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(Reçu le ler juin 1988, accepté sous forme définitive le 22 novembre 1988)

Résumé. 2014 Nous formulons le problème de la brisure de symétrie aux temps grands d’une
particule dans un double puits interagissant avec des phonons dans le cas d’un modèle minimal,
standard, à deux sites, avec une distribution initiale asymétrique de la particule et des phonons
thermiques, mais non relaxés. Nous traitons explicitement l’équation maitresse généralisée dans
l’approximation de Born. L’extrapolation de la solution aux temps infinis conduit à des critères
pour la brisure de symétrie asymptotique en accord avec ceux connus pour les conditions initiales
relaxées.

Abstract. 2014 The problem of asymptotic-time symmetry breaking for a particle in a symmetric
double-well, interacting with phonons, is formulated for a standard minimal two-site model and
for initially asymmetric particle distribution and thermal but unrelaxed phonons. The time-
convolutionless Generalized Master Equations can be handled explicitly in the Born approxi-
mation. Formally extending the solution to the infinite time, the criteria for the asymptotic-time
symmetry breaking comply with those known for the relaxed initial condition.

J. Phys. France 50 (1989) 775-781 ler AVRIL 1989,

Classification

Physics Abstracts
74.50 - 05.30 - 05.40

1. Introduction.

In 1982, Chakravarty [1] and Bray with Moore [2] first treated the so called double-well model
for a particle interacting with the thermodynamic bath (phonons henceforth). Possible
reduction to the two-site model under appropriate conditions, relative simplicity and,
simultaneously, sufficient generality to describe simultaneous complementary processes like
transfer (diffusion) and relaxation stimulated increasing interest in the model [3-12]. Its

drawback is, however, that a full exact solution under sufficiently general conditions will
probably never be found. Therefore, we are forced to resort to approximations.
Already Bray with Moore [2] tumed our attention to the fact that, imposing asymmetric

initial conditions even in a fully symmetric two-site model, one might get still an asymmetric
particle distribution in the infinite-time limit under specific conditions provided that the
interaction with phonons is sufficiently strong and the initial phonon temperature is zero.

(*) On leave of absence from the Institute of Physics of Charles University, Ke Karlovu 5, 121 16
Prague 2, Czechoslovakia (permanent address).
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There is a question, however, whether approximate treatments can be used to discuss the
dynamics at arbitrarily long times or not. Nevertheless, calculations by Aslangul, Pottier and
Saint-James [13] (and more generally [14]) based on second-order approximate time-

convolutionless Generalized Master Equations confirmed the standing opinion. This means
that for the symmetric model, so called Ohmic coupling with phonons with the coupling
parameter a  1 (for these notions see [12] or below) and temperature T = 0, no asymptotic-
time symmetry breaking exists. For a &#x3E; 1, such a symmetry breaking takes place.
Nevertheless, the asymptotic asymmetry is less than that in the initially asymmetric initial
condition. For T &#x3E; 0, no symmetry breaking in the asymptotic time domain is believed to exist
for the Ohmic type of interaction with phonons. An analogous treatment for the subohmic
and superohmic cases (not treated in this work) may be found in [15].

In view of the importance of these results, it is desirable to check the conclusions by
discussing if they were (or were not) influenced by the

a) initial conditions used,
b) approximate treatments of the kinetics, and
c) model Hamiltonian itself.

Following this program, in this work, we should like to discuss the first point of the list. As
usual, in [13-14], the relaxed initial conditions were used. This means that if the particle is
initially in e.g. the left-hand-side state, the phonons (interacting with it) are initially assumed
to be fully accomodated to its presence and position. This results in such effects as a full
formation of the polaron cloud and the shift of the mean energy (polaron shift) before the
motion starts. Instead, in this work, we choose initially unrelaxed phonons. Locating the
particle at t = 0 in e.g. the left-hand-side state leads to its motion (possible transfer to the
right-hand-side state) accompanied simultaneously with a gradual formation of the polaron
cloud. This causes technical problems which can be fortunately solved. In order to keep the
connection with [13-14], we also use the time-convolutionless Generalized Master Equations
in the second order (in the particle-hopping term) approximation. In order to avoid the
appearance of the initial condition term, however, the usual small-polaron transformation of
the Hamiltonian must be avoided, i.e. we work in the unrelaxed basis. Owing to the different
initial condition, one cannot expect the same solution (including its formal limit t -+ + (0).
Nevertheless, in order to be able to ascribe a physical meaning to the usual criteria for the
appearance of the asymptotic symmetry breaking, these criteria should result the same. This
is really confirmed below. For simplicity, we assume T = 0 only where T designates the initial
phonon temperature. The case of T = 0 will be shortly mentioned in the appendix.

2. Model and formalism.

Let us start with the Hamiltonian of the symmetric two-site double-well model (spin-boson
Hamiltonian)

Here bi (bi+ ) and aj(aj+) are the phonon annihilation (creation) operators and annihilation
(creation) operators of the particle in the respective state (j = 1 and 2 for the left- and right-
hand site, respectively). For the single particle used, it is not important whether it is a fermion
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or boson. wi are the phonon frequencies while wo gives the separation between single-particle
eigenenergies and, simultaneously, the frequency of the coherent particle oscillations
1 H 2 if the coupling constants Gi were zero.

Let us now specify the initial condition for the full density matrix pF(t). In accordance with
what has been said above, we put

where the indices B and S designate the bath (phonons) and system (particle), respectively.
This means (in contrast to e.g. [13-14]) that the bath is prepared (at t * 0) in a thermal state,
being decoupled from the system. The coupling to the system (particle) is switched on at
t = 0 simultaneously with the possibility for the particle to move (Feynman-Vernon initial
conditions [16]). In [13-14], during preparation of the initial state, the bath is assumed to be
interacting with the particle. At t = 0, just the possibility for the particle to move is switched
on in [13-14], in contrast with our treatment here.
For the projection superoperator (an operator in the Liouville space) D, we take the

Argyres and Kelley projector

Here A is an arbitrary operator in the Hilbert space of the particle with phonons. Because of
(2a),

Therefore, in the Shibata, Hashitsume, Takahashi and Shingu identity [17-18] resulting from
the Liouville equation

the initial condition term - (1 - D) PF(O) can be omitted. In (5), for any A

designates the operator A in the interaction picture ; C is given as

so that
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Following the same line of reasoning as in [13-14], we approximate (5) (taking (4) into
account) as

In order to obtain (9) from (5), we have omitted the exponentials in (5) and approximated
[1 + x ]-1 = 1 - x, x - È - wo. Equation (9) is formally exact to the second order in

wo. Right here, however, we should like to point out that conditions for the validity of this
second-order (Born) approximation may be well violated for arbitrarily small but finite

wo as far as the time t is increased beyond any limit. This is clearly seen from the identity

The left-hand side of (10) appears in (5) and its formal proportionality to wo is relevant for the
expansion arguments. On the other hand, the right-hand side of (10) is not (for sufficiently
high t) of the order - wo any more. This observation makes our point b) in the above

programme meaningful. We shall return to this point in a next publication (see also [15] for a
comment in this respect). Here, it is worth mentioning that the Kasner theory as applied to
the present problem [19] is also formally exact to the second order in wo. Nevertheless, for a
symmetric double-well, the result of [19] in the asymptotic time-domain does not fully agree
with the standard treatment. This fact may be also ascribed to an uncertain validity of any
second-order theory in the long-time limit.

3. Kinetic equations.

Designating

equation (9) may be written as

Before specifying the coefficients, we should like to point out that Pij (t) are the matrix
elements of the reduced (particle-) density matrix not in the Schrôdinger but in the interaction
picture. Therefore,

Here El03BB are eigenenergies corresponding to eigenstates 1 À of Ho with the particle in state 1
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and with the phonon state (here relaxed around the particle) À. Therefore, the diagonal
elements

which may be calculated from (12a), retain the physical significance of probabilities of finding
the particle in the left (1 =1 ) or the right (1 = 2 ) state.

In (12a), coefficients Bijk, (t) are quite complicated in general. Designating states of the
bath by Greek indices, it is from (9)

In order to obtain explicit formulae, we take as usual the case of the Ohmic dissipation with
the exponential cut-off, in which (in the limit M - + oo )

Here, the cut-off frequency wc is believed to be unimportant for final conclusions when
kB T « hwc. We set T = 0 ; then the explicit formulae for Bijkl (t ) simplify so that

From (12) and (16a-c), we get a set of two equations

which must be solved simultaneously in order to decide which is the asymptotic
(t --+ + oo ) value of P 11 (t ) - P 22 (t ). The solution reads
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where to &#x3E; 0 is an arbitrary new time-origin.

4. Asymptotic symmetry breaking.

The problem of the asymptotic symmetry breaking now becomes simple : If the matrix

integral in the exponential in (18) has both eigenvalues finite when t -&#x3E; + oo, a symmetry
breaking occurs. The sign and relative magnitude of B-coefficients then ensure that

1 Pll (+ (0) - P22(+ (0) 1 : I P 11 (to ) - P 22 (t0 ) I . If one of the eigenvalues remained finite and
the second one turned to (minus) infinity, there would be the asymptotic symmetry breaking
for almost all initial conditions. Finally, if both eigenvalues of the matrix-integral in the
exponential in (18) tum to (minus) infinity when t --&#x3E; + oo, there is no asymptotic symmetry
breaking. Other possibilities are excluded by the magnitudes and signs of B-coefficients in
(16a-c) as well as by physical considerations.

It is clear that because of the arbitrary choice of to, the question turns to the asymptotic
behaviour of Bijkl (t ) at high enough time-arguments. Let us therefore choose to finite but as
large that the asymptotic form of Bijkl (t ) in (16a-c) can be used for all t , to. It is not difficult
to see that beyond certain to, Bllll(t) dominates over Blll2 (t) as well as B1221 (t ) so that the
eigenvalues of the matrix integral in the exponential in (18) are for t - + cc) simply

Hence, from the above three possibilities, just
V -v

the first and the third ones may take place. Because

one easily reveals that for 0 -- a -- 1, there is no symmetry breaking when t --&#x3E; + cc -

Similarly, for a &#x3E; 1, there is the symmetry breaking in our model. Hence, the kinetic
equation treatment which is formally exact to the second order in wo, yields in our case of the
unrelaxed initial condition the same criterion.for the symmetry breaking as its counterpart for
the relaxed initial condition at T = 0 [13]. This was a necessary condition for ascribing a
physical meaning to this criterion.
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Appendix.

The treatment presented here may be easily extended to the case of T &#x3E; 0. Nevertheless, in

detail, it becomes more complicated. Qualitatively, all the coefficients Bijkl (t ) are of the same
form as in (16a-c), except for additional (approximately exponential) factors under the

integrals (compare with [13]). Fortunately, we found that in the asymptotic time domain, the
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question of their qualitative behaviour may be turned to that solved in [13]. In other words,
e.g. B1111(t)--&#x3E; const  0, t -+ + 00. Consequently, there is no asymptotic-time symmetry
breaking for T &#x3E; 0.

This result, though it is in full agreement with the usual opinion, deserves, however, a
further discussion. It means that increasing T increases the effective probability with which
the particle diffuses to the opposite site. On the other hand, Hamiltonian (1) describes no
direct lowest-order phonon-assisted hopping processes which might be promoted by
increasing T. On the contrary, mean value of the squared small-polaron overlap between
states of the particle in sites 1 and 2 is known to decrease with increasing T. Hence, the case of
T &#x3E; 0 also deserves some further discussion from the point of view of higher-order processes
omitted in standard lowest-order treatments.
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