog and cut out a small
disk at the north pole, then unfold the sphere to a disk of radius 7TU and stretch the radius to
infinity keeping the directions of the directors fixed. This means, that only the position space
is being peeled o f f (Fig. 8).
We describe the hedgehog by spherical coordinates (0, 03A6) in order parameter space and

(r, 0, 0 ) in physical space :

with

The unfolded hedgehog is specified in the order parameter space again by (0, e), but in
position space by cylindric coordinates (p, 0, z ) :
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Fig. 8. - The hedgehog of the uniaxial phase is peeled as described in the text. The result is a linear
topological soliton.

with

The rule for peeling the position space is :

Unfolding the hedgehog for every a yields a vector field that has the same structure as the
topological soliton shown in (Fig. 7), independent of the radius a.

9. Energy barriers and intermediate biaxial phase.

The process of unfolding is now applied to the hedgehog with biaxial core. For

a - oo we obtain the linear topological soliton, for a = 0 the uniform nematic state and for
0  a  oo an intermediate biaxial phase.
By changing the parameter a (time evolution parameter) from infinity to zero, we establish a

sequence of fields that describes the relaxation of the soliton into the uniform nematic state.
We will study the free energy for every time a and look whether there are energy barriers.

The uniaxial hedgehog is characterised by the tensor order parameter :

For the unfolded hedgehog (topological soliton) corresponding to the kink solution (49)
with À = 1, the tensor field is :
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0 (p ) as in (57). The uniform uniaxial nematic state correspond to :

The shell of radius a of the biaxial hedgehog, if projected to the plane and stretched, is a
superposition of Poo and Po with the sanie weight functions A (26) and B (27) as in section 5.
Only 8 is substituted by TT’ - 2 arctan (p ) and r by a :

In figure 9 the tensor field G a is represented by ellipsoides for different a( 0 = 0 ).
The scaled tensor field Ga P corresponds to the kink solution (50) of radius A, at timeÀ /

03B1 = ~. We follow its energy if a goes to 0, and obtain for the energy per unit length by the
same scaling procedure as in section 5 :

Fig. 9. Fig. 10.

Fig. 9. - Cross-sectiun5 of the biaxial hedgehog plotted versus the time evolution parameter a. Coming
from a linear topological soliton (uppermost row) one traverses a biaxial phase (indicated by ellipsoids)
and arrives at the uniform phase. The picture has to be rotated about the right vertical axis.

Fig. 10. - Free energy of a decaying topological soliton for different diameters. At time a - 00 the
soliton is fully developed in a uniaxial phase, at a = 0 it is relaxed into the uniform ground state. In
between parts of the soliton become biaxial. If the soliton has a diameter of more than 200 A
(approximately the biaxial coherence length) the decay is obstructed by a barrier, which is absent for
smaller diameters.
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where

Because the energy is referred to the uniform ground state, there are no terms of second and
quartic order in the bulk free energy.

In the process of scaling the area of a cross-section behaves like À 2, @ the elastic energy
density (being quadratic in the gradient) like À - 2. Therefore the total elastic energy is scale-
invariant. However, the cubic term of the bulk energy, which becomes finite with every
deviation from uniaxiality, scales like À 2 and builds an energy barrier with increasing À. In
figure 10 the energy is plotted versus decay time a for different radii k, the material parameter
values being chosen for MBBA. The energy barrier arises for À = 200 Â, which is

comparable to the biaxial coherence length. But below this critical size, the soliton can turn
quasistatically into the homogenous ground state without hindrance.

10. Summary and discussion.

We have investigated the core structure of a nematic hedgehog by minimizing the Landau-de
Gennes free energy with radial boundary conditions and a simple variational ansatz. In
smectic-A liquid crystals the point singularities observed are focal conic textures, which far
away from their center display a hedgehog director configuration, but close to the core can be
interpreted as a hyperbolic point. In reference [17] it was proved with Morse-theory, that in
the transition region a 360°-disclination ring must form. This ring of diameter of about
50 000 Â has been observed by Lavrentovich and Terentev [9] when the bend and twist
constants were enhanced in the nematic phase close to the smectic-A transition. However it is
not this type of ring, which has been described in the present paper. Here we analysed the fine
structure of core regions yielding 180°-disclination rings of diameter of 250 Â. Also the
hyperbolic point should have a ringlike core. We have calculated its radius with the same
variational procedure, but different boundary conditions, reflecting êr =

(sin 0 cos 0, sin 0 sin cp, cos 0 ) on the z-axis to êrh = (- sin 0 cos cp, - sin 0 sin 0, cos 0 ).
Due to a reduced divergence elastic energy this radius was smaller by 10 %. Thus, if

Lavrentovich and Terentev had a better resolution, they would observe two rings in their
system.
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