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Contribution to the theory of charge exchange at surfaces

Alain Nourtier

Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay Cedex ; France

(Reçu le 29 juillet 1988, accepté le 14 octobre 1988)

Résumé. 2014 La fraction ionique P de particules pulvérisées ou diffusées est calculée dans un
schéma d’électrons indépendants pour des variations exponentielles des éléments matriciels de
couplage avec une constante de temps 03BC-1 le long de la trajectoire émergente et, dans le cas de la
diffusion, 03BB-1 le long de la trajectoire incidente, sans hypothèse particulière sur la structure
électronique du substrat. Si la formation d’un ion résulte de transitions réparties dans le temps,
P se comporte à 03BC petit comme exp (2014 C1/03BC) dans la plupart des cas. C1 est une certaine
intégrale de la fonction ~(03B5) = - arg 03C3(03B5) où 03C3(03B5) est la self-énergie de l’atome couplé
(statiquement) au substrat. Interviennent ici aussi bien les processus résonants proches (c’est-à-
dire quasi isoénergétiques) que lointains (impliquant un saut d’énergie). Si les transitions sont
provoquées par la discontinuité de la dérivée par rapport au temps des éléments matriciels de
couplage à t = 0, due aux conditions de raccordement imposées, on obtient
P ~ (03BC + 03BB )2 exp(- C2/03BC) ou des expressions plus compliquées, avec C2 = 0 pour un système
à niveaux discrets. Le domaine de validité des différentes expressions est précisé. Afin d’illustrer
et de corroborer les résultats généraux et d’examiner d’autres dépendances en temps du couplage,
trois cas particuliers sont étudiés: le cas où une méthode d’équation maîtresse s’applique, le
modèle à bande large et le modèle à deux niveaux de caractère atomique.

Abstract. 2014 The ion fraction P of sputtered or scattered particles is calculated in an independent-
electron scheme for exponential variations of atom-substrate coupling matrix elements with a
time constant 03BC-1 along the outward trajectory and, in the scattering case, 03BB-1 along the inward
trajectory, without specific assumptions about the electronic structure of the substrate. If ion
formation results from transitions continuous in time, P behaves at small 03BC as exp (- C1/03BC) in
most cases. C1 is a certain integral of the function ~(03B5) = - arg 03C3(03B5) where 03C3(03B5) is the self-
energy for the (static) coupled atom-substrate system. The contributing processes are near-
resonant (i.e. quasi isoenergetic) as well as far-resonant (implying an energy jump) processes. If
transitions are provoked by the discontinuity of the time derivative of coupling matrix elements at
t = 0, due to assumed matching conditions, one obtains P ~ (03BC + 03BB )2 exp (- C2/03BC) or more
complicated expressions, with C2 = 0 for a discrete-level system. The range of validity of the
various expressions is delimited. In order to illustrate and corroborate the general results and
examine other time dependences of the coupling, three special cases are studied : the case where a
rate equation approach is applicable, the wide-band model and the atomic-like two-level model.
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1. Introduction.

The problem of the charge state of an atomic particle leaving a surface is met chiefly in two
situations : scattering, where the particle originates from outside the substrate, and

sputtering, where it is extracted from it through a series of collisions initiated by a fast
projectile [1]. In both cases, an essential factor goveming the charge state is the emergence
velocity, which will be assumed sufficiently low, as it usually is, for the most probable charge
state to be the equilibrium one, i. e. the charge state the particle would acquire by being driven
adiabatically away from the surface.

Theoretically this assumption leads both to a complication and a simplification. The
complication is that perturbation methods, as used in collision theory, are inapplicable or
insufficient. The simplification is that non-adiabatic processes occur through few channels and
presumably at minimal energy cost, justifying a number of approximations in the description
of the system. For instance, if the atomic level involved in charge exchange, called the
a-level in the sequel, remains far from band edges or any other sharp structure in the substrate
density of states during the decisive step for ion formation, a uniform density of states can be
assumed (wide-band limit). At other times, the a-level crosses band edges, couples with
discrete levels, is involved in multi-electron configurations and a more sophisticated
description is necessary. The presence of adsorbates, displacements of substrate atoms under
impàct of a fast projectile, alter the electronic structure and may complicate the description
or, sometimes, simplify it if they open channels which tend to dominate charge exchange.

If the probability of charge transfer at some time can be regarded, according to a classical
picture, as depending only on the charge state of the particle and configuration of the system
at that time, the dynamic problem reduces to the resolution of a rate (or master) equation.
Widely used in neutralization theories for scattered ions [2, 3], this approach allows an equal
treatment of one- and two-electron processes (resonant and Auger processes in this context),
but implies weak interaction with delocalized substrate electrons only. If the collision which
expels the atom from the surface plays an important role in charge exchange, it may be
treated separately in an atomic model [4], but such a decomposition of the charge exchange
process is rather rough.
The first full quantum calculations for a many-electron system were performed with a

simplified version (wide-band limit, U = 0) of the Newns-Anderson Hamiltonian [5-8], which
has the advantage of being exactly solvable, but is applicable to a limited number of
situations, essentially those where charge exchange occurs at some distance from the surface.
Addition of a deep-lying level at the outgoing and substrate atoms, coupled with the upper
level through a one [9] or two-body [10] interaction, gave an explanation of the oscillatory
behaviour of the ionization probability of noble gas ions scattered from some surfaces as a
function of the inverse velocity. Another extension of the model was to include the effect of a
high velocity parallel to the surface [11, 12]. An alternative to the wide-band model is the
tight-binding semi-infinite chain [13], in which both the charge state and energy loss were
studied [14]. Inclusion of the Coulomb interaction U between opposite spins poses a difficult
problem, not completely solved. If spin symmetry is initially broken, Hartree-Fock or similar
approximations can be used, at least tentatively [15, 16]. More reliable treatments seem
possible with approximate many-electron wave functions [17, 18].
Quantum calculations have also been made with clusters. Though convergence with the

cluster size may be very slow [19], the method offers a means to explore effects such as
movements of substrate atoms [20], the role of the Coulomb interaction U [21] and complex
electronic structures [22, 23].
The present study focusses on the problem of the substrate electronic structure. The
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purpose is to express a dynamic quantity, the ion fraction, in terms of static properties of the
coupled atom-substrate system. The formalism is an independent-electron one, as expounded
in chapter 2. The few assumptions, stated in chapter 3, essentially concern the time

dependence of the atom-substrate coupling. For pedagogic reasons, three special cases are
considered first, the case where the rate equation approach is applicable (chap. 4), the wide-
band model (chap. 5) and the two-level model which is a prototype for cluster models and
makes contact with atomic collision theory (chap. 6). The general case is treated in chap. 7,
where the solution of the dynamic problem is obtained in terms of infinite series. These series
can easily be calculated numerically, but more convenient and transparent expressions are
their asymptotic (i. e. low velocity) form, usually a good approximation. The latter are derived
for the sputtering and scattering cases in chapters 8 and 9 respectively, which contain the main
results of this work.
A preliminary account of the essential results of chapters 7 and 8 appeared in two papers

[24, 25]. In the first one they were applied to two model cases, the detachment of the end
atom from a semi-infinite chain and the knocking-off of an atom a by an atom b itself coupled
to a wide-band substrate. In the second paper, a model for secondary Cu+ emission was
proposed and solved both by computing the series of chapter 7 and using the asymptotic form
of chapter 8, with a good agreement between the two evaluations at velocities of physical
interest. No new application will be presented here, efforts being directed towards embracing
a variety of possible situations. Some of the material contained in chapters 5 and 7 was
summarized in a review paper [26] or is borrowed from a thesis work [27].
For language simplicity, phrases like « ion formation » are used to mean formation of a

non-equilibrium charge state, this being often (but not always) the ionic one. Units of
fit = 1 are employed throughout.

2. Formalism.

For a system of independent electrons submitted to a time-dependent potential, the

expectation value of any physical quantity can be obtained by the following Green function
method.

First consider a single electron governed by the time-dependent Hamiltonian H(t ) of
matrix elements Hqq, (t )’s in some fixed basis set {q}. The components c,(t)’s of the
wavevector in the same basis set obey :

which can formally be solved as :

to being somme- initial time. The Gqq,’s are the matrix elements of the retarded Green operator
G which obeys Schrôdinger’s equation :

for t &#x3E; t’ with boundary condition G(t, t ) = - i 11. If H(t ) is decomposed into a time-
independent part Ho whose Green operator Go is known and a time-dependent part
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appears as the solution of the (Dyson) integral equation :

or, in reverse form :

For the sake of later calculations, we also introduce the adiabatic Green operator
Gad(t _ t’ ; T ) calculated with H = H ( T ) fixed. The latter is more conveniently represented
by its Fourier-Laplace transform gad, defined by :

for Im z :&#x3E; 0 and by the analytic continuation of (2.5) for Im z -- 0. In accordance with (2.4a),
9ad is the solution of the matrix equation :

Now consider a system of independent electrons, each governed by H(t ). The second-
quantized Hamiltonian of the system reads :

The equation of motion for the Fermi operator cq (t ) in the Heisenberg picture is identical
with (2.1) and has the same solution (2.2) with c instead of c. Take to such that, for
t  to, H(t) is independent of time (a special case being to - - oo). The expectation value of
any product of Fermi operators at time t can be written :

where êq = êq (to) and p is the (initial) density matrix.
In the sequel we are interested in the occupancy na(t) of some state a. If we take the q-

states as the eigenstates of H(to), we get :

where n° is the initial q-state occupancy. If the system is initially thermalized, nq = no(E
where n (e) is the Fermi distribution function at considered temperature. 

q q q)

In charge transfer problems an atom leaves the surface and the a-state is one of its orbitals.
The time dependence of H(t) originates in the movement of this atom and its neighbours,
regarded as classical particles (« trajectory approximation »). The substrate is initially
thermalized. If the outgoing atom is initially (say for t  to = 0) part of it (sputtering), the
final a-state occupancy reads :
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In a scattering problem, the atom is initially (i.e. at t --+ - oo) decoupled from the substrate.
Then :

It is not always convenient to work with the eigenstates of H(to), especially in the sputtering
case where H(to) [i.e. H(O)] describes the coupled atom-substrate system. Any reference to a
particular basis set can be avoided by writing, instead of (2.9) :

Finally, it can be noticed that (2.7), (2.8) and (2.10) remain valid if n,, and n° are replaced
by 1 - na and 1 - n°, i.e. if holes are considered instead of electrons. This comes from the
unitarity property of the Green operator :

which entails, in the sputtering case :

and, in the scattering case :

3. Model.

Neglecting the movement of substrate atoms, assuming that at the outgoing atom only the
a-orbital is involved in the charge transfer process and treating electrons as non-interacting,
we can write the one-electron Hamiltonian as :

is the substrate Hamiltonian and V couples the a-state with substrate states. If
and V are expressed in terms of eigenstates of Hs, Le.

then H (or rather its second-quantized counterpart Je) takes the familiar form of the Newns-
Anderson Hamiltonian without correlation. However this does not imply any assumption
about the spectrum of JC, which may include bands as well as discrete levels.
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The first simplification to (3.1) is to suppose the a-state orthogonal to substrate states. The
assumption is usual in charge transfer problems though it is really justified only when the
atom is far from the surface. Its advantage is that the number of equations to solve to find the
a-state Green function Gaa reduces to one :

The other matrix elements of G are then obtained by (2.4). The adiabatic Green function
9ad is, by (2.6) :

where Uad is the adiabatic self-energy :

The other matrix elements of gad are again obtained by (2.6). It is important to note that the
bound states and resonances in the adiabatic local electronic structure are given respectively
by the real and complex poles of gad (z; t ), i.e. the real and complex roots of :

The second simplification is to assume the same time dependence for all the

where e is a real scalar function.Though setting some restrictions on the physical situations
under consideration, this assumption can be justified in a number of interesting cases. One
such case is when the atom-surface coupling can be described in a tight-binding model with
one transfer integral or several equal transfer integrals (as in vertical desorption from a bridge
or centre position on an ordered surface). Another case is when the V ka’S form a continuum,
but are sufficiently small for the resonance formed by the a-level to remain narrow. Then only
the Vk,,’s for sk near the resonance energy are important and, if the substrate density of states
does not exhibit any sharp structure in this region, the relevant 1 V ka l’s are expected to ail
evolve similarly. The same may not hold true as regards arg Vk,,, especially if the atom is
moving fast with velocity v, as in scattering of light atoms at grazing incidence. But this effect
can be taken into account simply (and approximately) by substituting for n°(E) the
distribution obtained with a Fermi sphere shifted by me v in momentum space (me electron
mass) [11].
The third simplification concerns the time dependence of the a-level energy :
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and is designed to make the self-energy factorize :

where cr (z) = o-’d(Z ; 0 ) and £0 (,r ) is the Fourier transform of cr(z). Of great importance in
the sequel is its argument :

Physically, 17 comes from effects not allowed for by an independent-electron model.
Among these, the image potential gives the contribution decaying the most slowly (as
d- 1) at large atom-surface separation d. Another effect is the splitting of the a-level due to the
Coulomb repulsion between electrons of opposite spins or different orbital symmetries, as
described (very crudely) in the Hartree-Fock approximation [28]. A third effect, specific of
impact phenomena, is the overlap of core orbitals of collision partners, which produces a
pseudopotential also contributing to q. The resulting 7J (t) has no reason to behave like
V 2(t ) as (3.7) would imply. In fact in a number of physically interesting situations,
Ea (t) need not be reproduced precisely at every time, but only during some important event
(e.g. the crossing of the Fermi level by the sharp resonance formed by the a-level). It will then
be advisable to choose 7? (0) and e ’ so as to obtain the best Ea (t) during that event, even if
eâ thus differs from the true atomic value. In other physical situations, the behaviour of
q (t ) over a longer time interval is important, but is actually not known precisely. Then (3.7)
may serve as an interpolation.

It remains to specify e (t). Since we deal primarily with slow atoms, it is essential to

correctly reproduce the behaviour of e in the limit t -. oo, which is (approximately)
exponential. In the opposite limit t -. - oo, e tends to 1 in the sputtering case and assumes
another exponential form in the scattering case. Interpolation between these limits will be
dictated by mathematical convenience. We shall take :

for sputtering, and :

for scattering, with g proportional to the (normal) emergence velocity and, in the scattering
case, k proportional to the incidence velocity. The absence of analyticity of (3.11) and (3.12)
at t = 0 is not unimportant, especially at low velocity, for the resulting discontinuity of
de/dt can induce excitations of very large energy which, in certain circumstances, turn out to
dominate the final ionization probability. Fortunately, in the following analysis, it will be

possible to identify the contribution of this singularity and to separate it from the « regular »
contribution.

4. The rate équation approach.

In a strict quantum-mechanical treatment, like the one described in chapter 2 and employed
in the following chapters, the differential equation to be solved is Schrôdinger’s equation (or
its variants) and the a-state occupancy na (t ) is obtained by squaring probability amplitudes.
Under certain conditions, listed below (Sect. 4.1), a differential equation can be derived for
na (t ) itself, in the form of a rate equation (or classical master equation). Used early and
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widely in neutralization theories [2, 3], this approach is simple and suitable to one-electron as
well as two-electron processes. As regards one-electron processes, its conditions of validity
were briefly studied by Brako and Newns [6] and thoroughly by Geerlings [29] in the
framework of the wide-band model. The model of chapter 3 will enable us to test it in more
general conditions (Sect. 4.2) and thence to contribute to the debate concerning its validity
(Sect. 4.3).

4.1 CONDITIONS. - Considering a substrate whose all states are distributed into bands and
taking zero temperature for simplicity, we suppose the following conditions satisfied :

a) At any time t during the interval important for ion formation, the coupling
V (Eq. (3.1)) remains weak, so that the a-level forms a narrow resonance (narrow as
compared to band width) of centre 6a(t) and half-width:

Accordingly, excepted if e, is close to the Fermi energy EF, the adiabatic occupancy

n a ad(t )is 0 or 1.
b) Either n a ad(t )changes in time, which implies EQ (t ) to cross the Fermi level or pass close

to it, or the system is initially out of equilibrium (scattering case with na
nad(_a .

c) Let T be the time scale of variations of Ea and à (the corresponding energy uncertainty is
therefore r - 1) - If Ea crosses the Fermi level or any singularity in the density of states (e.g.
band edge), the crossing is rapid at the scale of both 1 /,à and T, le. 1 Ëal I &#x3E; a2 and
T - 2. This important condition will be commented on in section 4.3.

d) All the time of ion formation, excepted during the short crossing of the Fermi level,
T -1 1 is much less than the energy EF - cj 1 required by a direct electron transfer, thus
forbidding any other processes than strictly resonant ones. In pal-ticular ea and à should be
smooth functions.

In such conditions, the delay in restoration of equilibrium is the main cause of ion
formation. According to Fermi’s golden rule, equilibrium is restored at a rate 2,à(t).
na (t ) is thus expected to obey a rate equation :

4.2 APPLICATION TO THE MODEL OF CHAPTER 3. - For simplicity, we assume EF:::’ ê:, so
that the positive ion fraction is P = 1 - na (oo ).

Consider first the sputtering case with ea initially above EF and crossing it at time

tc. Solving (4.2) gives :

Using (3.8) and (3.11), we obtain :

whence, by (3.7) and (3.10) :
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Condition (c) above implies JL 11 (tc ) &#x3E; Li2(te) and q (t,) &#x3E; JL. To be consistent these

inequalities require q &#x3E;,à, therefore cp  1. (4.4) can thus be rewritten :

As will be seen in chapter 8, (4.5) is, up to a prefactor of minor importance, the exact
P for arbitrary ç (therefore even for large A) under conditions equivalent to condition (d)
above.

Remaining in the sputtering case, we can imagine Ea to be initially close to EF, making
na (0 ) fractionary. The extension of (4.5) is straightforward :

As will be seen in chapter 8, this is correct if the resonance is initially confined within an
interval ’" IL around EF and EF - eâ &#x3E; t. The rate equation approach is irrelevant if

Ea remains far below the Fermi level (see subsequent comments).
Tuming to the scattering case with again e,, crossing EF, we find, under the same conditions

as for (4.5) :

The first term is the product of Po .= 1 - na(- oo ) by the survival probability of the initial
charge state. The second term comes from the successive electron exchanges from and to the
a-level when Ea (t ) is respectively above and below EF. If e,,(t) remains above eF a sufficiently
long time, (4.7) reduces to (4.5).

If, at t = 0, the resonance overlaps the Fermi level, P is still the sum of two terms, one
being identical with the first term of (4.7), the other describing electron transfer to vacant
substrate states around t = 0 and being probably rather complicated since n,,, ,d(t) varies rapidly
then. However, as conditions (c) and (d) are now incompatible, the rate equation approaches
becomes questionable. It is indeed invalid, for as will be seen the narrow resonance has not
enough time to build up.

Finally, if Ea remains well below EF. P can only be the survival probability of a supposedly
ionic initial change state. If Ea (t ) varies substantially, making a (o )  Ea (o ) - E:, P is given
by the first term of (4.7). A similar expression holds if Ea (t ) varies in the opposite direction.
Otherwise, it is as simple to write :

provided

4.3 COMMENTS. - Whenever Ba was supposed to cross EF, condition (c) of section 4.1 led us
to approximate n’d (t) by a step function
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in the resolution of (4.2). A fractionary nad was only used in (4.6) to describe an initial state
effect in the very special case of ea being close to EF before the atom leaves the surface. Now
suppose Sa initially well below EF, always in the sputtering case. Since the resonance has a long
lorentzian tail, na ad(o) may not be completely negligible. Might an expression of the form

generalize (4.6), at least approximately ? The answer is negative. Exact calculations show that
the true ion fraction is considerably smaller, either because of a smaller exponential, as
happens if E,,(t) and .J(t) are smooth functions (see for instance Sect. 5.2), or a smaller
prefactor, as happens if they exhibit a singularity at t = 0 (see Sects. 5.3 and 5.5). In fact, the
occupancy defect 1 - nad(o) is not of statistical origin, as the one produced by an incomplete
neutralization, but is due to the admixture of the a-state with specific substrate states, viz.
those above the Fermi level. Fermi’s golden rule gives the decay rate of a discrete level
coupled to a continuum. It is still applicable if the level spreads a little as a result of previous
resonant processes. It cannot of course tell anything about possible transitions between states
participating of a given resonance, which transitions would be the only way for the a-state to
keep a memory of its overlap with empty states since the latter evolve adiabatically towards
pure substrate states.

This is why, excepted in the special case leading to (4.6) and reconsidered later one, any
attempt to correct nad for finite resonance width effects is irrelevant. The problem would be
quite different for temperature effects, which are really of statistical nature. The substitution
of a Fermi function for the step function (4.8) would then raise no difficulty and could even
extend the range of validity of the rate equation approach [6, 29].

Besides static resonance effects, the a-level undergoes a dynamic broadening. If

Ea (t ) and à (t ) are smooth functions and T is the time scale of their variations, this broadening
is characterized by a width T -1 and an exponentially decaying lineshape can be ascribed to it
to account for possible induced transitions. If Ea (t ) or a (t ) is singular, the exponential decay
gives way to a power law decay at large energies, as will appear in the sequel. The correctness
of (4.6) for a resonance initially confined within an interval - g around EF can be explained by
this dynamic broadening, which redistributes the electrons between the various states inside
the resonance, as if the occupancy defect was of statistical origin.
The broadening of the a-level is thus characterized by two parameters : statically,

à ; dynamically, T -1. This is why the fast-crossing condition (c) of section 4.1 implies both
,à 2and r -2« éa- In case of an exponentially decayingà (oc e- 2 J.’t) and an Ea not varying more
sharply than a (i.e. 1 Ëa/ Ëa 1 s là/A), that double condition writes

and was previously obtained by Geerlings [29]. In practice the most important condition is a
combination of them [6, 29] :

This will be confirmed in section 4.7 in the framework of the wide-band model. For the model
of chapter 3 (arbitrary density of states, similar behaviours of Ea and d), (4.9) is equivalent to
cp (£ )  1 and is a necessary condition for (4.5) to be well approximated by (4.4). On the
contrary. Nt$rskov and Lang [30] found (4.9) a too strong criterion, but their criticism should
probably be put down to a too specific case being considered.
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5. The wide-band case.

The simplest approximation for uad(z ; t ) [defined by (3.4)] is to suppose it independent of
z :

A way to arrive at this form is to take V ak(t) = V (t), independent of k (contact interaction),
and a substrate density of states ps(e) constant over an interval 2013Di E  D2 with
Dl and D2 tending to infinity (wide-band approximation). Then :

the last term coming from the Hilbert transform of Im uad(__ ; t ).
This model, often called the wide-band model, is solvable exactly as recalled below in

section 5.1. For few forms of X(t), S(e) can be expressed with the aid of current
mathematical functions (Sect. 5.2). In general however only the asymptotic S(e) can be
obtained explicitly. This is done in section 5.3 for the X(t) of chapter 3, in section 5.4 for a
general, but analytic X(t) and in section 5.5 for a class of singular l;(t)’s. The behaviour of
S(e) when l; (t ) passes from an analytic to singular form is examined in section 5.6. The use of
the rate-equation approach is discussed in section 5.7.

5.1 GENERAL SOLUTION. - The wide-band model was solved early for sputtering [5] and
scattering [27, 6]. Mathematically its simplicity is due to the local character of the kemel

l;( T, T’) appearing in (3.2) [£(r, r’) oc b (,r - r)]. By derivation with respect to

t, (3.2) becomes a first-order differential equation whose solution is :

Then the quantities of interest for the calculation of na ( 00) are readily obtained :

5.2 Two EXAMPLES AND AN INTERPRETATION. - There are few forms of X(t) for which
S(£) can be expressed with the aid of current mathematical functions. The simplest example
is :

for which :
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with p = - arg .!o. To derive this result, one integrates over T, changes to variable
x = e- 21-’t and uses, for real x :

The unitarity relation (2.3) is easily proved by using :

an identity useful in the sequel. The probability of hole formation P = 1 - na(oo), deduced
from (2.8), may be written, at zero temperature :

where

Another example is :

The same change of variable as before transforms the integrand in (5.5) into a product of
powers of x and 1 + x. The integral is a beta function, and, using (5.8) again, one obtains :

For small IL and e:&#x3E; e:, this becomes :

with cp and I/J between 0 and 77-. Note that :

The resulting P is :

making (5.14) coincide with
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is close to 7T ; the prefactor is small, approximately and :

What kind of processes do these results describe ? Consider example (5.6) for

o «r. 1 and ,t « EF - e’. a The fact that (5.11) coincides with (4.5) clearly supports an

interpretation in terms of resonant processes. The same holds for example (5.12) if

BF - eâ « Eo. Here resonant transitions occur when the narrow resonance formed by the a-
state crosses occupied substrate levels and only act to restore equilibrium. Considering again
(5.6), suppose cp close to ir. The resonance is still narrow, but remains below the Fermi level.
Charge transfer requires a minimum energy jump EF - Eâ whereas the variation of

with time can induce excitations of energy - IL. Not unexpectedly, P is dominated by
exp [- r ( EF - 8’:)/ IL] where it appears a Massey factor (8F - Ea’)11£ [compare with (6.5)-
(6.6) later on]. Here transitions destroy equilibrium. Example (5.12) is more instructive

because the resonance initially lies at finite distance Eo from ea’ with a finite width

1 gives :

Again the Massey factor is proportional to the minimum energy jump. If .do =F 0, static
resonance width effects come in and the minimum energy is ill-defined. The Massey factor is
reduced, as (5.15) shows, but not in an obvious vay. Should such transitions be called
resonant processes ? At least to describe the small velocity behaviour of P, a unique concept
is desirable for mathematical reasons. As will be shown in section 5.4, if X(t) is an analytic
function, electron exchange with a substrate level of energy e can be regarded as taking place
about some complex time tsP such that e equals the (complex) resonance energy

+ (tsP ). This holds not only in case of a narrow resonance crossing the substrate level
(tsp is then nearly real) but also in case of a resonance remaining far from it (tsp is then quite
complex). To distinguish these cases, we shall speak of near and far resonance.

5.3 APPLICATION TO THE MODEL OF CHAPTER 3. - With the forms (3.11) and (3.12) for
e(t), Z (t ) reads :

Let With the change of variable x = e- 2 »t for

1 and, in the scattering case, for t : 0, (5.5) becomes :

where



324

In the scattering case, the survival probability of the initial state is simply :

Assume 6F &#x3E; eâ and zero temperature. If IL and À are much smaller than at least one of the
other energy parameters 8F - e a ’, Eo or Ao, approximate expressions of P = 1 - na (oo ) can
be obtained.

a) Suppose first ào sufficiently large, so that J is negligible and I can be evaluated with the
upper limit of integration moved to infinity. This means that the behaviour of £(t) for
t - 0 does not matter. S (E ) is then well approximated by (5.7) and P by (5.10). Two
conditions are required for that : âo &#x3E; k (automatically satisfied in the sputtering case) and
AO &#x3E;» (6F - Eâ ) cp as comparison with the following case reveals.

b) When 8 - 8: is sufficiently large, the main contribution to I comes from the vicinity of
x = 1 and is comparable to J. Then :

(A = 0 in the sputtering case) where :

Consequently, if EF - sr: is sufficiently large :

The first term is due to transitions induced by the singularity at t = 0 (notice the quantity
IL + À proportional to the discontinuity of d£/dt and the survival factor e- Ao/ IL). The second
one, which is the memory of the initial ionic state in the scattering case, needs to be
considered only if ào -5 k. A sufficiently large ( EF - £:) means at least £F - a JL.
Furthermore comparison with case (a) shows that the condition

must also be satisfied. If (--F - ea’) ç only exceeds ào by a quantity - IL, P is intermediate
between (5.10) and (5.20).

c) In the sputtering case, when

1 becomes much smaller than J and S ( £ ) may be written :

Pa (E ) being the local density of states at t = 0. Consequently if (5.21) is satisfied for
e = EF, i.e. the a-level forms a narrow resonance lying initially close to the Fermi level and
moving downwards,
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in agreement with (4.6) [notice that here ( EF - £â ) cp = Eo ç = L10]. As mentioned in chapter
4, there is no similar simplification in the scattering case for a narrow resonance moving up
and down and overlapping the Fermi level at t = 0.

d) In the scattering case, if À - g and

i. e . the a-level forms a narrôw resonance which crosses the Fermi level successively up and
down, I and J are both of the order of g as far as 1 e - e ’ a 1 «5 Eo. To obtain

P, it is not convenient to integrate S ( E ) from EF to oo because S ( E ) has no simple expression
for E = Eâ + Eo, but we can integrate from - ao to ap and use (5.9). For e : EF,
I and J can be evaluated with the upper limit of integration moved to infinity. Finally, to
lowest order in AO/ (EF - eâ - Eo ) :

in agreement with (4.7). In the sputtering case, upon conditions (5.24), P reduces to the first
term of (5.25), in agreement with (4.5). In fact this case is included in case (a).

5.4 ASYMPTOTIC EXPRESSION FOR AN ANALYTIC 1(t). - If 1(t) is analytic, the small-
velocity behaviour of S(e) is obtained by the saddle-point method, as done first by Brako and
Newns [6]. The saddle point tsP is a solution of

Asymptotically :

where 1 = d.I/dt. So and D are inversely proportional to the velocity. Considering
tsp as a function of e through (5.26) and noticing that

we can also express D (e ) as

Equation (5.26) has always several solutions. The reason is that, for na (00 ) to deviate from
its adiabatic value, X(t) should decay faster than 1/t as t --+ 00 [5], so that (5.26) cannot be of
first degree. (5.29) shows that, among several possible saddle points, the one lying closest to
the real axis gives the dominant contribution to S(e). If £:&#x3E; £: (resp. £
tsp should be in the lower (resp. upper) half-plane to make D ( E ) positive. An illustration of
these points is provided by examples of section 5.2.
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To appreciate the accuracy of (5.27), let us push the expansion a step further :

the corrective term.ae being first order in velocity. If (t) is a pure exponential [Eq. (5.6)],
Im.ae (tsp) vanishes ; in fact, as (5.7) shows, there is then no finite-order correction, only
exponentially small ones. If (t) is given by (5.12), it cornes

Qualitatively, deviations of (t ) from an exponential restrain the asymptotic behaviour to
lower velocities.

Knowing S( e), we can evaluate the ion fraction. If eF:&#x3E; e: :

5.5 INFLUENCE OF SINGULARITIES. 2013 Suppose that (t ) is continuous everywhere and
analytic in each of intervals J+ = (0,oo) and J- = (-oo,0), but one or some of its
derivatives are discontinuous at t = 0. If Eâ + E(t) remains far below the Fermi level and
à(t) does not become large, « regular » resonant processes are negligible. P is then
dominated by transitions due to singularities of Z(t ) and can be evaluated in the following
way.

Setting eo = e: + E (0), rewrite (5.5) as :

By integration by parts, L;!; (e) can be expressed as an asymptotic séries :

whence
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with the notation 6 f = f (+ 0 ) - f (- 0 ). Again this is an asymptotic (i.e. divergent) series,
meaningful only for large eF - EO- If only one of the functions a(t) and E(t) is singular at
t = 0 with a discontinuity in its n-th derivative, the leading term within the curly brackets is,
respectively :

(5.20) is a special case of (5.34).

5.6 FROM SMOOTH TO SINGULAR 1(t ). - Physically 1(t) may vary more or less sharply
depending on the way the considered atom (atom a) leaves the surface. For instance suppose
that this atom, initially at rest, is kicked off by a substrate atom b through a head-on binary
collision governed by the interatomic potential

(R interatomic distance). Suppose further that, along the trajectory z(t) of atom

a, £ varies as :

the movement starting at z = 0. Then, if vo is the final velocity, an elementary calculation
gives :

where 2 /3 = (1 + ma/mb ) /30, ma and mb being atomic masses. Since V int is due primarily to
inner-shell interactions, /3 is expected to be larger than a. The soft-collision case

{3 = « was treated in section 5.2. The hard-collision limit /3 --&#x3E; 00 produces the singular form
(5.16) with 2 IL = avo. Reality is somewhere between.
Our purpose is to investigate how, when b increases, S(e) passes from one asymptotic form

to the other. For that we use (5.27)-(5.31) which give us the asymptotic S(e) and the first
corrective term. We assume e &#x3E; 8:. Setting :

and we have :

(5.36a) and (5.36b) are equivalent if the determination of the argument is not specified. Let us
impose Arg ( ... ) | : ’TT /2. Starting from the known case f3 = a and arguing that
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8 (e) should be a continuous function of 13 (since a little difference in 13 should not produce a
jump in the ion fraction), we find that (5.36a) and (5.36b) hold for Ir 1 -- 1 and

|r 1 :::. 1 respectively. For 1 r= 1, the continuity argument is of no use since So diverges and
8 is undefined whenever r = 1, i.e. 13 is a multiple of 2 ’TT’a/cp.
We notice the following points :

a) If e - eâ ...: 1 £0 1 , i.e. under near-resonance conditions, a large /3/a makes 1 r
extremely small and S(E) coincides with (5.7). Whether (5.35), (5.16) or (5.6) is used for
X(t) does not change S(e), only X(t) for t &#x3E; 0 being important.

b) If e - e ’ = ! | and 13 is a multiple of 2’TT’a/cp, the saddle-point method is

inapplicable, giving a series of infinite terms. If 13 :&#x3E; 2 ’TT’ a / cp , 5(c) is discontinuous at
e = Eâ + 1 £0 1 , dropping from 8+ down to &#x26; - , where :

Int denoting the integer part. If 8 /a is large, 6 thus passes from a large to a small value. A
similar jump occurred in the case of a singular £(t), but at e = sâ + àO/o, therefore below
the present threshold (since 1 £0 1 = ào/sin cp).

c) If s - eâ &#x3E; 1 £0 1 , i. e. under far-resonance conditions, a large 8 / ci makes 1 r [ extremely
large, so that the corrective term (5.37) cannot remain small (and therefore the asymptotic
form valid) but for extremely small velocities, satisfying :

If 0 is really much larger than a, there must be some range of vo, namely :

in which S ( e ) is well approximated by the result (5.20) obtained with a singular
X(t). Otherwise no universal velocity dependence of S(e) emerges at velocities of practical
interest.

5.7 ON THE USE OF THE RATE-EQUATION APPROACH. - The rate-equation approach is a
priori well adapted to the case of a resonance crossing the Fermi level, but the definition of a
crossing time may raise some difficulty. The wide-band model provides a convenient means to
study this point. In this model, the resonance is centred at 8a(t)= e: + E (t ) and the crossing
time tc is naturally defined by ea(tc) = cp. For simplicity assume near-adiabatic conditions,
i.e. very small velocity. The rate-equation approach result (4.3) is to be compared with the
correct result :

[see (5.32)] which depends on tsP [see (5.26)] for - = SF. tsp being close to t,, we can expand :

where all quantities are to be taken at t = t,. The expansion is in powers of ¡j/ Êa and
Ëa/ éa is assumed not to be much larger than à/à. Up to o (j2/ Ê;), the prefactor of (5.38) is
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found to be unity, as in (4.3). The exponent is :

The first term is the rate-equation approach result. If à(t) cc e-’et and e,,(t) behaves
smoothly enough, the corrective term is much less than the leading term on condition that
a &#x3E; gâ, which confirms an assertion of section 4.3. 

6. The two-level case.

In the context of charge transfer at surfaces, a two-level model (one level for atom

a, one for the substrate) is of rather limited interest, for, if localized states may exist at
surfaces (e.g. around an impurity), band states can rarely be ignored. However this model
offers a twofold theoretical interest. First, it will serve us for testing the generality of results of
chapters 8 and 9. Second, being the simplest of cluster models, it illustrates some of their

properties, especially the absence of strict resonant processes since two coupled discrete levels
cannot cross.

We thus consider one electron apt to occupy two orbitals a and b. In the basis set

{a, b} the Hamiltonian reads :

It has two eigenvectors ± ) with eigenvalues :

We set E = Eb e, and f2 = e+ - e-, all these quantities being functions of time.

6.1 REVIEW. - The problem of electron exchange between two levels is an old problem of
atomic collision. From the first, two methods were used :
- the present trajectory approximation (TA) method, also called « impact parameter

treatment » in the context of atomic collisions, which treats the nuclei as classical particles and
leads to a time-dependent electron Hamiltonian of the form (6.1) ;
- the semiclassical method based on the JWKB approximation for the (stationary)

wavefunction of the nuclear system, this wavefunction having two components corresponding
to the two electron states and the variable being the internuclear distance r.

Both methods lead to a set of two coupled differential equations, which are first order in
t in the first case, second order in r in the second case. The TA method is therefore simpler.
However, perhaps because of its less generality, it does not seem to have been developed as
systematically and rigorously as the semiclassical method.
For the sake of clarity, we first distinguish two opposite physical situations :

a) The first one is the case of avoided crossing (or pseudo-crossing) when E vanishes at
r = r,, and T is small enough for f2 to have a well-marked minimum there. The problem was
solved by the TA method with the simplifying assumptions that, in the vicinity of the crossing,
T is constant and E varies linearly with t. The resulting probability of electron transfer
between the two orbitals is given by the Landau-Zener formula [31, 32] :
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where T and E(= dE/dt) are evaluated at r,. The factor sin2 T comes from interferences
between transitions occurring at the two crossing times (when the atoms come nearer from
one another and when they move away). T is approximately half the integral of

f2 (t) between the crossing times. As the validity of the treatment implies well separated
crossing times, T is generally large and sin 2 T is often replaced by 1/2.

b) The opposite situation is when E is constant, so that Q increases with T. Electron
transitions are then induced by the variation of T during the interval when ,f2 is not too large
(Ts E). By taking T oc sech (mt), Rosen and Zener obtained the following exact result
[33] : :

The derivation of (6.2) and (6.4) relies on specific forms for E(t) and T(t), but implies in
principle no conditions on the magnitude of parameters. Alternatively, under near-adiabatic
conditions (small velocity, large y), P can be calculated for any reasonable E(t) and
T(t). As expected from (6.2) and (6.4), P is then of the form :

The semiclassical theory of Stueckelberg [34] improved by Crothers [35] gave for

y: :

where ki is the (local) wavenumber of the nuclear system when the electron is in state

j, ro is the zero of k, - k- lying closest to the real axis in the first quadrant and the lower limit
of integration is on the real axis. We can translate (6.7) in the language of the TA method by
identifying (k+ - k_ ) dr with n dt :

where ,f2 (to) = 0 and the lower limit is on the real axis. (6.8) was also obtained by the TA
method by Dykhne [36] in the pseudo-crossing case without Zener’s simplifying assumptions.
As to the phase T, its semiclassical expression is [35] :

where r+ and r_ are the classical tuming points corresponding to the two electron states and
T’ is a complicated function of the velocity which vanishes for y = 0 and y = oo. In a TA
treatment, no distinction is made between r+ and r_ , both corresponding to the time
t = 0 of closest approach, and (6.9) is expected to simplify into :
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Implicit in the derivation bf (6.6), (6.8) and (6.10) is the assumption that the function
f2 (t) is even and analytic, as normally happens in a collision between two atoms under
classical conditions. However it is not too difficult to extend the results to other forms of
f2. Physically electron exchange occurs when f2 is close to a minimum (as in the Landau-
Zener case) or tends to it (as in the Rosen-Zener case where the minimum is at

1 t 1 = oo and electron exchange spreads over the region T:5 E). When Q is even and its
minima are far from t = 0, (6.6) is easily interpreted as the sum of the contributions from the
two minima, each equal to e-’’, multiplied by an interference factor 2 sin2 T. For any passage
through a minimum of n well separated from others, whether Q is even or not, such a
contribution e-’’ is expected with y calculated according to (6.8) with the form of
,fl appropriate in this region. Only the interference factor, usually - 1, depends on the
behaviour of n between the minima if there are more than one. The requirement that
f2 (t) is analytic cannot be relaxed similarly because a singularity can induce excitations of
large energy and, even if it takes place in a region where n is large, its contribution may
dominate P in the near-adiabatic case, i.e. for large y.

6.2 APPLICATION TO THE MODEL OF CHAPTER 3. - The assumptions made in chapter 3 lead
to the following forms for T and E :

where, without loss of generality, we suppose E. :.. 0. Though the variations of T and
E are related, a diversity of physical situations, with or without pseudo-crossing, can be
described by varying To, E. and qo. Of central importance is the function n which can be
written :

A boundary appears between the cases E. qo -- T02 and E. no:::. T6 in which e2 is

respectively real and complex. This boundary is comparable, but not identical, with the
boundary between the cases E. q 0 « 2 T02 where f is minimum at e = 0 (e.g. Rosen-Zener
case) and E,,,, no &#x3E;. 2 T02 where f2 is minimum at e e 0 (e.g. Landau-Zener case).
The forms (3,11) and (3.12) proposed for e(t) are not analytic . There should thus be a

contribution to P from the singularity at t = 0, which contribution cannot be calculated by
(6.6) and will be considered in next section. We can formally get rid of it by letting
1 i7o! [ and T02 tend to infinity together, so that ,f2 (0) = oo . Doing this, we are also ensured that
any minimum of f2 is far from the singularity and, in the scattering case, far from the other
minimum. We can thus evaluate y by considering only the region t:::. 0 in case (3.11) (the
« sputtering case » which here would rather simulate a molecular dissociation induced by a
projectile not involved in electron transfer) and by treating separately the regions
t :&#x3E; 0 and t  0 in case (3.12) (« scattering case »).

Let us calculate y, as given by (6.8), for the region t &#x3E; 0. Taking = e- ILt as variable of
integration, we must choose a contour going from anywhere on the positive real half-axis to
e - such that Re e _ 0. If Eoo T?o «-- 1 ô2, whatever the sign of 170’ e- is on the imaginary axis
and it is convenient to use a contour composed of three parts, a segment on the real axis,
another on the imaginary axis and, joining them, a quarter circle of infinitesimal radius
centred at the origin. Only the latter contributes to the imaginary part in (6.8), giving
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is off the imaginary axis. By integrating along the arc
one finds To summarize :

In the « sputtering case », P is simply e- ’y. In the « scattering case » this term has to be
supplemented by the contribution of the region t : 0 which only differs from it by the
substitution of À for IL. Since T = oo, it is reasonable to neglect the interference factor.
For Eoo qo  T02, (6.12) shows that y is independent of qo and therefore coincides with the

Rosen-Zener results (6.5). This is understandable since, f2 being minimum at t = oo, only the
asymptotic value of E (t ) should be important. More remarkable is the fact that (6.12)
coincides with the Landau-Zener result (6.3) in the entire range Eoo -qo:::. T02 although (6.3)
was established under rather different assumptions (constant T, linear E) and that range
covers not only cases where f2 has a marked minimum (Eoo qo » Tg), but also cases where
n has no minimum at finite time (TO2 -- E. qo  2 Tô ).

6.3 AN EXACT TREATMENT. - As already mentioned, the treatment of the preceding
subsection ignores the contribution of the singularity of e at t = 0. Though from a physical
point of view the singularity is unwanted, it may be useful to know its contribution in view of
the frequent use of non analytic forms in numerical or literal calculations.
An exact treatment requires to solve a set of two coupled first-order differential equations.

For simplicity let us limit ourselves to the case qo = 0 (similar to the Rosen-Zener case) with
e given by (3.11) (« sputtering case »). If we suppose the electron to be initially in the lower
eigenstate |-&#x3E; , the probability P of electron exchange is the probability of final occupation
of state b :

where G is the solution of (2.3). Projecting 1 - &#x3E; onto 1 a &#x3E; and 1 b), we obtain :

where :

the last equality being deduced from (2.3). Gb,, obeys a second-order differential equation.
Setting :

we find :

(J,, Bessel function), whence :
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Formulae (6.13)-(6.14) give the exact P for the particular model considered (,qo = 0,
« sputtering case »). For the special value E,,,, = 0 (resonant case), not considered previously,
one verifies that P = 1/2. Coming to the near-adiabatic regime (IL small) and Eoo ::&#x3E; 0, we can
distinguish two situations. If g « To - Eoo, we get, from the behaviour of the Bessel function
for large and comparable values of its index and argument :

If To is extremely large, the large-argument limit must be taken first, giving :

Comparing with (6.15), one sees that (6.16) is valid only if To satisfies :

which is indeed very large if E,,,, » g - (6.16) is the « regular » contribution, identical with
(6.12). (6.15) is the contribution of the singularity of e at t = 0, proportional to the square of
the slope discontinuity as in the wide-band model. The regular contribution can thus easily be
masked by the singular one.
Though (6.15) was derived for qo = 0 and a form of e corresponding to sputtering, it is not

too difficult to generalize it, as only parameters at t = 0 should enter it. These parameters are
three : E(0) = Eoo + 170’ T(0) = To and g + À (resp. g), the discontinuity of e (0 ) in the
scattering (resp. sputtering) case. To generalize (6.15) one must therefore simply substitute
E. + no for Eoo and, in the scattering case, u + À for 1£. Results of chapters of chapters 8 and
9 will confirm it.

7. Exact séries solution.

Coming back to the model of chapter 3, we now derive exact expressions for S(s) and
1 G aa (oo, - 00 ) 12@ the quantities of interest for the calculation of nQ ( 00 ). The method is based
on the exponential form of e(t) [Eqs. (3.11) and (3.12)], but implies no assumption on
o,(z) [Eq. (3.8)]. The sputtering case is treated in section 7.1, the scattering case in

section 7.2 and some computational problems are discussed in section 7.3.

7.1 SPUTIERING CASE. - The content of this section is essentially a reproduction of old
results [27]. The Laplace transform method used there was also employed independently by
Brako and Newns in a somewhat different case [17].
We first solve (3.2) for t and t:::. 0, when e (t e (t, t’ ) is given by (3.9). We

define :

(3.2) becomes :
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whose iteration gives :

We recover GQQ by inverting (7.1) :

where contour C encloses the lower half-plane. The poles of 1/1’ (z, t’ ) are all below the real
axis. So, as t --+ oo, only the pole z = eâ of g,. (z, t’ ) contributes to Gaa :

where an unimportant phase factor exp (- i Eâ oo ) has been omitted. Thus :

and, by (2.4b) :

To obtain S(e), we expand (2.12), using (3.3) and (2.6) :

where G,,, = Gaa(oo, 0) etc. Using then (7.3), (7.4) and the identity :

we obtain, after some simplifications :
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p a ( E ) is the local density of states at t = 0.

7.2 SCATTERING CASE. - We need G,. (oo, - oo ) and Gak(oo, - oo ), which
we can decompose as :

We already know Gaa(OO, 0 ) and Gak(oo, 0). To obtain the matrix elements of G (0, - (0),
we must solve (3.2) for t and t’  0, when e (t ) = e A’. We define :

and write (3.2) in reverse form :

where time integrations are implicit. It comes :

whose iteration gives :

Proceeding as in section 7.1, we obtain :

an unimportant factor exp (i 8: (0) being omitted. Similarly to (7.3) and (7.4) :

To calculate Gka(O, - oo ) and Gkk,(O, - oo ), we need Gak(t, - oo ). Using (2.4b) and (7.12),
we have, always neglecting a factor exp(i er: 00) :
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It is here convenient to close the contour of integration in the upper half-plane where
0 (z, t) has no pole : 

Then :

and, by (2.4a) :

We can now evaluate (7.10) and (7.11) and, by (2.11), deduce S(e). Using (7.5) again, we
obtain :

where 5 is an infinitesimal, and :

Two expressions have been given for both G aa ( 00, - oo ) and Y(s). On the first one, the
important simplifications which occur in the wide-band case (o- constant) are quite apparent.

7.3 ABOUT THE COMPUTATION OF THE SERIES. - Results (7.6)-(7.9) and (7.14)-(7.16) can
either be converted into approximate, but more transparent expressions, as will be done later
on, or be treated numerically. In the latter case, the convergence properties of the series are
of interest.

Consider first (7.8). Its convergence properties are essentially those of the series

E Tn. For the sake of discussion, suppose o- (z) constant. Setting a = i u /2 IL (Re a &#x3E; 0 ), we

have :
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The convergence is pretty fast. However the series is basically a large-IL expansion, whereas in
practice 1£ ( oc velocity) is rather small. For instance in previous calculations [25],

1 a 1 might exceed 50. For such large 1 al, the problem is not the number of terms required to
evaluate the series with given accuracy, which number only increases as 1 a 1 but the accuracy
required to evaluate the largest terms, these being - exp 1 a whereas the series itself is much
more smaller. In numerical calculations double precision is generally a minimum requirement.
Quadruple precision was used in the quoted calculations [25].
The convergence of the double series (7.14) is related to that of the two series

r,, and E ’P m ( e:) which only differ by the exchange of IL and À. The problem is therefore
of the same nature as above, yet apparently more serious. In fact, if À is small, the first term
at rhs of (2.10) is generally negligible as compared with the second one, making
G aa ( 00, - oo ) useless.
The convergence of the double series (7.16) depends on that of y Tn and £ ’Pm(e). For

constant a :

By carrying out the E-integration in (2.10) over either occupied or empty states (see the last
remark of chapter 2), it is always possible to impose 1 e - 8:’ | &#x3E; EF - ea- 1 , so that

cp,,, (e) remains finite when k ---* 0. The accuracy problem in the evaluation of the largest
terms in the series is thus not substantially more serious than for (7.8). However if

1 o- 1 / 1 e - eâ | is not small, 1 o,,, ( e1 I begins to decrease rapidly with m only for

m » 1 8 - Eâ I / A , so that it may be necessary to retain more terms in the sum over

m than in the sum over n.

8. Asymptotic expressions : the sputtering case.

In most physical situations, g lies in an energy range low enough to justify the use of an
approximate S(e), in general a small- IL asymptotic expression. Such approximations are
derived in sections 8.1-8.4. The resulting ion fraction is calculated in section 8.5.

8.1 INTEGRAL REPRESENTATION. - Owing to the form of Tn, (7.8) is essentially a large-IL
expansion. To obtain the small- IL behaviour, an integral representation is more convenient.
We first get rid of the denominator by writing

or, setting

where :



338

When M. is small, since 0" (z ) is analytic in the upper half-plane, 0" ( Eâ + (2 p - 1 ) i IL)
varies little between two consecutive and large p’s. This remains true for two any consecutive
p’s if a (z ) has no pole near e:. A pole of a (z ) on the real axis corresponds to a bound state
of Hs. The case of eâ close to a bound state (or quasi-bound state) of the substrate will not be
considered here.

Rewriting Q as :

we can now expand

The higher terms, which depend on the successive derivatives of u (z) at z = eà and
z = 8 a 00 + 2 ni 1£ , are given in appendix. By (8.5), Wn can be continued to any n, real or
complex, so we write :

The sum over n cannot be transformed in the same way as the sum over p since, when
IL is small, there are strong differences between successive terms. But, treating W as an
analytic function, we can write :

Then, using the integral representation of the 8-function, we sum over n to get :

or, in terms of new variables w = Eâ + 2 qi IL and s = - i r (and with a proper modification of
integration contours) :

For small IL, Q is evaluated by the saddle-point method. For a function of two variables the
appropriate formula is :

where, at rhs, f and its derivatives are to be calculated at the saddle point defined by
a f/ax = a f/ay = 0. We obtain :
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where 0" (u) = du /du and u is related to x by :

to be compared with (3.5). The following relations will be useful :

(8.8) may lead to ambiguities, for, excepted in the wide-band case, (8.10) has always several
solutions for u. This point will be reconsidered when a solution of (8.10) will be needed
actually.

Substituting (8.8) for Q in (8.2), we have :

Let us distort the line of integration into a contour C along which either Re A is constant or
Im A = - oo (such a contour exists necessarily). For small g the dominant contribution to
X(e) comes from the vicinity of the point M of C where Im A is maximum. M may be either a
saddle point, i.e. a solution of dA/dx = 0, or a limit of integration, 0 or 1. However the limit
x = 0 must be excluded because it cannot be approached with a constant Re A (owing to In x),
only with lm A = - oo. A saddle point and x = 1 are thus the only possibilities for
M. Their respective contributions are calculated in sections 8.2 and 8.3, and compared in
section 8.4.

8.2 M Is A SADDLE POINT. - On account of (8.11) the saddle-point equation reads :

whence

If M is a saddle point and does not coincide with the limit x = 1, (8.12) becomes, for

If is so small that an expansion of F (x ) around
1 gives :

From (8.15) and (8.16) two expressions of S(s) are deduced. With the aid of (5.8) they can be
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merged into a unique expression valid if either 1 E - eâ 1 or 1 cr ( e) 1 is much larger than
: :

where cp ( e ) is defined by (3.10) and :

If g « 1 e - Eâ I , S (e) becomes simply :

where

Notice that, though (8.10) does not define u uniquely, x, as given by (8.14), always exists
and is unique. In fact to derive (8.17) the calculation of an approximate Q (x) and the use of
the saddle-point method itself are not necessary. Since the limit of integration x = 1 is here

unimportant, it can be removed and (8.2) integrated till infinity. Physically this amounts to
taking e (t ) = e-1Lt for - oo -- t « oo. After having substituted (8.7) for Q in (8.2), one
integrates over x first. This is done in appendix. The method is not only simpler, but also more
powerful, for one can keep the entire expansion of W (w ) in powers of g and find the
asymptotic expansion of S(e) to every order [see Eqs. (A.3)-(A.4)]. Nevertheless the method
used in this section enables us to treat properly the problem of the limit of integration.
Some properties of (8.17) can be noted :

a) If e lies within an energy gap, p(c) = 0 or ir, so S(e) vanishes as it should to make
na(oo) independent of n°(s).

b) S(e) is invariant in the simultaneous interchange of e and eâ on one hand,
p and ir-,rp on the other hand (electron-hole symmetry).

c) (8.17), which is correct up to 0(g), obeys within the same approximation the unitarity
relation (2.13) [to prove it, argue that, for small IL, S(e) is strongly peaked, take a constant
cp (e) in the peak region and use (5.9)].
A close parallel exists between the present derivation of the asymptotic form (8.19) and

that of (5.27) in section 5.4, the saddle-point equation (8.14) being a generalization of (5.26)
to an energy-dependent uad, yet restricted to an exponential time dependence since
x = e -2,,,t (8.19) thus describes resonant processes in the sense given that word in section 5.2,
near-resonant processes if cp is small, far-resonant ones if ç is close to ur, with the additional
complication that, cp being now energy dependent, both kinds of processes may occur.

8.3 M Is AT x = 1. - Define uo by :

uo is the value of u for x = 1, therefore a solution of (3.5) for t = 0, and physically represents a
resonance in the initial local electronic structure. If M is at x = 1, we obtain X(e) by
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expanding A (x ) around this point. Two cases appear :

a) If g « E - uo 1 M is distinct from the saddle point and a first-order expansion suffices :

whence :

with definitions (8.9) for G and (7.7) for p,,. Notice that, if uo is real (i.e. the resonance
reduces to a bound state), C2 = C (uo). (8.23) is a generalization of (5.18) and similarly
describes transitions induced by the singularity of e at t = 0. These transitions occur between
the substrate level of energy e and the resonance of (complex) energy uo. The survival factor
exp (- C 2/ 9 ) however depends on « regular » resonant processes taking place at t :&#x3E; 0.

b) If e - uo 1 is so small that : 

which implies a real or nearly real uo, M coincides practically with the saddle point and a
second-order expansion is necessary, giving :

whence :

The exponentials in (8.28) and (8.19) are nearly equal since, to lowest order in

but, owing to (8.26), the prefactor of (8.28) is larger. (8.28) generalizes (5.22). If

uo is complex, (8.28) describes resonant processes when, initially, the resonance is narrow and
overlaps the substrate level of energy e (but does not necessarily remains narrow afterwards).
If uo is real, corresponding to a bound state, (8.28) reduces to :

where

These results pose the problem of the choice of uo, for, as we mentioned in connection with
(8.10), an equation such as (8.21) generally has several solutions. Thus in a cluster model (e.g.
the two-level model of chap. 6), there are as many uo’s as levels. In the presence of bands of
finite width, u (z) possesses branch points at band edges and several analytic continuations
are possible, each defining a Riemann sheet. Since uo represents a resonance in the local
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electronic structure at t = 0, the condition Im uo -- 0 and simple physical considerations are
normally sufficient to determine the correct Riemann sheet. The choice of uo among the
various possible resonances may be more delicate. It seems that, if one of them evolves

adiabatically to the bare a-state when the atom-surface coupling vanishes, it is the correct

uo to be used in the calculation of 8 ( e). This assertion is supported by several examples : the
two-level case (see later on), the semi-infinite chain [24] and a substrate density of states
composed of both a finite band and a discrete level superposed on a wide band [25].
Sometimes (see the two-level case in section 8.5), other resonances may give subdominant
contributions of physical interest.

8.4 WHERE IS M ? - When (8.26) is satisfied, the saddle point is very close to

x = 1 and (8.28) is the sole possible S(e). In a discrete-level model also, since

sin cp ( e ) vanishes everywhere excepted at isolated points, the relevant S(e) is readily
identified. Otherwise S(e) is given by (8.17) or (8.23) depending on whether M is at the
saddle point or at x = 1. If the saddle point lies on contour C, the correct S ( e ) is of course the
larger. If the saddle point is not on C, (8.17) is irrelevant and S(s) is given by (8.23). In the
latter case can we state that (8.17) is smaller than (8.23) ? If the statement is true, a simple
comparison of (8.17) and (8.23) will give the correct S ( e ) in any case, which is a much more
convenient method than to construct contour C and locate the saddle point. A general proof
of the statement is not easy. Numerical confirmations have been obtained in two cases : the
semi-infinite chain considered previously [24] for which the numerical calculation was done by
Jardin and Quazza (unpublished) and a model for copper sputtering for which the two
possible contributions to S(e) were compared carefully [25]. Hereafter we present a direct
proof of the statement in the simple wide-band case.
With notations of section 5.3, we have :

so X ( e ) is given exactly by (8.12) where a’ = 0 and :

For simplicity we assume c &#x3E; Eâ . Figure 1 shows some of the stationary-phase paths
Re A (x ) = constant. They are symmetrical with respect to the line OS whose angle with the
real axis is cp. S is the saddle point and lies at xs = (e - Eâ )/£o. The path passing through S
intersects the positive real half-axis at one (if p r ir /2) or two points (if cp «-- -r /2), the closer
to the origin being J such that :

where y is the smaller solution of 1 + In y = y cos cp.
Contour C must go from x = 0 to x = 1 with always either Re A = constant or

Im A = - oo. Let us follow it backwards. Depending on xJ, three cases appear :

a) If jCj &#x3E; 1, C ends at a point such as 1 at lhs of J. Descending the stationary-phase path
passing through I, we recurrently follow a closed loop enclosing O. A (x ) is multivalued and,
at each turn, Im A decreases by 2 ir (eâ - E). After infinitely many turns, lm A = - 00 and
we can leave the loop to join 0 along any radius. S is not on C. On the real axis,
Im A (x ) _ - àg x, therefore :

So (8.17), here irrelevant, is smaller than (8.23).
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Fig. 1. - The stationary-phase paths Re A = Const. in the complex x-plane. S is the saddle point. Im A
increases in the direction of arrows.

b) If xj = 1, C ends at J. It is again a closed loop, its peculiarity being to make a right angle
at S. S ( E ) is sill given by (8.23).

c) If xj «-- 1, C ends at a point such as one of the Ki’s at rhs of J. In a first step (unnecessary
if i = 3), we descend the stationary-phase path passing through Ki till infinity (where
Im A = - oo) to join the stationary-phase path passing through S. In a second step, we follow
the latter. We cross S straight a first time, describe à loop, cross S again, but now at right
angle, and continue as in case (b). Depending on parameters, Im A may be maximum at
Ki or at the first crossing of S. The higher maximum determines S(e).

Notice that the topology of C is a consequence of the choice of x as variable of integration
[Eq. (8.2)]. If t have been used instead [Eq. (8.1)], the exponent would have been single-
valued and C composed of an infinity of branches. In case (c) above, C would have crossed an
infinity of saddle points, one straight and the others at right angle.

8.5 ION FRACTION. - Once S(e) is known, application of (2.8) gives the ion fraction
P. In a number of cases the integration involved in (2.8) can be done, at least approximately.
Such cases are considered below. For simplicity we assume ep &#x3E; Eâ and zero temperature.
Thus :

Further, as mentioned below (8.3), £â is supposed not to be in the vicinity of a discrete
substrate level.

Excluding for the moment the case of EF close to a narrow resonance or within a gap of
substrate states, consider increasing values of £F - 6: :

a) If EF - e: S J.L, the relevant S ( e) is (8.17). If ç (s) varies little over an interval
- J.L / Cf) (eF)’ P is given by (5.10).
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the relevant S(E) may be (8.19) or (8.23). Let êc be such that
If only (8.19) needs to be considered, giving :

where Ci=C(cp). This result is valid both if cp ( e ) varies little over an interval
- IL / cP (ep) above EF, thus generalizing (5.11), and if cp (c) remains small (but not necessarily
constant) for c &#x3E; eF, then generalizing (4.5). Note that these conditions do not forbid the
presence of band edges above or below eF. (8.31) can be interpreted in terms of resonant
processes as done in sections 5.2 and 8.2.

c) Assume now EF - Ec - g / p ( ec). For s - sF, (8.19) and (8.23) are of the same order of
magnitude, (8.23) having a larger exponential, (8.19) a larger prefactor. Contour
C passes the saddle point, so (8.15) and (8.22) should be added before being squared to give
S (e) [see (7.6)]. The expression of P is not very simple.

gives :

which generalizes (5.20). Ionization is provoked by the discontinuity of de/dt at

t = 0, subsequent resonant processes acting to partially restore equilibrium.
Tuming to the case of eF near a narrow resonance (within a band), suppose (8.26) satisfied

for e = EF’ (8.30) gives :

where 1 - v - arg E - UO). v represents the fraction of area of the resonance peak below7T o p

the Fermi level. For a single resonance, v = n:d(O). (8.33) generalizes (4.6) and (5.23),
reducing to (4.6) for a single resonance.

Finally consider a discrete-level system with E: not coinciding with any of the eigenvalues
81, E2, ... , EN of Hs. Exact resonance is thus excluded. When the atom-substrate coupling is
switched on, the eigenvalues of H tend continuously to a set {Ui} (i = 1, ..., N + 1 ), one of
them passing from Eâ to Ua (one of the ut’s) . There is one ui in each of intervals

(- oo , -- 1 ), (Ei’ Ei +1)’ ( EN , oo ), Ua being in the same interval as eâ . lp(E) drops down from
7r to 0 whenever e passes one of the e,’s and goes up from 0 to w once in each of intervals
(--i, --i + 1). By (8.21), cp (ua ) = 0 if ua:&#x3E; ’-a" w if ua  E:. Consequently, lp(E) is constant
between e’ and Ua, entailing C (ua ) = 0. With the choice uo = ua in (8.23) or (8.30), we obtain
C2 = 0. (8.30) is relevant only if Ua EF and leads to the trivial result P = 1. In the interesting
case ua - EF, (8.23) gives :

The choice uo = ua was discussed in section 8.3. Notice that any other choice would probably
give CZ &#x3E; 0 and therefore an exponentially smaller P (or contribution to P). Physically (8.34)
must be valid if the distance between uo (t ), the eigenvalue of H(t ) such that ua (oo ) = e a 1, and
the closest other eigenvalue of H(t) is always much larger than IL.
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A special case is the two-level model studied in section 6.2. The electron being supposed
initially in the lower state, 1 - &#x3E; , we must take ua = e- (0) and ui = s+ (0). With notation
(6.11) and Eo = Eoo + q 0, (8.34) gives :

which reduces to (6.15) for no = 0. Like (8.34), (8.35) is due to the singularity of

e at t = 0 and can be eliminated by taking lno | or To extremely large. Then making
uo = 8+ (0) in (8.30), we obtain P = e- ’Y where :

in agreement with (6.12).

9. Asymptotic expressions : the scattering case.

In the scattering case, P depends on two quantities, the square modulus of G,.(Co, - oo ),
which gives the survival probability of the initial charge state, and S (e). Approximations for
these are derived in sections 9.1 and 9.2 respectively. The resulting ion fraction is calculated in
section 9.3. Notations of section 8 are kept.

9.1 EVALUATION OF Gao. - Similarly to Q(x), we define :

which only differs from Q (y) by the substitution of À for IL. Choosing the infinitesimal
,b as real and positive, we can rewrite (7.14) as :

where P == P (e2 Àt), Q =- Q (e -2 "t) and the dot denotes derivation with respect to

t. Using approximation (8.8) for Q (x ) and a similar expression for P (y ), we get, owing to
(8.11) :

where u. and u, are the functions of t defined by :

As in chapter 8, el is supposed different from a discrete substrate level.
When À and g are small, the integrand is dominated by the factor [see (8.8)]
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A priori its modulus can be maximum at two points on the contour of integration : the saddle
point tsP or the limit of integration t = 0. Owing to (8.11) the saddle-point equation is

whence e2(A + JL) t = 1. The real solution of tsp = 0 coincides with the limit of integration.
There are therefore three possibilities : 

a) The maximum is at this saddle point. Expanding F to second order in t and letting
à - 0, we obtain :

whence

with definitions (8.24), (8.21) and (8.9).
b) The maximum is at t = 0, but no saddle point lies there. This implies that

u (0) and u&#x3E; (0) represent two different resonances, say ui and U2. Then :

But, as uo is chosen in (9.1) so as to minimize C2, (9.3) is necessarily exponentially smaller
than (9.1) and therefore irrelevant.

c) The maximum is at an imaginary tsp. However examination of simple examples (wide-
band or two-level models) never leads to a physically reasonable C2.

Finally the correct asymptotic expression is (9.1). In the wide-band model, C2 = 4lo and we
retrieve (5.17). In the case of a narrow resonance, such that [- arg o’(Mo)] is close to 0 or

In particular, if

in agreement with the first term of (4.7). In the two-level model, Cz = 0. The asymptotic
G aa ( 00, - oo ) is then insufficient to give an estimate of the decay of the initial charge state.

9.2 EVALUATION OF S(s). - Defining :

we can rewrite (7.16) as :

where the upper limit of integration is i oo sgn (e: - e).
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When we evaluated Q (x ) in section 8.1, we excluded the case of 0- (z) having a pole at
to avoid strong variations of o,- ( 6 ’ a + (2 p - 1 ) i g ) between consecutive p’s. A similar
requirement about M (y ) would lead us to exclude the possibility for u (z) to have a pole at
e, therefore anywhere on the real axis. We shall not lay down such a restriction. We are
however led to treat separately the discrete and continuous parts of the spectrum of

H,, only assuming that, if eo designates a pole of o (z ), either Im eo = 0 or (- Im eo) &#x3E; k.
9.2.1 S(e) in the continuous spectrum. - Using the identity :

valid for Re a 0, we can rewrite M(y) as :

where

With the change of variable x = e- 2 »t , (9.5) becomes :

where y = X-À/IL and z = (l-s)y.
N (z ) just differs from Q (z ) by the substitution of À for IL and e + i .l for e:. Its asymptotic

expression is deduced from (8.8) :

where v is the function of z defined by :

Similarly to (8.11), we have

For small À and 1£, Y(E) can thus be written :

where u defined by (8.10) and y, z and v as above.
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The regions apt to contribute significantly to S(e) are the vicinity of the saddle point S
(such that aLl8x = aLl8s = 0) and the vicinity of lines x = 1 and s = 1 (i.e. the limits of
integration). Since, by (8.11) and (9.6) :

S is such that x 1 ’ " / " = 1. As in section 9.1, a complex x does not seem to correspond to a
relevant saddle point (therefore either the latter is not on the contour of ihtegration or, if it is,
its contribution is not significant). S is therefore on the line x = 1. The sole regions to be
explored are thus the lines x = 1 and s = 1.

9.2.2 The line s = 1. s = 1 implies v = E. The saddle point xsp for the x-integral is such that
u = e, therefore is given by (8.14). The situation is strongly reminiscent of the sputtering
case. For the moment we calculate each contribution to S(E) separately, as if it was dominant.

a) The contribution of the vicinity of xsp is again given by (8.17) :

reducing to (8.19) for 1£ .,c 1 E - Eô I . The conditions of validity and interpretation are the
same as in section 8.2.

b) The contribution of the vicinity of the limit x = 1 is :

only differing from (8.23) by the factor (,£ + k )2 instead of IL 2. In both cases S ( E) is

proportional to the square of the discontinuity of de/dt and describes transitions induced by
this discontinuity between the level of energy e and the resonance of (complex) energy
uo. The validity of (9.9) is however more limited than that of (8.23), for it implies
e not too close to a narrow resonance.

c) A more general expression for the contribution of the vicinity of x = 1, provided
IE-Uol&#x3E;,k and IL, is :

where f is defined for any p such that Im p . 0 by :
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and is such that f (0) = 1. Setting p = pl + ipz, the approximation

holds in the following cases : (i) P2 &#x3E; 1 ; (ii) pl &#x3E; p2 ; (iii) Pi negative such that

P2 &#x3E; In )Pi!/!Pi!’ . Then P,, (e) reduces to pQ ( £ ) and (9.10) to (9.9). This happens if no
narrow resonance is present or, if there is one, for e sufficiently far from it. If

P2 is small, there is a range of negative pl’s, such that P2 « ln Ip, 1 / !Pi ! ? in which

This happens in presence of a narrow resonance. Consider such a resonance of energy
ub = Eâ + Eb - i11b with 11b  # « Eb and suppose u’(e) negligible in the region of
interest. Pa ( e) is well approximated as

(ep = - arg o- == iib/Eb) over an interval of width - k / cp below £â + Eb, therefore as far as
the exponential is neither negligible nor larger than 1. Outside this interval, the profile of
pa ( E ) evolves towards the lorentzian decay of Pa ( e). Physically the resonance has not enough
time to build up, so its spreads over the energy range corresponding to the shift of the
resonance peak during the time 1/ iib. Put in another way, (9.11) describes the influence of
resonant processes taking place at t  0. A remarkable property of f (p ) is, for P2:&#x3E; 0 :

For a narrow resonance, this entails

which the above example confirms.

d) If E is close to uo (which implies the resonance uo to be narrow), xsp is close to 1. If the
condition

is realized, it comes :

where

In comparison with the sputtering case [Eq. (8.28)], the peak of S ( s ) undergoes a strong
spreading, again due to the delay in resonance formation. An analysis of its profile would
require a more general expression, interpolating between (9.9) and (9.13) in a manner similar
to (9.10). Such an expression is rather complicated and will not be considered here.
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The relative importance of the various contributions (9.8), (9.9), (9.10) and (9.13) depends
on e. If 8 is far from a narrow resonance, the choice is between (9.8) and (9.9), and
considerations of section 8.4 remain valid. If 8 lies near a narrow resonance, say

uE, and the system possesses at least two resonances, (9.10) and (9.13) are two possible
S(E)’S- In (9.10), C2 is calculated with Uo =F Ue, in (9.13) with uo = u,. The relevant

S(e) normally corresponds to the smaller C2.

9.2.3 The line x = 1. - x = 1 implies u = ul, a resonance [i.e. a solution of (8.21)]. As the
case s = 1 has been treated above, only the case s = ssP =A 1 needs to be considered,
ssp denoting the saddle point for the s-integral. ssP is the solution of aL/as = 0. Using
successively the two expressions of aL/as given by (9.7), we obtain :

and, since x = 1, v = uo where uo is a resonance, identical with ul or not. There are thus two
possibilities :

a) ul = uo. Then :

where

B (E ) is formally identical with C (c) [Eq. (8.18)], but for the moment we do not dispose of a
firm criterion enabling us to specify the determination of arg u. Approximation (9.14) is

correct under two conditions. First, integration over x requires :

Second, ssp should not be too close to 1. This implies :

Of course, for (9.14) to be relevant, it is necessary that ssp lies on the contour of s-integration.
If uo is close to the real axis on the right (resp. left) side of Eâ , this almost certainly implies
Re ssp - 1, therefore, by (9.13) :

If a positive determination is taken for [- arg o, (E)], (9.14) thus ceases being relevant when
becoming too large.

b) ul =A uo. Then :
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where, generalizing (8.24) :

Besides (9.16) and (9.17), the condition ul - uo 1 &#x3E; 1£ should be satisfied, as well as (9.18) if
uo is close to the real axis.

(9.14) describes the influence of resonant processes occurring at t  0. An example will
show it best. Consider the wide-band model under condition (5.24). For e  sâ + Eo,
S (E ) is deduced from (5.25) :

This is just the sum of (9.8) and (9.14) (within these particular model and conditions) if the
determination [- arg cr ( e )] = ’P ( e ) is chosen. The two terms correspond to the two crossings
of the substrate level of energy s by the resonance, downwards (at t &#x3E; 0) and upwards (at
t  0) respectively. For s = eâ + Eo, the two exponents in (9.21) become equal, but, as
condition (9.17) is violated, the approximation breaks down. For c&#x3E; E’ + Eo, (9.18) is

violated (there is no more crossing) and (9.14) is irrelevant [so is (9.8) moreover].
To unravel the question of the determination of arg o-(e), consider the same model, but

change the sign of EF - e: and Eo in condition (5.24) (thus Eo « 0 and eF «:c E’ . To respect
electron-hole symmetry, we should choose [- arg o, (E)] = cp ( 8 ) - Tr. The two terms of
S(e) have equal exponents again for e = e: + Eo and the approximation breaks down for
e eâ + Eo. In both cases arg o’(c) should be chosen in such a way that (9.14) becomes
comparable to (9.8) just when (9.17) is violated and never exceeds it.
The example also points out that, unlike previous expressions of S(e), (9.14) is not a

dominant contribution. It is at most of the same order of magnitude as (9.8) and should
therefore be added to it. More exactly, the terms to be added are the corresponding
contributions to Y( e ), not S(e). But the crossed terms are always oscillating functions of
s whose contribution to the ion fraction is negligible.

(9.19) also describes the influence of resonant processes at t  0, but in a situation where
vertical transitions due to the discontinuity of de/dt at t = 0 play a major role. For this
contribution not to be masked by (9.9) or (9.10), [C2(uo) - B(e)]/_À must not be large,
which implies the resonance uo to be relatively narrow and e not far from it. But then

ssp is close to 1, which is the situation treated in § 9.2.2.c. In fact for a narrow resonance (9.19)
is a duplication of (9.10). This is quite apparent when (9.11) is carried back into (9.10) and
one takes B(s) = C (e)  (s - eâ ) cp and C2(UO)=-- C (e: + Eb) in (9.19).
9.2.4 S ( e ) in the discrete spectrum. - Let eo be a pole of cr (z ), therefore a bound state of
H,. Its distance to sâ or any other pole will be supposed &#x3E; a. It is convenient to introduce

y (z ), analytic at eo, such that :

Consider an interval of e only containing eo as eigenvalue of H,. In this interval (7.15)
becomes :

We need M(y) for



352

where and

The last expression is quite comparable to (8.4) and can be approximated similarly. Setting

as in (8.6), introducing 5-functions and writing them in integral representation as in section
8.1, we get :

To sum the series, we use the identity :

obtained by comparing the series and integral representations of the Bessel function. The rest
of the calculation consists in repeated applications of the saddle-point method. Integration
over q and r gives, to lowest order in À :

where v is defined by :

Note the similarity with (8.8)-(8.10). The similarity can be made more complete be rewriting
M(y) in terms of u :

with the definition :

équivalent to (9.22). To integrate over s, we observe that the stationary-phase path
Re 1 = Const. must coil around each of the limits of integration and therefore reach its



353

highest point at a saddle point between them. It comes :

where w is related to y in the same way as u to x [Eq. (8.10)] :

We can now return to Y( £0). With the change of variable x = e- 2p,t, , (9.5) becomes :

where y = x - À /,.". The analysis is then quite similar to that of section 9.1. As :

the saddle point xsp is such that x;p + À / IL = 1. The possibility for the maximum of Im J on the
contour of integration to be at a complex xsp should again be dismissed. It remains two cases :

a) The maximum is at the real saddle point x = 1, here coinciding with the limit of

integration. It comes :

on condition that À ’" IL « luo - e:J. Using definitions (8.24) and (9.15), we obtain :

b) The maximum is at x = 1, but this point is not a saddle point. Then, ul and

U2 being two different resonances, we obtain, on condition that À ’" IL « 1 Ut - U21 : v

(9.24) and (9.25) show some analogy with formulae (8.30) and (8.23) of the sputtering case.
This will be more apparent in next section.

9.3 ION FRACTION. - As in the sputtering case, we restrict ourselves to situations leading to
relatively simple expressions for the ion fraction P. We again assume EF &#x3E;» ea" zero
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temperature and no discrete substrate level in the vicinity of e’:. Here :

First, suppose the resonance(s) sufficiently broad or distant from eà to ensure

C2(Ui) &#x3E; A, whether ui designates Ua, the resonance formed adiabatically by the a-level, or
any other resonance. Then, the memory of the charge state at t = - 00 is lost during
scattering and P reduces to the last term of (9.26). The relevant S ( e ) may be (9.8), (9.9) or
exceptionnally (9.25) if a discrete substrate level is shifted into a band as the result of

interaction with the a-level. The analysis of paragraphe 8.5.a to 8.5.d is still valid, the sole
modification to the results being the replacement of (8.32) by :

Next, consider a relatively narrow resonance U,,(C2(U,,) - ’k - 1£ )- If it crosses the Fermi
level markedly (£F - E ’ and ua - EF &#x3E; ), both (9.8) and (9.14) contribute to S ( 8). To
integrate over e, it is convenient to proceed as in paragraph 5.3.d to avoid using
S(e) for e = Re ua, which is badly known. Adding the survival probability of the initial charge
state, given by (9.2), we obtain

where C2 = C2(Ua). In practice (9.28) reduces to the rate-equation result (4.7). If the

resonance does not cross the Fermi level, P is the sum of the survival probability of the initial
charge state

and the contribution of transitions at t = 0 induced by the singularity of e, again given by
(9.27). (9.29) has a smaller exponential than (9.27), but a larger prefactor if Po = 1, so the
two contributions can be comparable. If the resonance ua overlaps the Fermi level at

t = 0, it follows from considerations of paragraph 9.2.2.d that P is still proportional to
exp (- C 2/ 9 ), but with a small (and complicated) prefactor, in contrast with the sputtering
results (8.33).
Now, suppose the adiabatic a-level discrete at any time, which entails C2(ua) =

C (u,,) = 0. The case Po = 1 leads to the trivial result P = 1 and need not be considered any
longer. For Po = 0, P is dominated by transitions due to the discontinuity of deldt at
t = 0. If, for e &#x3E;» eF, p,, ( E ) is sufficiently smooth (which means that no narrow resonance lies
there), the relevant S(e) is (9.9), giving :

where R (E) is evaluated with uo = u,,. In presence of narrow resonances above CF’ the

appropriate S ( E ) is (9.10) and R(e) is replaced by the much smoother function

È(E). For simplicity suppose that there is only one narrow resonance, say ub, above

EF- If, adiabatically, the latter remains a sufficiently long time above EF to satisfy the condition
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(in fact an equilibration condition), the broad peak of R (e) is entirely above EF and, owing to
(9. 11), the result is practically the same as (9.30). Otherwise the fraction of this peak below
EF should be substracted, meaning that the resonance ub is not completely vacant and
therefore apt to receive an electron from the a-level.
To illustrate this situation, imagine substrate states composed of a semi-infinite conduction

band (e ::. £e) and a bound or quasi-bound state of energy £b cp, an adsorbate state for
instance. Initially the a-level is occupied and lies below the conduction band (8,,’ « 8,).
During scattering, the a-state mixes with the b-state in such a way that the adiabatic a-level
remains below êe while the resonance ub crosses EF. As in paragraph 9.2.2.c, set

ub = e a 00 + Eb - iâb and assume   Eb  Eb (therefore cp = L1b/Eb) and u’(£) - 0 for
c &#x3E; ~p. To get a rough estimate of P, neglect the variation of ê - ua between EF and Re
ub. It comes :

Two factors appear. The first one is the transition probability between the a-state and the
resonance ub at t = 0. The second one is the probability that the b-state has previously
transferred its electron to empty states of the conduction band through resonant processes, as
use of the rate-equation approach would show easily.

Finally consider a discrete-level system with Po = 0. The possible S(E)’s are (9.24) and
(9.25). Asymptotically, the dominant one is (9.25), which describes the influence of the
singularity at t = 0. As in section 8.5, we note Ej the eigenvalues of Hs, u1 those of
H(t = 0 ). eo is one of the si’s above EF, therefore above a,,. The choice ul = ua entails
CZ (ul ) = 0. Taking for U2 the nearest ui above eo and observing that cp (E) = 0 in the interval
Eo - e U2 [since cp (e) makes no more than one jump between two consecutive

Ei’s, starts from 0 just above an 8i and sign U (Ui) = sign (Ui - er:):&#x3E; 0], we obtain

C 2 (u2 ) = C (--0)- With the determination B (e) = C (e), the exponential takes its highest
possible value, 1. Finally, summing over the various ej’s above EF, we retrieve the sputtering
result (8.34) just modified by the substitution of (g + À )2 for IL 2.

In the special case of the two-level model, it is possible as in section 8.5, to go further and
retrieve the « regular » P due to continuous transitions between the two levels (« weakly
resonant processes » in the sense of section 5.2) and not to transitions at t = 0. This implies an
extremely large 1 17 0 1 or To and therefore well separated transitions along the inward
(t -- 0) and outward (t :::. 0) trips. The relevant S(e) is here (9.24), with 80 = Eb-
C2 [--_ C2 (uo ) ] can be evaluated either with uo = ua = s (0), giving C2 = 0, or with

uo = ub = 8+ (0), giving C2 = 1£ y where y is defined by (6.12). The first choice gives the
contribution of transitions along the inward trip. B ( Eb ) should then be evaluated with the
determination 

’

giving B (8b) = - C (Eb) = - C (Ub) = - 1£ -y. The second choice for uo gives the contribution
of transitions along the outward trip. The (more usual) determination [-argo-(c)]=
cp ( e ), giving B (6b) = C (Eb), is then appropriate. Collecting the two contributions, we
obtain :
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To retrieve (6.6) in the case À = g, an interference term

should be added. In fact the correct procedure would be to add contributions from

Y(--) [Eq. (9.23)], instead of S(e), and square afterwards. The crossed term is the
interference term. T could be calculated, but, as it is very sensitive to the form of

T (t ) and E (t ) between the regions where transitions occur, which form is here rather

artificial, its value is of no physical interest.

10. Conclusion.

The main results of this study are the expressions of the ionization probability P of slow
atomic particles scattered or sputtered from surfaces, obtained in chapters 8 and 9 in an
independent-electron model under the assumptions of exponential variations of atom-
substrate coupling matrix elements with a single time constant g-1 (resp. À - 1) along the
outward (resp. inward) trajectory and matching conditions at t = 0 such that the matrix
elements are continuous, but not their derivatives. Essentially two possible behaviours are
obtained. If ion formation results from continuous non-adiabatic transitions, especially if the
resonance formed by the atomic level crosses the Fermi level, P behaves as

in the sputtering case. In the scattering case a second exponential term may be significant if
the coupling is not too strong, as well as interference terms if substrate levels are discrete. A
different behaviour is obtained when ion formation results from transitions induced by the
singular variation of the coupling at t = 0, ’viz.

or more complicated expressions, with C 2 = 0 for a discrete-level substrate.
Though (10.1) was obtained under rather restrictive assumptions, any regular (i.e. analytic)

variation of atom-substrate coupling matrix elements should lead to a similar form (possibly
corrected by an interference factor in the scattering case if discrete substrate levels are

involved) asymptotically, i.e. for sufficiently small IL, provided the trajectory approximation
remains justified and temperature effects can be ignored. (5.32) and (6.6) show it for as
different models as wide-band and two-level models. The conclusion seems still to hold if
electron correlation is taken into account [17, 21]. However it does not tell us within which
range of velocities (10.1) is a good approximation. Qualitatively, as noticed in sections 5.4 and
5.6, (10.1) is better when the law of variation of coupling matrix elements is closer to an

exponential and, as appears from appendix, when u (E) is smoother. Thus deviations from
(10.1) will be more easily observed if the coupling displays sharp or non-monotoneous
variations or the Fermi level is close to a sharp structure (e.g. band edge) in the density of
states. An example of sharp and non-monotoneous variation of the coupling is the one

resulting from the collapse of the transfer integral between the He ls-orbital and some Si
orbitals when the atoms are in close contact, leading effectively to a large increase of the
He+ ion fraction at low velocities [23]. (10.1) cannot allow for such effects, which require
specific calculations. But, in contrast with many model calculations employing the same
exponential time dependence for coupling matrix elements, it is not restricted to a particular
substrate. Through the expressions of Ci and the prefactor (given in chapter 8), a dynamic
property, the ionization probability, is directly related to a static property, the function
cP (E), making a quick evaluation of P possible in a number of non-trivial cases.
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The interest of (10.2) and akin expressions is more limited since they result from the
assumed matching conditions at t = 0. However they give an insight into the possible
contribution of an abrupt change in the variation of some parameters. If this change is of
physical origin, due to a collision for instance, (10.2) may be an acceptable approximation in
some range of velocities, as analysed in section 5.6. Another use of (10.2) is to estimate the
influence of artificial matching conditions in numerical simulations. In particular, if

calculations are made with clusters, a crossover from (10.1) to (10.2) (with C2 = 0) is

expected when the level separation becomes comparable with the energy uncertainty
llg.

One-electron processes involved in charge exchange are often called resonant processes.
The concept is clear when the a-level forms a narrow resonance and charge exchange
proceeds quasi-isoenergetically so as to restore equilibrium, justifying use of the rate equation
approach. But charge exchange can also proceed through transitions between levels of
different energies, whether these can be easily identified (e.g. discrete levels) or they belong
to broad resonances. Mathematically there is no border-line between the two kinds of

processes, which were called near- and far-resonant processes in section 5.2 and are both

described by (10.1) or akin expressions. However far-resonant processes have a low

probability [for discrete levels separated by AE, this decays as exp (- TT AE / 1£ ) ], making the
corresponding Cl large. So, for a positive (resp. negative) ion fraction of slow sputtered or
scattered atoms to be detectable, it is usually required that the resonance formed by the
atomic level penetrates into a band of vacant (resp. occupied) substrate states, unless (as
regards ion scattering) an incomplete neutralization can be invoked.
The potentialities of the present results have already been illustrated in model cases, the

detachment of the end atom from a semi-infinite chain and the knocking-off of an atom a by
an atom b itself coupled to a wide-band substrate [24], and in the physical case of secondary
Cu+ emission [25]. In view of further physical applications, the following points should be
minded. The above calculations rely on a law of variation of coupling matrix elements
characterized by time constants 1£ and À and imply a unique trajectory, not influenced by
charge exchange. g and À are proportional to outward and inward velocities. In a real
situation, velocities influence other parameters, such as the magnitude of the coupling at
t = 0. Also the assumption of a unique trajectory for given initial and final velocities is not
always justified in scattering and is probably never in sputtering. In the latter case a

quantitative comparison with experiment would require a statistics of ejection processes.
Lastly, at low exit energies, the recoil due to charge transfer invalidates the trajectory
approximation. However, if the point at which this transfer occurs is relatively well defined,
the final energy of the ion just needs to be corrected by the a-level energy variation beyond
this point, essentially due to the image force.

Appendix.

As mentioned in section 8.2, when the contribution (8.17) is dominant, its asymptotic
expansion can be derived to every order. This is done in this appendix.

Since, in the present case, the truncation of the interval of integration at x = 1 in (8.2) is
supposed to produce only exponentially smaller terms, we remove this upper limit.

Substituting (8.7) for Q in (8.2) and integrating over x from 0 to oo, we get :
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Integration over s gives two 5-functions, whence :

W(z) is defined by (8.6). We wish its expansion in powers of N. beyond the first term given by
(8.5). We use the formula :

where (m) denotes the m-th derivative of f and the cm’s are the coefficients of the Taylor
expansion of x csch x at the origin, also given in terms of Bernouilli’s numbers

Bm as :

It comes :

Using (A. 1) again, we deduce :

whence :

Finally, using (7.6) and (5.8), we obtain :

where :

is given by (8.18), cp (e) by (3.10), c. by (A.2) and :

The beginning of the expansion is :

For large



359

We emphasize that (A.4) is generally an asymptotic (i.e. divergent) series, the trivial case
of a constant cp (e) being probably the sole exception. Supposing that one manages to resum
the series, one could only be sure of the result up to exponentially small terms (i. e . of the form
e - a/IL) and S (E) could not be known better than with a similar relative uncertainty.
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